
HAL Id: hal-01010902
https://hal.science/hal-01010902

Submitted on 20 Jun 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Protection against Code Obfuscation Attacks based on
control dependencies in Android Systems

Mariem Graa, Nora Cuppens-Bouhlahia, Frédéric Cuppens, Ana Cavalli

To cite this version:
Mariem Graa, Nora Cuppens-Bouhlahia, Frédéric Cuppens, Ana Cavalli. Protection against Code
Obfuscation Attacks based on control dependencies in Android Systems. TC 2014 : 8th International
Workshop on Trustworthy Computing, Jun 2014, San Francisco, United States. �hal-01010902�

https://hal.science/hal-01010902
https://hal.archives-ouvertes.fr


Protection against Code Obfuscation Attacks based on control dependencies in

Android Systems

Mariem Graa∗†, Nora Cuppens-Boulahia∗, Frédéric Cuppens∗, and Ana Cavalli†

∗Telecom-Bretagne, 2 Rue de la Châtaigneraie, 35576 Cesson Sévigné - France

Emails: {mariem.benabdallah,nora.cuppens,frederic.cuppens}@telecom-bretagne.eu
†Telecom-SudParis, 9 Rue Charles Fourier, 91000 Evry - France

Emails: {mariem.graa,ana.cavalli}@it-sudparis.eu

Abstract—In Android systems, an attacker can obfuscate
an application code to leak sensitive information. TaintDroid
is an information flow tracking system that protects private
data in smartphones. But, TainDroid cannot detect control
flows. Thus, it can be circumvented by an obfuscated code
attack based on control dependencies. In this paper, we
present a collection of obfuscated code attacks on TaintDroid
system. We propose a technical solution based on a hybrid
approach that combines static and dynamic analysis. We
formally specify our solution based on two propagation
rules. Finally, we evaluate our approach and show that
we can avoid the obfuscated code attacks based on control
dependencies by using these propagation rules.

Keywords-Android system; Code obfuscation attacks; Con-
trol dependencies; Leakage of sensitive information; Infor-
mation flow tracking; Propagation rules

I. INTRODUCTION

Mobile devices such as smartphones are increasingly

used in our daily lives. To satisfy smartphones user’s

requirements, the development of smartphone applications

have been growing at a high rate. AppStore [1] contains

more than half-a-million applications, and Android Market

[2] has just crossed the two hundred thousand marks. Ap-

ple’s AppStore applications have been tested for attacks,

while the Android Market applications are available to

users without any code review. We can see an increase

in third-party apps of Android Market from about 15,000

third party apps in November 2009 to about 150,000 in

November 2010. These applications can be used by an

attacker that obfuscates code exploiting control depen-

dencies to compromise the confidentiality and integrity

of the Android system and can leak private information

without user authorization. Therefore, there is a need to

provide adequate security mechanisms that resist to the

code obfuscation attacks based on control dependencies

in third-party applications. TaintDroid [3] implements a

dynamic taint analysis mechanism to track information

flow in real-time and to control the handling of private

data in smartphones. It can only track the explicit flows

but not the control flows. Thus, it is not able to detect code

obfuscation attacks based on control dependencies. In a

previous work [4], we have proposed an enhancement of

the TaintDroid approach that propagates taint along control

dependencies to track implicit flows in smartphones. In

this paper, we show that our approach can resist to

code obfuscation attacks based on control dependencies

in the Android system. We use correct and complete taint

propagation rules (see [5] for a formal proof). The rest

of this paper is organized as follows: section 2 presents

the TaintDroid approach. Section 3 presents some code

obfuscation attacks based on control dependencies that

TaintDroid cannot detect. Section 4 discusses the related

work that can be used to detect code obfuscation attacks

based on control dependencies. Section 5 describes how

our approach can resist to this type of attacks. We provide

our evaluation of our approach in section 6. The limitations

of our work are discussed in section 7. Finally, section 8

concludes with an outline of future work.

II. TAINTDROID

Third-party smartphone applications can leak sensitive

data and compromise confidentiality of Android systems.

TaintDroid [3] is an extension of the Android mobile-

phone platform, implemented in the Dalvik virtual ma-

chine (see Figure 1).

Figure 1. Android system architecture.TaintDroid is implemented in
Dalvik VM (yellow)

It uses dynamic taint analysis to track explicit flows and

to control the handling of private data on smartphones. It

addresses different challenges specific to mobile phones

like resource limitations. The TaintDroid process is sum-

marized in Figure 2. First, it assigns taint to sensitive

data (Device id, contacts, SMS/MMS). Then, TaintDroid

tracks propagation of tainted data at the instruction level.

