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Abstract

This paper considers the optimal design for the estimation of a linear
form of the parameters of a regression model, when the regressor belong to
a finite dimensional Haar linear space . A major interest is paid to the geo-
metric approach, following Elfving’s theorem. The classical Hoel-Levine
design follows as a special case of a result due to Karlin and Studden.

1 Introduction and notation

This paper of pedagogical nature presents the derivation of designs in the context
of the Chebyshev regression; specifically the focus is set on the designs leading to
optimal estimation of a linear form of the coefficients in a Chebyshev regression
model. For references on general notions on optimal designs for extrapolation
and interpolation, we refer to [Celant and Broniatowski, 2016] ; for Chebyshev
systems, we refer to the paper [Broniatowski and Celant, 2015]; the notation is
inherited from those used in this paper, without further definition.
Consider a Chebyshev regression model defined by

yz,; (.’.EJ) = (.X (iEJ))’G +E1;1j, 1= 1, ...,Tl.j, _7 = 1, S (1)
where
¢ = (6o, ...,05—1) € R?
B\(g:) =0, torally (s 4)
0% > 0 for (i,5) = (¢, ')
i o { 0 for (i,g) # (¢, 7)
and

X (.’E)’ = (cpo (o) s P (m)) € [—1,1]
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where { ¢, ...,(pg_l} is a Chebyshev system of functions defined on the observ-
able domain [-1,1] .

We make use of the usual notation for the observations. Denote the nodes
taking into account their multiplicity, namely for each of them the number of
replications of the experiment to be performed. On the node z; let n; be the
number of replications. The discrete measure characterizing a design is therefore
described as

e e, - e e, & e e .
Zoyio (Ro tHOeRY, o By ks (Mg SIMES), ol = Sapa i (e 1 Hiihes)

with
ng+..+ng_1 =n.

This design can also be written by
N

where %1, ..., t, describe the ny equal values of zp, and so on.
Taking into account the ¢;’s in place of the z;’s, the data set can be written
through

Y=T6O+¢ (2)
where
@o(t1) o @g_1(t1)
Yi=1 . yTi=1 @olti) . @g_1(t) 3
0o (tn) o ‘Pg_q(tn)
90 E1
o= G 3
99—1 En

E(Y) =T 8, var (g) = 01,

and I, is the identity matrix of order n. The vector of parameters # belongs to
RY and is unknown; o2 is assumed non null.
A generic design ¢ is defined through

g—1
(5 T
£($J) = gja J =O:---,9— 1 an =n, Tj = [-—1,1]
j=0

A design therefore is defined as an element of M, ([—1,1]), the class of all
probability measures with finite support on [—1,1]. The generalization with
repect to interpolation or extrapolation optimal designs lies in the estimation of
a generic linear form of #; in [Broniatowski and Celant, 2015] the estimation
pertained to

Xi() "0 = X ()i 0>
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which amounts to estimate an interpolated value whenever |z| < 1, and an
extrapolated one when |z| > 1.

Hence we consider a form given by < ¢, > where the known vector ¢ in RY
defines the linear form. The aim of the present paper lies in the quest for the
optimal design for the estimation of this form, minimizing its variance among
all unbiased linear estimators. This yields

— —~

el =—=<cd =
where 0 is the least square estimator of 6.
Example 1 Let

y (@) = Oopy (%) + ... +0g-1 g1 (z) +£ (),

where {@g, ..., gog_l} is a Chebyshev system on R, and y (z) is observable for
z € [-1,1]. Let |u| ¢ [-1,1] . With

0=(05,1:58,)
and

Ezxzample 2 .
Ci= (QOU:"": (Pg,l)

the inner product

g
e o= Zﬂj w; (u)

J=0

s a linear form which evaluates the extrapolated value at point u.

Let ;
Y =t il

denote the observed sample. An equvalent writing for (2) is
X (t1)

B — ; 0+e
X (tn)

denotes the model (1) where ¢ is the vector of errors,
gl 1= (eiy.En)
and the least square estimator of # is
X@) \' [ X \\ [ Xt)

X (ta) X (t) X (t)
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The measurements may be written grouping the replications of the mea-
surements on the r nodes of the design, and denoting n;,..,n, the number of
replicates distinct nodes (z1,..,2,) . The moment matriz is defined by

r

M(©)=) 22X (a;) X (25 .

=1

Here £ is the design, defined by
i
E(o)="2

fortil < < p|

The contents of the paper is as follows. We first study the properties of
the moment matrices associated to designs. Then we introduce the notion of
estimable linear forms; those are forms which admit an unbiased linear estima-
tor. The geometry of the class of moment matrices is the frame in which the
estimable forms are best handled. Then we introduce the Elfving set of vectors
which provides a link between estimable linear forms of the parameters and
the corresponding optimal designs. Finally a Theorem by Studden and Karlin
provides a complete characterization of the optimal designs; at this point some
use is made of the theory of best uniform approximation of functions. It also
leads to an effective way to obtain this design. We will consider optimal designs
following Kiefer, Wolfowitz and Studden, mostly using the approach of Kar-
lin and Studden [Karlin and Studden, 1966a], which makes use of a Theorem
due to Elfving [Elfving, 1952] , [Pukelsheim, 2006] and [Studden, 2005]. The
approach by Kiefer and Wolfowitz [Kiefer and Wolfowitz, 1964] makes use of
some arguments from game theory instead.

This paper is based on [Elfving, 1954], [Hoel, 1966], [Karlin and Studden, 1966
[Pukelsheim, 2006], [Studden, 1971], [Studden, 2005], [Karlin and Studden, 1966a

2 Matrix of moments

To any £ € My ([—1,1]) we may associate the moment matrix, defining

MEPSSTE X (s el (6
=0

where g, .., {,_; denote the values of the measure £ on its support zg, ..., Zr_1,
Since X (z) X / (z) is symmetric, so is M (£) per £ in Mg ([—1,1]). The class
of all symmetric matrices of order g is denoted S (g) and it holds

McCS(g).
Some special subsets in S (g) deserve interest for the sequel.

S>0(9) := {4 € S(g) such that 2’ Az > 0 for any x € R9},
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St (g9) := {A € S(g) such that 2’ Az > 0 for any z € R\ {0}}.

The set S>¢ (g) is the class of all symmetric positive semidefinite matrices
of order g whereas the second class ST (g) is the class of all symmetric definite
positive matrices of order g.

We will also make use of S~ (g), S<o (g) with clear interpretation.

The classes S>¢ (¢9) and ST (g) induce a partial ordering in S(g) , the so-
called Loewner ordering , defining

A= B < A—Bec 8559,

A-B < A-BeSt(g).

It is customary to write A — B = 0 in the first case and A — B > 0 in the
second one. Loewner ordering enjoys a number of properties.
Let @ € R*, and A, B, A, belong to 8> (g), assuming that lim, . A,
exists. Then
aA =0, A+ B0, nlLrl;loAni‘,O;

see [Pukelsheim, 2006].
The mapping
tr:(S(g))> =R, (4,B) » < A,B>:=tr(A'B) =tr (AB)
defines an inner product on S (g) from which derive the norm and the distance
Il 8 (9) = R0, A = [|All,, := /tr (42),
dist (A, B) := |A— B|| = 4/tr ((A L 3)2).