Malicious application can interfere in the taint propagation

level to untaint sensitive data which should be tainted

and in taint sink level to leak these data. TaintDroid

issues warning reports when the tainted data are leaked



Figure 2. TaintDroid process

by malicious applications. This, can be detected when

sensitive data are used in a taint sink (network interface).

One limit of TaintDroid is that it cannot detect control

flows. Thus, it cannot resist to code obfuscation attacks

based on control dependencies. We now present different

examples of code attacks based on control flows that

TaintDroid cannot detect.

III. CODE OBFUSCATION ATTACKS

Sarwar et al.[6] introduce the control dependence class

of attacks against taint-based data leak protection. They

evaluate experimentally the success rates for these attacks

to circumvent taint tracking with TaintDroid. We present

in this section examples of these obfuscated code attacks

based on control dependencies that TaintDroid cannot

detect. The taint is not propagated in the control flow

statements. The attacker exploits untainted variable that

should be tainted to leak private data.

Algorithm 1 Code obfuscation attacks 1

X ← Private Data

for each x ∈ X do

for each s ∈ AsciiTable do

if (s == x) then

Y ← Y + s

end if

end for

end for

Send Network Data(Y )

Algorithm 1 presents the first attack. The variable X

contains the private data. The attacker obfuscates the

code and tries to get each character of X by comparing

it with symbols s in AsciiTable. He stored the right

character founded in Y . At the end of the loop, the

attacker succeeded to know the correct value of the

Private Data stored in Y . The variable Y is not tainted

because TaintDroid does not propagate taint in the control

flows. Thus, Y is leaked through the network connection.
Algorithm 2 presents the second attack. The attacker

saves the private data in variable X . Then, he reads each

character of X and converts it to integer. In the next loop,

he tries to find the value of the integer by incrementing

y. He converts the integer to character and concatenates

all characters in Y to find the value of X . Thus, Y

contains the Private Data value but it is not tainted

Algorithm 2 Code obfuscation attacks 2

X ← Private Data

for each x ∈ X do

n← CharToInt(x)
y ← 0
for i = 0 to n do

y ← y + 1
end for

Y ← Y + IntToChar(y)
end for

Send Network Data(Y )

because TaintDroid does not track control flow. Therefore,

the attacker succeeds to leak the Private Data value

without any warning reports.

Algorithm 3 Code obfuscation attacks 3

X ← Private Data

for each x ∈ X do

n← CharToInt(x)
y ← 0
while y < n do

Try{
Throw New Exception()}
Catch(Exception e){
Y ← Y + 1}

end while

Y ← Y + IntToChar(y)
end for

Send Network Data(Y )

Algorithm 3 presents an obfuscated code attacks based

on an exception. The variable n contains an integer

value that corresponds to the conversion of a character in

private data. The attacker raises an exception n times in

the try bloc. He handles the thrown exception in the catch

bloc by incrementing y to achieve the correct value of

each character in Private Data. By concatenating the

characters, Y contains the value of private data and Y is

not tained because TaintDroid does not detect exceptions

used in control flow. Thus, an attacker can successfully

leak sensitive information by throwing exceptions to

control flow. We present existing approaches that can be

used to detect code obfuscation attacks based on control

dependencies in the next section.

IV. RELATED WORK

Obfuscation techniques are used in the Android plat-

form to protect applications against reverse engineering

[7]. In order to achieve this protection, the obfuscation

methods transform the program code without changing its

behavior. ProGuard [8] is applied to obfuscate program

code and protect the Android application. In this paper, we

study the obfuscation techniques used in malware context

to evade detection of private data leakage in the android

system.



Data Tainting is used to trace data propagation in a

system. The principle of this mechanism is to ”color” (tag)

some of the data in a program and then spread the colors

to other dependent objects. It is used for vulnerability

detection, protection of sensitive data, and more recently,

for analysis of binary malware. A vulnerability is detected

when tainted data is used in a taint sink (network sink).

Data tainting is implemented in interpreters [9],[10] to

analyze sensitive data. It is used on dynamic analysis

[11],[12],[13],[14] at binary level by instrumenting the

code to trace and maintain information about the prop-

agation. Thus, this mechanism suffers from a significant

performance overhead that does not encourage their use

in real-time applications.

Privacy issues on smartphones are a growing concern.

Enck et al. [15] designed and implemented the Dalvik

decompiler “ded”, dedicated to retrieve and analyze the

Java source of an Android Market application. The de-

compiler extraction occurs in three stages: retargeting,

optimization, and decompilation. They identify class and

method constants and variables in the retargeting phase.

Then, they make bytecode optimization and decompile the

retargeted .class files. Their analysis is based on automated

tests and manual inspection. A slight current limitation of

ded decompiler is that it requires the Java source code to

be available. FLOWDROID [16] is a static taint analysis

tool that automatically scans Android applications for

privacy-sensitive data leaks. The static analysis approaches

implemented in smartphones allow detecting data leaks but

they cannot capture all runtime configurations and inputs,

unlike dynamic analysis approaches.

TaintDroid [3] implements dynamic taint analysis in

real-time applications. Its design was inspired by these

prior works, but addresses different challenges specific to

mobile phones like resource limitations. AppFence [17]

extends Taintdroid to implement policy enforcement. A

significant limitation of these approaches is that they track

only explicit flows and they cannot detect control flows.

Thus, they cannot detect code obfuscation attacks based

on control dependencies.

Cavallaro et al. [18] describe the evasion techniques

that can easily defeat dynamic information flow analy-

sis. These evasion attacks can use control dependencies.

They demonstrate that a malware writer can propagate an

arbitrarily large amount of information through control

dependencies. Cavallaro et al. show that it is necessary

to reason about assignments that take place on the pro-

gram branches. We implement the same idea in our taint

propagation rules.

Some implementations exist in the literature to track

control flows [19], [20], [21], [22]. They combine static

and dynamic taint analysis techniques to correctly identify

implicit flow of information and to detect a leak of sen-

sitive information. DTA++ [21] presents an enhancement

of dynamic taint analysis to track control flows. However

DTA++ is evaluated only on benign applications and it is

not tested on malicious programs in which an adversary

uses implicit flows to obfuscate code. Furthermore, these

approaches are not implemented in smartphones applica-

tion and do not formally give a proof to resist to code

obfuscation attacks based on control dependencies.

Fenton [23] proposed a Data Mark Machine, an abstract

model, to handle control flows. Fenton gives a formal

description of his model and a proof of its correctness in

terms of information flow. Aries [24] considers that writing

to a particular location within a branch is disallowed

when the security class associated with that location is

equal or less restrictive than the security class of the

program counter. The approach of Aries is based only on

high and low security classes. Denning [25] enhances the

run time mechanism defined by Fenton with a compile

time mechanism to detect all control flows. The updating

instructions are inserted whether the branch is taken or

not to reflect the information flow. Denning and Denning

[26] gave an informal argument for the soundness of their

compile time mechanism. We draw our inspiration from

the Denning approach, but we formally define a set of

correct and complete taint propagation rules to avoid code

obfuscation attacks. Graa et al. [4] propose an approach

that combine dynamic taint analysis and static analysis

to track control flows in embedded systems such as the

Google Android operating system. But, this approach was

not proven to resist to code obfuscation attacks based on

control dependencies.

We were inspired by these prior works, but we combine

static and dynamic analysis to avoid code obfuscation

attacks based on control dependencies in the Android

system. Precisely, we enhance the TaintDroid approach by

propagating taint along control flow to taint all sensitive

data. We describe our approach in more details in the

following section.

V. DETECTING OBFUSCATED CODE ATTACKS

The attacker exploits control dependencies to launch

code obfuscation attacks because TaintDroid cannot prop-

agate the taint tags through control flows. We aim to

enhance the TaintDroid approach by tracking implicit

flow in the Android system. To do so, we integrate a

control flow module in the TaintDroid system. We use

also a hybrid approach that combines static and dynamic

analyses. TaintDroid does not taint assigned variables in

control flow statements. So, we have an under-tainting

problem. We formally specify two propagation rules to

solve the under-tainting problem and to avoid the code

obfuscation attack based on control dependencies. We

present in the following our technical and formal approach.