The closed ball with radius 1 and center 0 is defined by
S (0,1) == {A € S(9) : | Al <1} (3)

The geometric structure of Sx¢ (¢) is described through the following The-
orem.

Theorem 3 (Pukelsheim p 29) S>o(g) is a convex closed cone. It is pointed.
Furthermore ST (g) is the relative interior of S (g) in S (g), which is denoted
int (Sxo(9)) -

As a subset of S (g), the set M () enjoys specific geometric properties, as
seen now.
Associated with the Chebyshev system of regressors X(x) as = belongs to
[—1,1] we define
H:={X(zx)eRI:ze[-1,1]}. (4)

We also define the regression range as the linear space generated by H.



20

Theorem 4 M C S(g) is a compact and convex subset of S>¢ (g).
Proof. See [Pukelsheim, 2006] p29. m

3 Estimable forms

We introduce a linear form ¢ in RY which is identified with the vector (cy, .., ¢4—1)
through
g—1
=y g0 =< ¢, 0>, (5)
§=0
assuming that ¢ # 0.
In order to emphasize the vector c of the coefficients of the parametric func-
tion Z;?;é c;jf;, we call a c - form the linear form 6— Z?;é gl =< e l=,

Definition 5 Let ¢ € RY and identify ¢ with the linear form (5) where ¢ € RY;
we say that the linear form c is estimable if and only if there exists some unbiased
linear estimator of < ¢,0 > for 6 defined in (1).

Example 6 Consider c := (1,0,..,0) ; therefore < c,0>=0y; the linear form c
is estimable if we can define an unbiased linear estimator of 6.

From this definition 8— < ¢,0> is estimable if and only if there exists
4

uli= s e R suchithat <lclf > —= 40 = and

E(W'Y) :=< c,0>, for all § € RY,

which amounts to
u'T 8 =c'9, for all § € RY

which entails
uls -«
Finally we see that a linear form is estimable if and only if
ceImT’. (6)

In the next paragraph we obtain the explicit expression for the Gauss Markov
estimator of a linear form.

Example 7 A localization problem.
o? ife=¢
W it

The least square estimator of 6 when a sample of n i.i.d. observations is
at hand is given by

Y=0+4+¢ 0€R, cov(s,s’)—{

where
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Example 8 A standard regression model

Y =X0+¢, eiid, 0 €R".
Example 9 The least square estimator of 0 under i.i.d. sampling is
0:=uY
where

. B0t e X)X

4  Matrix of moments and Gauss-Markov esti-
mators of a linear form

4.1 Matrices of moments and estimable linear forms

We discuss the link which connects the matrix of moments and the estimable
linear forms. The variance of the Gauss-Markov estimators of an estimable linear
form will be derived.

Making use of the notation in Section 1, the matrixhe moment matrix takes
the form ;

ME) : =-TT= ¥ &)X (@) X (@)

x;€supp(§)

- [ (X)X @),
[—1,1]

We first put forward an important property of estimable c— forms (see (6)),
which is of algebraic nature.

Proposition 10 A ¢— form is estimable if and only if
ceImT’

if and only if

celmM (&). (7)
Proof. We first state that

I P =T Ty

Given a matrix A in M, (the class of all matrices with p rows and k columns),
and identifying such A with the corresponding linear mapping, it holds

Ker(A') = (ImA)™*. (8)
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Now
Ker (T''T) = Ker (T). (9)

Letting in (8) A =T 'T we obtain
Ker (T'T) = (Im (T 'T))™*. (10)
Now, letting in (8) A =T we get
Ker(T') = (ImT)*. (11)
Those two latest results , together with (9) yield
(Im (T 'T))" = (ImT)* . (12)
Taking the orthogonals on both sides in (12) it follows that
0 (7' =1m7.

]
It is common use to say that the ¢ - form is estimable with respect to the
measure . In the sequel we will assume that the ¢ - form is estimable w.r.t. £.
Solving the system of linear normal equations pertaining to (2)

1 '
M(€) 6=—T'Y

we obtain the least square estimator, say 5, of 6.
Since the matrix M (§) is invertible (due to the fact that the family {(g, ..., o, _; }
is a linearly independent family of functions), it holds

B= (M) LY.

A way to estimate the linear form
< c,0>=cobp + ... + Cg—lgg—l

consists in the plug in of @ in place of the 6;’s, j =0,...,g — 1, which yields the
least square estimator

—_—

< e == Cgao SRt e cg_lﬁg_l. (13)

Lemma 11 The above estimator (13) is optimal within all linear unbiased
ones, and it is the only estimator enjoying this property.

Proof. Indeed let u'Y denote some other linear and unbiased estimator of the
c - form. Then
Y =cY +dY
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for some d in R™. Using unbiasedness
BaY)—cv
Therefore
E(WY)=E(cY +dY)=cd0+d'E(Y)=c8+dT0=C0,
ie.
AU =10,
ie. 3
& R =),

Let us now evaluate the variance of this estimator. It holds

var(n'Y) = war(c'Y +dY)

= war(c'Y) +var (d'Y) + 2cov (c'Y,d’Y).
Since
cov (c'Y,d'Y) = E {(c’Y —0) @'Y - c’e)}
=M (g))T T 'd=0,

it follows that
var (W'Y) = var (c'Y) + o*d'd.

This variance reaches its minimal value if and only if
di=i0;

proving uniqueness. It follows that the Gauss - Markov estimator of the ¢ -
form is At o A
= C,Q) =cobg + ... + Cg_]_ag_]_.

Furthermore
var (<’(—:?§‘>) = il (c’@)
= o (M(§) e
|

Once defined the optimal estimator of a ¢ - form, we intend to characterize
the optimal measure pertaining to this estif_nﬁ(ir.

The variance of the optimal estimator < ¢,0> depends on the matrix M (&)
induced by the design. Now M (&) is a symmetric positive definite matrix of
order g. The optimal design defined through the minimization of the variance of
% will result from a study of a partial ordering of the symmetric matrices.

Some other form for the variance of the estimator of a linear form can be
obtained also when the moment matrix is singular. Indeed the following impor-
tant result holds. Denote var (Y') the covariance matrix of the vector ¥ which
is a symmetric positive semi definite matrix of order n.
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Definition 12 For a design § , let F (£) be the set of all unbiased linear esti-
mators < w,Y > of the linear form < c,0 >, where the measure & s fized.

We will identify any element in F'(£) with the vector u in RY such that this

estimator writes u'Y.
It holds

Proposition 13 (Karlin and Studden) Let £ € Mgy ([—1,1]). Assume that
supp (§) := {zo, ...,Zg—1} and denote

n;

6(271) = )

n

with n; > 0 for all i. Assuming that F(&) is not voids, and denoting < v,Y >
the Gauss-Markouv estimator of < c,0 >, it holds

vor(<m Yas) = min (var(<u Y =)= o2 zs: (< wy,c >)2
7,Y >) i=min , Vs

where v; and X; are respectively the eigenvectors with norm 1 and eigenvalues
of the matriz: M (€).

Proof. We assume without loss of generality that o2 = 1.
Step 1. We first prove that for any element u'Y in F (£) it holds

1 =ed =)
var (0'Y) > sup e
ode(Kerm(ent < d, M (§)d >

Consider the inner product < ¢,d > with 0 # d € (KerM (¢))*. Since
the linear form < ¢,0 > is estimable it holds ¢ € Im (M (£)) and therefore
c € ImT’; see Proposition 10.