A. Technical Approach Overview

In a previous work [4], we have proposed a technical ap-

proach that enhances TaintDroid by tracking control flow

in the Android system. This approach combines the static

and dynamic analyses. In a first step, we use static analysis

to detect control dependencies. This is achieved by using

the control flow graphs [27], [28] which will be analyzed

to determine branches in the conditional structure. We

assign a basic block to each control flow branch. Then,



we detect the flow of the condition-dependencies from

blocks in the graph. Our approach allows us to handle

not executed branches by detecting variable assignments

in a basic block of the control flow graph. In a second

step, we apply the dynamic analysis using information

provided by the static analysis. The dynamic analysis

allows tainting, in the conditional instruction, all variables

which a value is assigned to. We create an array of context

taints that includes all condition taints and we apply the

propagation rules to correctly taint variables to which a

value is assigned whether the branch is taken or not. We

Figure 3. Modified architecture to handle implicit flow in TaintDroid
system.

make a special exception handling to detect obfuscated

code attacks based on an exception and to avoid leaking

information. The catch block depends on the type of the

exception object raised in the throw statement. If the type

of exception that occurred is listed in a catch block, the

exception is passed to the catch block. So, an edge is added

in the CFG from the throw statement to the catch block

to indicate that the throw statement will transfer control

to the appropriate catch block. If an exception occurs, the

current context taint and the exceptions taint are stored.

The variables assigned in any of the catch blocks will

be tainted depending on the exceptions taint. Each catch

block has an entry in the context taint for this purpose.

To track control flow, we have added an implicit flow

module in the Dalvik VM bytecode verifier which checks

instructions of methods at load time. We have defined two

additional rules to propagate taint in the control flow. At

class load time, we have created an array of variables to

which a value is assigned to handle the branch that is not

executed. Figure 3 presents the modified architecture to

handle implicit flow in TaintDroid system.

In the following, we formally specify two propagation

rules to avoid code obfuscation attacks based on control

dependencies.

B. Formal Approach Overview

To launch a code obfuscation attack, an attacker exploits

the under-tainting problem i.e. that some values should be

marked as tainted, but are not. We formally specify the

under-tainting problem and we present two propagation

rules to solve it and to avoid the code obfuscation attack.

We formally specify the under-tainting problem based on

Denning’s information flow model. However, we assign

taints to the objects instead of assigning security classes.

Thus, the class combining operator “⊕” is used in our

formal specification to combine taints of objects.

Definition. Under-Tainting Problem

We have a situation of under-tainting when x depends

on a condition, the value of x is assigned in the condi-

tional branch and condition is tainted but x is not tainted.

Formally, an under-tainting occurs when there is a variable

x and a condition such that:

Is assigned(x, y) ∧Dependency(x, condition)

∧Tainted(condition) ∧ ¬Tainted(x)
(1)

where:

• Is assigned(x, y) associates with x the value of y.

Is assigned(x, y)
def
≡ (x← y)

• Dependency(x, condition) defines an information

flow from condition to x when x depends on the

condition.

Dependency(x, condition)
def
≡ (condition→ x)

Obfuscated code attack solution

To launch code obfuscation attacks, the attacker exploits

untainted variables that should be tainted. We specify a

set of formally rules that define the taint propagation

and allow detecting the obfuscated code attacks based on

control dependencies. By using these rules, all variables

to which a value is assigned in the conditional branch

are tainted whether the branch is taken or not. The taint

of these variables reflects the dependency to a condition.

We consider that Context Taint is the taint of the

condition.

• Rule 1: if the value of x is modified and x depends

on the condition and the branch is taken, we will

apply the rule (2) to taint x.

where: The predicate BranchTaken(br, conditionalst)
specifies that branch br in the conditionalstatement

is executed. So, an explicit flow which contains x is

executed. IsModified (x, explicitflowst) associates with x

the result of an explicit flow statement.

IsModified(x, explicitflowst)
def
≡ (x← explicitflowst)

• Rule 2: if the value of y is assigned to x and x

depends on the condition and the branch br in the

conditional statement is not taken (x depends only on

implicit flow and does not depend on explicit flow),

we will apply the rule (3) to taint x.

In a previous work [5], we gave a proof of the com-

pleteness of those rules. Also, we provided a correct

and complete algorithm based on these rules that allows

solving the under-tainting problem.



IsModified(x,explicitflowst)∧Dependency(x,condition)∧BranchTaken(br,conditionalst)
Taint(x)←Context Taint⊕Taint(explicitflowst) (2)

Is assigned(x,y)∧Dependency(x,condition)∧¬BranchTaken(br,conditionalstatement)
Taint(x)←Taint(x)⊕Context Taint

(3)

VI. EVALUATION

To test the effectiveness of our approach, we have

implemented the three obfuscated code attacks based on

control dependencies presented in section III.