Hence there exists some vector u such that ¢ = 7" 'u. Write henceforth

S—ed ——1"nd ——uld "
Applying Cauchy - Schwartz Inequality it holds

<m, Td =<y >/ < Td, Td >.

Therefore
<o d > iy T dd
Now
4 ! 0.2 ! 1
var (0'Y) =uv'var (Y)u= —u'u=—- <u,u>.
n n
Hence

(<e,d>)? < <uu><7d7Td>
=mwan(u® )< Td; 7d >
=nlvar@¥) =< /T Pd >
=nvar(u'Y)<d,M@E)d>.
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It follows that
1 (<ed =

n<d,M(€)d>

Going to the supremum in both sides of this inequality we obtain

var (0'Y) >

Lacead>)
var (U'Y) > sup e
ode(Kerm(e)t < d, M (§)d >

Step 2. We now prove that equality holds for some element in F (¢). Namely
we prove that there exists v € R™ such that for fixed £ ,

nari<ag e == urEnFi?E) (Cori{u, ¥ =)

Clearly by definition < «,Y > will then be the Gauss - Markov estimator of
< ¢, > . Note that a basis of the linear space generated by the column vectors
of M (§) is given by {v;,i=1,...,s} where s := dimIm M (£). We assume the
vectors v; ’s to have norm 1. When M (&) is of full rank then s = g. The condition
for estimableness ¢ € Im M (£) due to (7) may then be written as

C:Z<vi,c>vi.
F=1
Therefore

- 2
(<c,d>) = (<Z <vi,e>v;,d >)

=1

5 2
= (Z <vi,e><v;,d >)

el

1

2
S
(Z“’“” <vi,d>\//\7)

Apply Cauchy - Schwartz Inequality to each of the components of the vectors

(<v1,c> <vs,c>)

WO B R
and
(< Vil 2 8 Ny o > \/A_S)
We get

(<ea>fs (3252 (3 cvanta).

=
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From the spectral Theorem (see e.g. [Lang, 1989]) we get that

8
Mgy =31 Nk vy
i=]1

hence

(<c,d>)?< (Zﬂ) (Z<v,,d> ,\) (14)

i=1
= (Z SW‘)’\—D) <d,M(&)d>
=1 e

In this last display equality holds between the first and the second members
in two cases (see [Karlin and Studden, 1966a] p788). Either when there exists
some constant h such that

< Vi€ >2= hh; < Vi,d B

or when d is proportional to
s 2
<INV C =
dEi— E —2 " v,

We only consider this latest case. See [Karlin and Studden, 1966a] for a com-
plete treatment. Recall that M (£) = 2T'T. Taking v := 17''d* in

var (0'Y) > sup Lt -

_ 15
0Ade(KerM(g))* n<d,M(€)d> L

we get equality in (14). In order to conclude the proof it is necessary to prove
that the vector

1
= =T 'd*
i

belongs to the set F (£). Now

£ (i, = %T’Td* = M () d*

3
= Z)\i<vi,c>vi=c

i=1

which closes the proof. m
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4.2 An alternative form of the lower bound of the variance
of the estimator of the ¢ form

It can easily be checked that whenever the inverse matrix of M (&) is defined
then the mapping
=cid =e
S S
<d,M(é)d >

with d # 0 assumes its maximal value for

d

d=do:=M 1(®)c.

Therefore 3
<ec,d> < c,dg>?
sup

da<d, M@ d> <dy,M(E)de>

Indeed in the above Proposition 13 we proved that the variance of the Gauss-
Markov estimator < ¢, > of the form < ¢,0 > is

var <c,0 > = lsu <cd>’
e L RcaMDd>

Assuming that M (&) is invertible; direct calculation leads
var <¢,0 > = %C’M G 5 (16)

Setting 0% = 1 (since the optimal design does not depend on ¢2) it follows that
the Gauss-Markov estimator is given by

<c0>=c(X'(z) X(2) ' X'(2)Y.
Hence
var < c,0 > = var (c' (X' (z) X (2))* X' (z) Y)
T ) X)) (X () X (@) e

n
1 ’ -1
=—cM ¢
~<M~ (¢)c
Now el
< c,dp> / i
=c\ C.
< do, M (§)do> % ©
Indeed
< ¢,dg>? <c,M ~1(8)e>?

<dp,M(§)do> <M IE)c,MEMT(f)c>
=c'M 1 (¢)c.
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In the above Proposition 13 the measure ¢ is fixed in My ([—1,1]). Now
since

M@= TT= [ (X@)'X @),

let ¢& vary in My ([—1,1]); define the optimal design & which minimizes the
variance as follows
vares (<Y =)= var (=ie, Y=
eI B ) eeMd(!u]) i )

min (var (< u,Y >))
EEMd(E L,1)) F(¢)

eeMd(i wpn S 4 U
ol 1 “(se0,d s
geMd [ L1]) gzde(Ker(€))* n<d, M(€)d >
(d'c)®

sup 5 2 :
" eeMal [ L1D) ode(KerM(€))* fg—1,1] (d'X (2))” d¢ (=)

Since d in (KerM (& ))L can be chosen up to an arbitrary multiplicative constant
(see formula (15)) we may assume that d’c = 1 . Minimizing upon ¢ choosing a
measure whose support with g points consists in the points where the mapping
z — d'X (x) assumes its maximal values it holds

mi sup .

in =

£eEMq([-1,1]) [):,lédE(K’E:'ru".-d'(n‘,:))l ‘Ii:'“lnll (dIX (m))z d& (‘1")
1

min - 5
EEMd([_l’ll) mlno#__de(KerM(E})L (ma.xm d'x (CC))

vare (Ll B) =

Definition 14 Let £ belong to Mg ([—1,1]). If < ¢,0 > is estimable we denote

(< c,d >)?
di(é,e)i= sup Rt
otde(Kerm(e)t < d, M (§)d >

By the above discussion , denoting vare the variance under a design &,
g 1
Yirg < ¢, 0> = Ed(f,c).

‘We now consider the relation between a linear form and the measure for
which it is estimable.

We start with some preliminary result. Let A and B be two square non
negative semi definite matrices with same dimension k. Then

Ker (A + B) = Ker (A) N Ker (B) (17)

From (17), taking orthogonals and using (8) we get
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Im (A + B) = Im A + Im B.

We now state

Proposition 15 (Pukelsheim p. 42) It holds Im (M (€)) = span {X (z) : z € supp (§)}

Proof. Since

M€= &(X(z)) X (z;) (X ()

=T
We have, by (77)

igr

Im (M (§)) = Im Z&(X(wj))X(ﬂrj)(X(mj))')

e 3 (X lam)) X () (X (25)))

igr

Now the image of the matrix & (X (z;)) X (z;) (X (z;)) is the linear space
spanned by its column vectors, i.e. span (X (z;)). Therefore

m(M () = Y span(X (z;))

j<r
S X () e Rper j=0,...r
Jsr
= span{X (z): z € supp (§)}.
[ ] )
By the discussion in Section 4 ¢’6 is estimable if and only if ¢ belongs to

Im M (€) ; therefore the above Proposition entails the following alternative def-
inition to the corresponding Definition in 3..

Definition 16 A c— form is estimable with respect to a measure § € Mg ([—1,1])
if and only if ¢ € span{X (z) : = € supp (£)}.

In My ([—1,1]) consider the following optimal Problem

{ Minge pmy(-1,1)) 4 (€, €) (18)
c € span{X (z) : x € supp (§)}

The solution ¢* € My ([—1,1]) to Problem 18 is the discrete measure which
minimizes the variance of the Gauss Markov estimator of < ¢/, >.
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5 Geometric interpretation of estimableness. Elfv-
ing set
5.1 Estimable forms and a convex subset of the regression
range; the Elfving set

We already saw that estimableness is related to a precise geometric relation.
This paragraph introduces the geometric context; we follow the presentation by
[Pukelsheim, 2006]. ;

The condition for estimableness of a linear form < ¢, 6 > is given by

celmM (§).

This property may be extended independently from the measure ¢, for any
element in S>0(g). We thus consider a generic matrix A € S>¢ (g) such that
c € Im A, and also we consider all matrices A € Ss¢ (g) for which ¢ € Im A.

Definition 17 The set
A(c) :={A € S>0(g) such that c € Im A}
is called the feasibility cone.
The estimableness condition writes therefore
M@ e A(c)nM

where

M :={M(¢) : £ € Ma([-1,1])}.

That M (£) belongs to M means that M (§) is a moment matrix.
In Mg ([—1,1]) define the following optimization problem

{ Minge py-1,¢ M (§) € (19)
M(E €Al NM

Problem 19 is analogous to Problem 18 in M, ([—1,1]); see (16).

Proposition 18 The feasibility cone A (c) for < ¢,0> is a conver subcone of
S>0 (g9) which contains ST (g).

Proof. If § > 0 and A € A(c) then since ImA = Im (6A) it holds 64 € A(c),
for any positive 6. Hence A(c) is a cone. By definition A (c) C S>0(g) and
therefore A (c) is a subcone in Sx¢ (g).

We prove that A (c) is convex. Let § € (0,1) and A, B € A (c). Since A and
B both belong to S»q (g) it holds

Im(A+B)=ImA+ImB
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(see [Pukelsheim, 2006] p 37). Hence for any A and B in A (c) it holds (64 + (1 —§) B) €
Afc). m

Since estimableness pertains to the expectation of an estimator and not to
its variance we now characterize it using a generic unbiased linear estimator of
a linear form.

Given

E(Y (z)) = ZBJ@J sy I X / (x) 0,

an easy way in order to estimate a linear form ¢’ consists in a weighted mean.
At this point it will be convenient to use the notation Y;(x;) defined in (1) in
order to define the estimator. For any node z; define

1 &
Yi{a,)=— ZYz(%)
L
the mean of the observations on node z;.
Denote
=1l
L Zuj?(a:j) (20)

§=0
where the u; ’s are coefficients which should be determined in such a way that

¢'f is unbiased.
Hence the relation between the form ¢ and the coefficients u;’s is dictated
by

— i
0=E(cB) =E > u¥(a)
j=0
g—1
= ZUJX f (CCJ) 0
§=0

which holds if and only if

Gl
= Zqu fwy)
j=0

Observe that there exists at least one index j such that u; # 0. Indeed otherwise
no data enters in the definition of the estimator. It follows that

g—1

Zl%‘l#o-

Jj=0
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Henceforth dividing
o Z G
g—1
by >2970 lu;| we get

C’ EJ =0 u’J ("E.’})
=17 = ‘)
Z?:o | Zj:o |

which, setting
€; = sign (u;) = +1

becomes >
i
C’ i, EJ ‘u.?i I (If )
g—1 2
i=o [ JOZ o‘al
and therefore :
-
c €j |“J|
=Y X (z)).
Z |u3 = Zg |uj|
For j =0,...,g — 1, the numbers
|u3|
il ez e
e

define a discrete probability measure with support {xo, ..., z4—1} included in
-1,1].
The condition for estimableness may thus be stated as follows.

Proposition 19 Let (ug,..,uy-1) be defined by (20) and (zo, .., 24— 1) be a set
of nodes. The linear form c'6 is estimable if and only af C/Z |u;,| is a
convez linear combination of the vectors ;X (z;), 7 =0,...,g — L.

Since ¢; is a sign function we conclude that ¢'6 is estimable if and only if
c/ E?;S |u;| belongs to the convex hull generated by the set {¢; X (z;),j=0,...,g —1}.
Call

Rut= 06 (o), =0, 9~ 1},
R_:=1-X (£.),7=0,:;9—1};

R := convex-hull (’ﬁ,+ U ﬁ_)

Since £X (z;),j = 0,...,9 — 1 is a finite set of vectors, the set R is a
polytope.

An equivalent context for Proposition 19 is to introduce the sets R, R_
and R; indeed by Carathéodory Theorem 20 the convex hull of the points
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{e;X (z;),j=0,..,9 — 1} is generated by a finite collection of points. In-
troduce henceforth

R = {X (x),iﬂ & [_1a1}}’
R_:={-X (z),z€[-1,1]},
R := convex-hull(Ry UR_).

Following Proposition 19 it holds

g—1
¢’ is estimable if and only if ¢/ Z lus] € R.
j=0

The set R is the Elfving set.

5.2 Geometry of the Elfving set

The Elfving set is symmetric and convex, by its very definition.

The points in R may be seen as expected values for probability measures
n’s. Indeed the random variable which assumes values (¢ (X (z;))) X (z;), j =
0,...,g— 1 with probability 7; has expectation E?;é n; (€(X (z;)) X (x;)); the
reciprocal statement clearly holds. Thus to any point z in R we may associate
a design 7.

The Elfving set is contained in the regression range, namely in the linear
space span { X (z) : © € [—1,1]}. Indeed the convex combinations of {X (z) : z € [-1,1]}
belong to this space.

In span{X (z) : © € [-1,1]} define the norm (gauge or Elfving norm)

p:span{X (z):z€[-1,1]} >R, z— p(z) :=inf {6 > 0:2 € 6R}.

This norm is useful in order to locate any point z € span {X (z) : z € [-1,1]}
with respect to R.

For example if p(z) = 0 then z € OR =0. Therefore z = 0 (which belongs
toR). If p(z) =1+¢, withe >0thenz¢ R. If p(z) =1/t thenz € (1/t) R
and z ¢ (1/t + &) R. The larger ¢ , the closer z to the null vector. Reciprocally
small values of ¢ make z close to the boundary F'r (R) of R. As t decreases the
point moves away from R.

Clearly z € R if and only if p (z) < 1.

It follows that the Elfving set coincides with the closed sphere with radius 1
and center z = 0 in span {X (z) : z € [-1,1]}.

It holds

R={z€ span{X (z) : x € [-1,1]} : p(z) < 1},

which yields that R is a compact .



34

We now characterize the boundary points of R, namely
Fr(R) :={z € span{X (z) : x € [-1,1]} : p(2) = 1}.
We fist recall a basic theorem pertaining to convex sets in R9~1, g > 2.

Theorem 20 (Carathéodory) Let A be a non void subset in R9~1. Then any
convexr combination of elements in A can be written as a convex combination of
at most g points.