Figure 4. Code obfuscation attack 1.

We have tested these attacks using a Nexus One mobile

device running Android OS version 2.3 modified to track

control flows. We use the Traceview tool to evaluate the

performace of these attacks. We present both the inclusive

and exclusive times. Exclusive time is the time spent in

the method. Inclusive time is the time spent in the method

plus the time spent in any called functions. We install the

TaintDroidNotify application to enable notifications on the

device when tainted data is leaked.

Let us consider the first obfuscated code attack (see

Figure 4). The first loop is used to fill the table of

ASCII characters. The attacker tries to get the private data

(user contact name= ‘Graa Mariem’) by comparing it with

symboles of Ascii table in the second loop. The taint of

the user contact name is ((u4)0× 00000002).
The variable x is tainted because it belongs to the

tainted character string X . Thus, the condition (x ==
TabAsc[j]) is tainted. Our system allows propagating the

taint in the control flow. Using the first rule, Y is tainted

and Taint(Y ) = Taint(x == TabAsc[j])⊕ Taint(Y +
TabAsc[j]). We can show in the log file given in Figure

5(a) that Y is tainted with the same taint as the user

contact name. A notification appears (see Figure 6(a))

reporting the leakage of Y that contains the value of

private data. The execution of the first algorithm takes

88 ms as Inclusive CPU Time using Taintdroid modified

to track control flows and 36ms in android not modified.

Figure 7. Code obfuscation attack 2.

The second obfuscated code attack is illustrated in

Figure 7. The attacker tries to get a secret information

X that is the IMEI of the smartphone. The taint of the

IMEI is ((u4)0 × 00000400). The variable x is tainted

because it belongs to the character string X that is

tainted. The result n of converting x to integer is tainted.

Thus, the condition (j = 0 to n) is tainted. Using the

first rule, y is tainted and Taint(y) = Taint(j = 0
to n) ⊕ Taint(y + 1). In the first loop, the condition

x ∈ X is tainted. We apply the first rule, Y is tainted

and Taint(Y ) = Taint(x ∈ X)⊕ Taint(Y + (char)y).
This result is shown in the log file given in Figure 5(b).

The leakage of the private data event is presented in the

notification (see Figure 6(b)). The execution of the second

algorithm takes 101 ms as Exclusive CPU Time using

Taintdroid modified to track control flows and 20ms in

unmodified android. The execution time in our approach

is more important because it includes the time of the taint

propagation in the control flow.

The third obfuscated code attack is illustrated in Figure

8. The attacker exploits exception to launch obfuscated

code attacks and to leak sensitive data (phone number).

The division by zero throws an ArithmeticException. This

exception is tainted and its taint depends on the while

condition y < n. Also, the while condition (y < n)
is tainted because the variable n that corresponds to the

conversion of a character in phone number is tainted.

TaintDroid does not assign taint to exception. We de-

fine taint of exception(Taint Exception = ((u4)0 ×
00010000)). Then, we propagate exception’s taint in the



(a)

(b)

(b)

Figure 5. Log files of Code obfuscation attacks

(a) (b) (c)

Figure 6. Notification reporting the leakage of sensitive data

catch block. We apply the first rule to taint y. We obtain

Taint(y) = Taint(exception) ⊕ Taint(y + 1). Finally,

the string Y which contains the private data is tainted

and Taint(Y ) = Taint(x ∈ X)⊕ Taint(Y + (char)y).
In the log file given in Figure 5(c), we can show that

the taint of Y is the combination of the taint of the

exception(((u4)0× 00010000)) and the taint of the phone

number (((u4)0×00000008)). A warning message appears

indicated the leakage of sensitive information (see the

notification in Figure 6(c)). The execution of the third

algorithm takes 1385 ms as Inclusive CPU Time using

Taintdroid modified to track control flows and 1437 ms

in unmodified android. This difference is due to the taint

propagation in the control flow.

VII. DISCUSSION

Side Channels

Our approach makes it possible to detect obfuscated

code attacks applied in the control flow statement (if,

loop, while, exception...) in order to leak sensitive

information. But, it cannot detect all obfuscated code

attacks.

Algorithm 4 Timing Attack

X ← Private Data

n← CharToInt(X)
StartT ime← ReadSystemTime()
Wait(n)
StopT ime← ReadSystemTime()
y ← (StopT ime− StartT ime)
Y ← Y + IntToChar(y)
Send Network Data(Y )

The condition of the control flow statement includes a

character of the private data. Most presented attacks need

to be applied in a loop to leak one character at a time. A

side channel attack is another category of attacks that can

be used to obfuscate code and to leak private information.