Proof. See e.g. [van Tiel, 1984] p 41. =

Proposition 21 Let z €span {X (z) : x € [-1,1]}. Then there exists a dis-
crete design & such that

(@) f[_l (e (X (@))) X (2) € (dz) .

y

Proof. The proof is in [Pukelsheim, 2006] p 48. m
We use the fact that in any boundary point of a convex set there exists a tan-

gent hyperplane to the convex set. This hyperplane divides span {X (z) : z € [-1, 1]}

into two subsets; the first one "below" contains R and the second one "above"
does not contain any point in R. This fact allows for the determination of the
boundary of R.
For ¢ in R it holds i
—— € Fr(R).
p(c)
Proposition 22 There exists a vector h in RY such that for any z in R it holds
z'hh'z < 1.

Proof. The tangent hyperplane to R at point ¢/p(c) is defined as follows.
A vector h in RY defines a linear form which in turn determines the tangent
hyperplane to R at point c if for any z € R,
(b
p(c)

This relation states that all points in R lay "below" the hyperplane. Since

R is a symmetric set, when z satisfies 2’ h < :(—5 then the same holds for —z

which also belongs to R.

z'ES h.

Hence L ol
{ 2 h< 53
o T ¢ h
h<’®
It follows that for any z € R, we have
o~ ’ i
~z’ h‘ i h.
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The real number !

cih

p(c)

is therefore non negative. Furthermore it does not equal 0. Otherwise R has a
void interior. Hence v > 0. Define therefore the vector

h
h— =
o,
from which
z'h <1
Also, since
ch
=
p(c)
we get
7z .hhiz <1,

foranyzeR. m
5.2.1 Some further development on the representation of the Elfving
set.

So far we considered the inner representation of set Elfving set R, through
convex combination of elements of the kind +X (z) with z in [—1,1]. We now
consider the fact that the Elfving is defined through an inner product; namely
it holds, making use of Proposition 22,

R={X(z)eRI: (X (z)) N (X (z)) <1}

where
Ni= hh

and h is the vector which defines the tangent hypeplane to R at point c¢/p(c)

The matrix N clearly is symmetric and positive semi definite.
Define the inner product on RY by
<@ wen =z Nw .

Thus, to such vector h we associate a quadratic form < .,. >y which is
defined by the matrix N.
Geometrically, R is the closed unit ball with center 0 defined by

R:={z€ span{X (z):z € [-1,1]} : p(z) < 1}.

Consider the regression range

He={X (z) 2 e [=L1laR:
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Assume first that  may assume only a finite number of values in [-1,1].
Then H is finite dimensional, and R is a polytope with finite number of edges
and vertices. When x may assume an infinite number of values in [—1, 1] then
R coincides with a geometric set depending on the range of the matrix N.
When N has full rank, then R is an hyperellipsoid (say ellipsoid),. When N is
degenerate, then R is an hypercylinder (say a cylinder).

Citing [Pukelsheim, 2006] p 44 "Nevertheless Elfving sets and scalar product
balls are linked to each other in an intrinsic way. A scalar product ball given by
a positive define matrix N is an ellipsoid, because of the full rank of N; if we
drop the full rank assumption, the ellipsoid may degenerate to a cylinder". For
a nonnegative define matrix N € S>¢ (g), Pulkesheim calls the set of vectors
{z € R9: 2Nz < 1} the cylinder induced by N. It includes the nullspace of N.

Elfving sets allow many shapes other than cylinders. However, we may ap-
proximate a given Elfving set R from the outside, by considering all cylinders
that include R. Since cylinders are symmetric and convex, inclusion of R equiv-
alent to inclusion of the regression range.

Identifying a cylinder with the matrix inducing it, we define the set A/ of all
a cylinders that includes R or H by

N v ={N€eS8s(g):ZNz<1forall zeR} (21)
= {N€eS>(9):2'Nz<1forall z € H}.

Elements in N cast light on the connection between such approximation of
R and moment matrices, which in turn are in relation with the design.

5.3 The relation between cylinders and the variance of the
estimator of the c— form

The relation between the outer approximation of the Elfving set R through
cylinders and the variance of the estimator of the ¢ form can be captured
noting that the optimal design is obtained solving

ing ¢ (M (£))”
{ i Uy s &2}
where the constraint
M) e Alc)nM

amounts to the estimableness of the linear form c¢’#; see section 5 .
Optimality may now be characterized in terms of the moment matrix.

Definition 23 A matriz moment M () is called optimal in M for the form ¢’
when it belongs to A (c) and when <" (M (€)™ ¢ is minimal in M.

We observe that when M belongs to A(c) then ¢/ (M (£))” ¢ does not
depend on the very inverse (M (£))” used in order to evaluate ¢’ (M (£))” ¢
(see [Pukelsheim, 2006] Chapter 2).
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In (22) the variance ¢’ (M (£))” ¢ is written in terms of cylinders. We may
write this geometrically, and the variance is minimal whenever, for any cylinder
defined by a matrix N € N (see Definition 21) it holds

e MIET c = ¢ Nc

or, in terms of the Loewner order

(M () =N.

5.4 Lower bound for the variance
Let

A= { NV € Sx0(g) such that (X (x)) NX (z) <1
i for all X (z) and any z € [—1,1]

and assume that M (§) € A(c) N M.
In this Section we quote a basic result, which states that for any matrix N
in NV it holds
(M () ¢ =>c/Ne

This is to say that any cylinder which contains the regression range is induced
by a quadratic form which is a lower bound of the variance of c¢’6.

The minimization of the variance of ¢/f amounts to the attainment of this
lower bound, which is to say to the problem of the definition of the cylinder
which realizes the infimum.

Recall that the variance of the Gauss Markov estimator of the ¢— form with
design £ is ¢/ (M (£))” ¢, where (M (£))~ is the generalized inverse of M (),
hence an element in S>(g). The next result compares this variance with homo-
logue terms when (M (£))” is substituted by a generic element in A, providing
a lower bound for the variance upon all designs.

Theorem 24 (Pukelsheim) Assume that M (§) € A (c)NM (Mg [—1,1]). Then
for any N in N

Var (</(‘:,—@->) =¢' (M (€)) ¢ > c'Ne,

Proof. We present a proof of this important result, more accessible than as
presented in [Pukelsheim, 2006] pp 20, 21 and 46.
Step 1 We prove that
tr (M (€)N) < 1. (23)
Integrate with respect to £ in both sides of the inequality (X (z)) NX (z) < 1.
Then

f (X(as))’NX(w)damsf 1dé(z) = 1.
[-1,1]

[—1’1]
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Since M (¢) = X (2) (X (z))’ and tr (AB) = tr (BA), denoting A := X (z) and
B:= (X (z))' N, we obtain

(X (2))'N X (z) =tr (X (z)) "N X (2)) (24)
=tr (X (z) (X (z)) N)=tr(M(¢)N).

Therefore (23) holds.
Step 2 We now prove that

r(MEN) > (¢ (ME) ¢) &N, (25)
This follows from the fact that M (¢) € A (c). Indeed if M (£) € A(c) then by

the Gauss Markov Theorem it can be proved that (see [Pukelsheim, 2006] pp
21 and 22)

—il
M@Exc (¢ (ME)c) .
Multiplying both sides by N,

~1
M@ENze(d(ME)c) N

using the fact that when A > B then tr (A4) > tr (B)), we obtain

tr (M () N) > tr (c (¢ @) e)” c’N)
it ((c (M (€)™ c)il N c)
s (c' (M (€)™ c) Ry
Step 3 We now prove the claim. From (25)
(c’ (M (€)™ c) tr (M (€) N) > ¢/Ne.

Now by (23)
tr(M(§)N) <1
and therefore, multiplying by ¢’ (M (£))” ¢ we obtain
tr(M(EN)' (M(£) e<c (M(E) ¢ (26)

and finally
Var (< c,f >) =c (M(£)) e¢>c'Ne.

We will see that this lower bound can be achieved, which yields a criterion
for the optimality of the design &.
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5.5 The lower bound can be achieved

We now prove that conditions on N € N/ exist which imply

¢ (M (£))” c=c'Nec.

We push forward three preliminary Lemmas. For fixed ¢ € R denote h the
vector of the coefficients of the tangent hyperplane to R at point ¢/p(c) and

h:= E,fy = <~C—-Tﬁ> :
i) p(c)
Accordingly define the symmetric semidefinite positive matrix
N :=hh'.
Lemma 25 Let M (§) € A(c). Then

M(€)(M(E) c=c 27)
and
TZ-MOWE) 7 (28)
Furthermore -
ya= (@) then (32) ce- 2) wore @

Proof. See [Pukelsheim, 2006] p 41. m
Lemma 26  (Pukelsheim) Assume that
M (§) € A(c) "M (Mg[-1,1]).
Then tr (M (€) N) = 1 if and only if (X (z)) "N X (z) =1 for all z €supp(£).
Proof. See [Pukelsheim, 2006] p 45. m
Lemma 27 (Pukelsheim) Assume that
M(§) € A(e)NM(Ma[-1,1]).
Let ;\)’ belong to N' . Then the two following assertions
i

tr (M (§) N) = (c’ (M (€)™ c) eNEL

and
(it)
(X (z)) NX (&) =1 for any_a:l € supp (&)
M@EN=c (c’ (M (€))” c) ¢'N

are equivalent.
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Proof. See [Pukelsheim, 2006] p 45. m
The following Theorem indicates conditions for

(M (€)) ¢ =¢Ne
to hold.

Theorem 28 (Pukelsheim) Assume that M (§) € A (c)NM (My[—1,1]).Then
the two following assertions

(i)
€ (M) e=¢ Ne
and
(ii)
(X (2)) NX (z) =1 for any € SUBB(C)
M@EN=c (c’ (M (€)™ c) N
are equivalent.

Proof. We have by Lemma 27

=
trM (€) N = (c’ (M (&)~ c) ¢'Nc

and
trM ()N = 1.
Hence i
¢ (M () e =c Ne (30)
&

We evaluate ¢’ (M (§)) c. Since ¢/p(c) =M (£) h using (36) ;

¢ O1©) e = () (555 (r(6) =)

= (p(©))” (M (©B) (M (&)™ (M () n))
~ (p(©))” B (M (&) (M ()™ M (©)h.

6 Elfving Theorem
Theorem 29 (Elfving) Denoting
H:={X(z):z€[-1,1]} CRY

the regression range (which under the current hypotheses is a compact set),assume
that the vector of coefficients ¢ € RY lies in  span (H) and has Elfving norm
gle) =10
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Then a design £ € Mgy ([—1,1]) is optimal for < ¢’,0 > in My ([-1,1]) if
and only if there exists a function € on {X (z) : x € [—1,1]} which takes values
+1 on the support of & and such that such that

c Py
p(c)

., CXE@ X @), ()

Furthermore the optimal variance is (p(c))® .

Proof. (from Pukelsheim, pag. 51) {

Direct part. Assume that there exists a function € on {X (z) : z € [-1,1]}
which on the support of £ takes values +1 such that (31) holds ; we prove
that there exists an optimal design for < ¢’,0 > in M, ([—1,1]), and that the
optimal variance is (p(c))®. We thus prove that < ¢/, > is estimable and that
its Gauss Markov estimator has minimum variance for the measure &.

- We prove that < ¢/, > is estimable. By hypothesis,

2= ¥V (@)X @) X @), (X@) =%l (32

pie) xesupp(£)
Since p(c/p(c)) = 1 it follows that ¢/p(c) € Fr(R). Hence there exists

a tangent hyperplane which touches R in ¢/p(c). Let h be the vector of the
coefficients of this hyperplane as defined in Proposition 22. Then
€(X (2)) (X (z)) h <1 for any X (z) € span{X (z):z € [-1,1]}. (33)

For this vector h , the tangency condition on point ¢/p (¢) provides

PTS

Substituting (25) in this latest expression we obtain

’

1:ﬁh= Y £(@) (X (@) (X (2)h.

zesupp(§)

From (26), we get
£(z) (¢(X (2))) (X () h <£(2)

and therefore

l=—=h= Y (@EX@)XE@ hs Y £@=1
©

TESupp zesupp(§)

We deduce that
Y () (e X)X (@) =L, (34)

reannnl £)
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Assume that
(e(X (2))) (X (2)) h #1.

for some 2. Multiply then on both sides by £(z) and sum upon all points in the
support of £. Then we get

Y E@)(e(X @) (X (@) h#,

zEsupp(§)

a contradiction. Hence & (z) (¢ (X (z))) (X (z)) h =1 for all z in the support of
(&
From (34) we get

(X @) b= = ¢(X (@) (3)

and therefore, substituting € (X (x)) by (X (z))'h in (32) and noting that
(X (z)) (X (z)) = M (¢), we obtain

= ) (@ (EX@) (X (@)

wEsupp(§)

= ) (@X@)(X (@) h

zEsupp(§)

= 5 f@M{o)bh=M(&)h.

z€supp(§)

C

p(c)

This proves that

—M(§)h (36)

and therefore

which yields

c
M(E) e A ( ) :
el o
Hence < ¢/, > is estimable.

‘We now prove that the matrix M () is minimal in the Loewner order,
which means that £ provides a minimal variance Gauss Markov estimator of
el >

In the frontier point ¢’/p(c)

I oy cl —i.
h'M (¢)h p(c)h 1

Hence
h'M (&) h =1.
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By Theorem 28, £ is optimal if and only if
e(M{(c)) c=eNc"

We evaluate ¢’ (M (£))™ c. Since ¢/p(c) =M (&) h using (36)
, gk s
¢ 01O c=(p)* (S (4 ) =)
= (p(©))” (M (©)h) (M (&)~ (M (9)B))
= (p(c))* W (M (§))' (M (§))” M (€)h.

Now M (§) is symmetric and (M (£)) (M (&) M (§) = M (£); hence since
M (§)h =1,

< (M(E) e=(p(c))® WM () h=(p(c))’.

This proves that if £ is optimal then the variance of the estimator of < ¢,0 >

equals (p(c))Z.
In order to prove optimality recall that

(X (z)) NX (x) = 1 for any x € supp (£)

c' (M (&) c=cNc iff { M(E)N:c(c'(M(f))_c)_lc'Nr

by Theorem 28. Since ¢ (M (£))” ¢ =(p(c))* ,

pe) M (§)h,hh'=N and h'M (¢) h =1,

we have

-1

c(c ) e) eN=c((p)?) N

- gor (95@) Gar) ™)

c el ] /
= N =MOREM ©n)h

= M (§)hb' = M (&) N.

Therefore

=
M@EN=c (c’ (M (£)) c) ¢'N.
In order to conclude about optimality it is enough to prove that

(X (x)) NX () =1 for any z € supp (£).



By (35)

(X (@) NX (z) = ((X(2))'h)(®'X(2))
€ (X (x)) e (X (z))

We have proved optimality and also that
(p(c))? = m{in var (<ﬂ_>) ;

Reciprocal. Let us prove now that if £ is optimal then

plc) /{_1,1] (e(X (2))) (X (x)) & (da) .

If £ is the optimal measure to estimate < ¢/,0 >, then M (¢£) € A(c) and
¢ (M (€))” ¢ = (p(c))®. Furthermore since ¢ is optimal it holds

(X (z)) NX (z) =1 for any zsle supp (£)
MEN=c(c (M) c) N

Now since X (z)' NX (z) = 1 for any = € supp (£) it holds, using Theorem 28,

(X (2)) NX (z) = (X (z))' bh'X (2) (37)

= (X@)n)" =1

for any x € supp (¢).
=1
From M ()N = ¢ (c’ (M (&) c) ¢’ N we get, multiplying on the right
side in (37) by g,

h

R e (cf (M(g))—c)_lc’Nh,h.

Simplifying we have

h
h'h

M (¢) hh’% =c(c/(M(©) .:)71 ’hh’
and IRs
M(@h=c (c’ (M (€)™ c) c'h.

By the optimality of ¢, it holds ¢/ (M (£))” ¢ = (p(c))® and using ¢h =p (c),
we get

M(Oh=c;
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Denote now ¢ (X (z)) := (X (z))'h. From (37), 1 = ((X (z))’ ) for any
x € supp (§) it follows that /e (X (z)) = 1. Hence e (Xt o) )i =t T forfphc
supp ().
Write now
Y, (@X@eX @) =@ Y, 5( ) X (2) (X (2))'h
zesupp(§) z€supp(€
6 §($)M(f)h
zesupp(§)
=M(§)h Sy

The equality (a) in the above display is obtained substituting e (X (x)) by
(X (z)) h. Equality (b) follows from M (£) = X (z) (X (z))' and (¢) from the
fact that M (§)h = (c)

Therefore
pfc) = Y £@) X (2)e(X (2)) with €(X (z) = %1 for = € supp (£).
zEsupp(£)

Elfving Theorem assesses that the vectors in R to which an optimal measure
is associated are necessarily frontier points of the Elfving set. Indeed clearly

p(c/p(c)) =1.

In the next section and in the last one, we discuss the results by Kiefer,
Wolfowitz and Studden; see [Studden, 1971] .

These authors have characterized optimal designs whose support consists in
Chebyshev points. Our starting point is the optimal design which has been
described above, through the Elfving Theorem 29.

7 Extension of Hoel - Levine result: Optimal
design for a linear c— form

From [Dzyadyk and Shevchuk, 2008] we know by Borel Chebyshev Theorem
that any continuous function f defined on a compact set in R has a uniquely
defined best uniform approximation in the class of polynomials with prescribed
degree. More generally given a finite class {cpo, LE 909_1} of functions a necessary
and sufficient condition for f in C® ([—1,1]) to admit a best uniform approxi-
mation ¢ € span {@y, ..., p,_1 } is that {{, ..., ,_1 } } be a Chebyshev system
in C'%) ([~1,1]); this is Haar Theorem. Finally the Borel Chebyshev equioscilla-
tion Theorem assesses that the resulting error of approximation by polynomials
with fixed degree less or equal g — 1 takes on its common maximal absolute
values on g + 1 points in [—1, 1] with alternating signs.
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This important characterization of approximating schemes may be general-
ized through the following Lemma.

Lemma 30 ( Karlin and Studden) Let {py,...,0,_} be a Chebyshev system
in [~1,1] . Then there exists a unique element u (x) := E?;é ajp; (z) in V=
span {@g, .-, ¢y_1 }, which enjoys the following properties:
1)
lu(z)| <1, for alz € [-1,1], (38)

2) there exist g points in [—1,1],%q,...,Ty—1 such that
12T < <Fpa gl ondu(@)=(-1)""7,j=0,..,g—1. (39)

Proof. see [Karlin and Studden, 1966a) p.792. m

We now assume that ¢ # 0.

We state and prove the following Theorem, which extends Hoel - Levine
result. The proof is due to Karlin and Studden.

Let
=i ...,cgﬁl)' € RY such that
P (20) . o (zg-1) co
C:= det ©1 (‘T"U) Gl L 2] (-'159—1) €1 7& 0 . (40)
Pg—1 (wo) - Pg—1 (Zg-1) , C5—i

This class C coincides with the estimable c— forms for designs supported by
at least g + 1 points in [—1,1]. See [Kiefer and Wolfowitz, 1965], p 1638.
For any c, consider the projections m;, on the axes'i = 0,...,g — 1,

T :C = R, ¢ mi(e) =g
and let
z=g; (mi(c)) =¢; (ci) (41)
and therefore ¢, (z) = ¢, (¢; (m; (c))) = ¢;.
Finally denote
gL <Xy a1
HOS) o rh A
which is the variance of @ and
Bit=dre R uf(e)i=1}

Theorem 31 (Optimality) Let {, .., 0,1 } be a Chebyshev system in C© ([-1,1]).
Assume that the vector c belongs to the set C defined in (33) and let £ € My
([-1,1]). Then with z defined in (41)

1- there exists a unique function

g—1
Tz — wu(x):= Za},‘ftpj (z) span{tpg,...,tpg_l}
=0



47

such that
d(c,&) > u%(2), for all € € M ([-1,1]) .

2-Let Tg < .... < Tg_1, j=0,...,9 — 1, be g points in B such that
w(@) =(-1)""7,5=0,..,.9—1.

Define Iz, : j = 0,...,9 — 1 the Lagrange polynomials with degree g — 1 defined
on the nodes T;.Then

d(c,€) =u®(2)
if and only if

£=¢
where £ is the measure with support T;, 7 =0,...,9 — 1, and
iz, (2)]

Ele i
e [
3— If there exists a := (ao, ...,Eg_l)' € RY such that the function x — U(x) :=

ZJ Oajgoj (z) coincides with the constant function 1;_y 1) : [-1,1] — R,z —
1[ 11]( )—1, then

cardB = g and Ty = —1,T4-1 = 1.

Furthermore

d(c,€&) = u?(z) if and only if € = £*.

Remark 32 Statement 1 means that the variance of the estimator of the c-
form < ¢ ,0 > is bounded by below whatever . Statement 2 means that for
any vector ¢ there exists an optimal measure & which provides optimality for the
estimate of the ¢ - form < c ,0 >. Statement 3 assesses unigqueness.

Proof. - Statement 2) is proved as follows. There exist g points in B C [-1,1],
Tos i Bgeq such that: —1 < Fo< o F o<l andu(®) = (-1)7""7%, j=
0,...,g — 1. Since {cpo, ...,(,og_l} is a Chebyshev system in [—1, 1], the functions
©gs - Pg—1 are linearly independent. The function wu(z) := EJ 20 @p; (%)
is defined in a unique way when known at points Zo, ..., 4—1. Further there
exists a unique polynomial P,_;, with degree g — 1 which assumes the same
values as u on Zy, ..., L,—1 . Therefore u equals its interpolation polynomial
with degree g — 1. Hence the system u (Z;) = Py—1(Z;), j = 0,...,9 — 1, has
a unique solution in the unknown numbers aj’s. Considering the basis which
consists in the elementary Lagrange polynomials {lz, : j =0, ...,g — 1} we may
write P, , and henceforth u as follows: u (z) = Zg;(l) Iz; (z)u (Z;). Consider

o=z itiholds 7z ) — f é lz, (#)u(z;). Consider now each of the functions
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p; in {(,00, A ng_l}, for j =0,...,g—1. We write ¢; in the basis defined by the
elementary Lagrange polynomials [z, through

g—1

l:c; 3)593(93_7) J=0,.,0~1.
=0

Since _
la,- (2) = (=1)°"'7 7 |1z, (2)],
denoting ¢; := (1)Y= 7 we get

g—1

P (z) = Zej |l§_-, (z)|t103 (Ej)7 7J=0,..,9—1.

=0

Recall that X (z) := (¢q, .-, (pg_l)’; the g equalities above write as

fr =t
X)) = Zej |£§j (z)|X(ﬁc'j).
j=0
Denoting J ]
Iz, (2)
£l - ) 0,...,.g—1
: Il”'j (z)l
we have
X(z)  _ " |z% o
e T R
= Zejf;-‘X &5
4=0
Denote

i
fi= —
?:(11 |l5j (Z)‘

‘We then have 3
o
X (=N e X,
J=0
By Elfving Theorem it follows that if we prove that X (2) € Fr (R) then
£”is optimal.
We now prove that SX (z) € Fr(R). This follows from the fact that there
exists a tangent hyperplane R in X (2), i.e

< (a%),Bc>=1
<y,a*><1, for any y eR .
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where the vector a* defines the hyperplane.

We have
=il
ulz) =Y afg;(e) =< (@), X (2)>
=0
g—1
= Zl u (T;) -
Therefore

Bu(z) =< (a*)', Bc >

By definition u alternates sign at points z;’s. Hence

’Lbz (EEJ) =l
and
u(Z;) Iz, (2) = |lz, (2)].-
Now
g-1 # = e 2
”2(Z)=( ajp; Z)) (Zl“ (2)u %) = (ZUEJ (Z)|) :%
j=0 j=
i.e.
2 3 ].
S 5 ()

Clearly u (2) > 0. Indeed u(z) = E?;é Iz, (z)|. Hence 3 = and therefore

u(z)

By the Property (38) it holds
= (a" >—Zc1jt,oJ ) <1, forall z € [-1,1].

‘We also have

=
<@),-X(e)>=— Za ‘p; (%) <1, for any z € [-1,1].

Therefore

<y.a*>< Ll forally eR .
Hence the hyperplane defined by the vector a* is tangent to R in Se.
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This proves claim 2).
- We prove 1), i.e. that d(c,&) > u? (2).
By Elfving’s Theorem , 3~ is the minimum value of the variance. Hence

5_2 = rnEind(c,éf) ¢

We have just seen that u? (z) = 1/8%. This proves the claim.
- We prove 3).
It holds
lu(z)| <1 for z € [-1,1]

Also
—1<u(z) <1 for z € [-1,1]

1€
0<u(z)+1 forze[-1,1] .

It also holds
-2<u(z)—1<0 forz e [-1,]1]

Hence
l—u(z) >0 forz e [-1,1] .

Now 1 —wu (x) and 1+ u (z) are non negative functions for € [—1, 1]. Therefore
l1-u(z)=1-wu(z)and |1 +u(z)| =1+ u(z).
From .
u(Tg-1-5) = (-1 j=0,..,9—1,

it follows that
1l u(e) =0iforu(z)=1
and
14+ u(z) =0 for u(z) = —1.

Therefore, considering the zero’s in (—1,1) with multiplicity 2, we have that
1 —u(z) and 1+ u(x) have g zero’s in [-1,1] .
Assume now that there exists a vector of coefficients a:= (ay, ...,Eig_l)' in

RY, for which the function U(m) = ?;é ajp; (z) coincides with the constant
function 1y 4y : [-1,1] = R, & — 1;_y 3) (z) = 1. Then the functions

g—1 g—1
Y Gp; (2) —u(@), Y Gp; (@) +ule)
J=0

i=0

have g zero’s in [—1,1]. These are then the points +1,Z,_1_;, j =0,...,g — 3.
Since there exists a unique linear combination of the Chebyshev system
which assumes value 0 on the points +1,%4_1_;, 7 = 0,...,g — 3 it follows that

card (B) = g.
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‘We now prove that
d(c,€) = u?(2) if and only if &=¢",

where £* is the measure defined at point 3) of this Theorem.

Assume d (¢, &) = u? (z) and consider a generic finitely supported probability
measure £ whose support contains strictly the g points in B. We prove that the
variance associated to £ is not optimal.

Since ¢; = p; (2),

<c,d>?
PZaME)d>

Cap (EE ).
Sl (Zf;é di, (m)) € ()

2 (2)
2 TP @& @)

d(c,§) :=

But
_ uw?(z) <1
and therefore
# = ]_
u? (z)

It follows that
dic; &)= ul (x).

The inequality is strict since the support of £ contains points not in B. Using
Karlin - Studden Theorem 30, and existence of U, d (c,£) = u? (z) if and only
if £ has support B. Hence d (c, &) > u® (z). Therefore ¢ is not optimal. Hence
the optimal measure has support B.

We now identify the support of the optimal measure, and then its masses at
those points. The measure is optimal if and only if it has all its mass at points
in B, +1,Z3_1—;, j =0,...,9 — 3. By Elfving’s Theorem it holds

g—1
D apiX (@) = BX(9),
j=0

il

Ef;é iz, (2)]

This can be seen as a system of g equations with g unknown variables €; pj,
j=0,...,g — 1. It has a unique solution whenever

ﬁ =

wo (Zo) sy (o)
det | . 4 A == ()
wo (Tg-1) - Pg—1 (Zg-1)
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which holds by independence of the elements in the Chebyshev system.
The solution writes

Iz, (2) e
I ,_J | ) €5 ::(_1)9‘ - 3)3:01'":9—1'

f:é Ilfj (z)|
Hence ¢ is optimal if and only if £ = £*. We have proved claim 3). m

Remark 33 Considering ¢, (z) = 27, j = 0,..,9 — 1, z € R\[-1,1] , the
optimal measure is given by

|iz, (=)

=
E?:O ‘ZEEJ (Z)|

Tj = —cos (gj_wl)

forj=0,..,9—1. Purthermore d(z,£) > T2, (z) where Ty_; is the Chebyshev
g—1 g
polynomial of first kind with degree g — 1. Hence

B

with

Ty—1 (x) == cos((g — 1) arccos z) .

The polynomial T,_1 has the same role as the function u(z) = > 9_ g o ajp; ().
Hence the result by Hoel - Levine appears as a special case of the above Theorem.

Remark 34 Considering ¢; (z) = @/, j = 0,...,g—1, z € R\ [-1,1] , the
optimal measure is given by 2k

Ilfj (Z)I

=

T; 1= —CoS (%)

forj=0,...,g—1. Furthermore d(z,£) > T7_, (z) where Ty_, is the Chebyshev
polynomial of first kind with degree g — 1. Hence

G

with

Ty—1 (z) := cos ((g — 1) arccos ) .
The polynomial Ty_y has the same role as the function u(z) = Zg-_o ajp; ().
Hence the result by Hoel - Levine appears as a special case of the above Theorem.
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