Figure 8. Code obfuscation attacks 3.

It is based on information (timing information, power

consumption,...) gained from a medium and used to easily

extract the secret data. It is difficult to detect this category

of attacks. Let us consider the timing attack presented

in Algorithm 4. It is a side channel attack in which the

attacker attempts to get private data by analyzing the

difference in time readings before and after a waiting

period. The sleep period duration is the value of the

private variable.

Algorithm 5 Timing Attack 2

X ← Private Data

for each x ∈ X do

n← CharToInt(x)
StartT ime← ReadSystemTime()
Wait(n)
StopT ime← ReadSystemTime()
y ← (StopT ime− StartT ime)
Y ← Y + IntToChar(y)

end for

Send Network Data(Y )

The difference in time y is not tainted because it does

not depend on the tainted variables. It is assigned to

Y that is leaked through the network connection. Our

approach cannot directly detect this timing attack and the

private information will be leaked without any warning

report. However, this timing attack can be detected by

tainting the system clock. Thus, the ReadSystemTime()

function returns a tainted value. Therefore, the StartTime

is tainted. Also, we propose to add rule that propagates

the private data taint to the clock if Wait() function

has a tainted parameter. Thus, the taint of StopTime

includes the private data taint. Thus, the difference in

time readings before and after a waiting period is tainted.

Therefore, the attacker cannot get the value of private

data using this timing attack. The same attack can be

written differently (see Algorithm 5). We use a loop

statement to get the private data. The loop condition is

tainted and propagated in the loop block. Thus, we apply

the first rule: Y is tainted and Taint(Y ) = Taint(x ∈
X) ⊕ Taint(Y + IntToChar(y)). So, the private data

cannot be leaked.

TaintDroid cannot track taint tags on Direct Buffer

objects, because the data is stored in opaque native

data structures. The side channel attack presented in

Algorithm 6 exploits this limitation to leak private data.

The memory buffer created is used to write a tainted

variable at a specific address. Then, the attacker reads

the content of the Direct Buffer specific address. The

buffer contains private data but it is not tainted. Using

our approach, we can avoid the leak of private data

because Y will be tainted and Taint(Y ) = Taint(x ∈
X)⊕ Taint(Y + IntToChar(y)).

Algorithm 6 DirectBuffer Attack

X ← Private Data

D ← NewDirectBuffer()
for each x ∈ X do

n← CharToInt(x)
DirectBufferWrite(n;D(0× 00))
y ← DirectBufferRead(D; 0× 00)
Y ← Y + IntToChar(y)

end for

Send Network Data(Y )

Note that our approach will not detect this side channel

attack if the attack code is not included in a control

statement. To detect this direct buffer attack, we need to

refine our approach by adding a taint propagation rule

that associates a private data taint to Direct Buffer objects

at the execution of the DirectBufferWrite() function. This

solution is similar to the one used in the Algorithm 4 to

detect a side channel attack by tainting the clock.

False positives

In our approach, we taint all variables in the condi-

tional branch. This, can lead to an over-tainting problem

(false positives). The problem has been addressed in [21]

and [29] but not solved though. Kang et al. [21] used

a diagnosis technique to select branches that could be

responsible for under-tainting and propagated taint only

along these branches in order to reduce over-tainting.

However a smaller amount of over tainting occurs even

with DTA++, as we can see by comparing the ”Optimal”

and ”DTA++” results in the evaluation. Bao et al. [29]

define the concept of strict control dependencies (SCDs)

and introduce its semantics. They use a static analysis

to identify predicate branches that give rise to SCDs.

They do not consider all control dependencies to reduce

the number of false positives. Their implementation gives

similar results as DTA++ in many cases, but is based

on the syntax of a comparison expression. Contrariwise,

DTA++ uses a more general and precise semantic-level

condition, implemented using symbolic execution.

Our approach can cause an over-tainting problem. But



it provides more security because all confidential data are

tainted. So, the sensitive information cannot be leaked.

We are interested in solving the under tainting because

we consider that false negatives are more dangerous than

false positives since false negatives can create security

flaws. To balance (trade-off) between over-tainting and

leakage of private information, we plan to apply expert

rules that allow to reduce the over-tainting problem and

protect private data. This represents a relevant extension

of the approach presented in this paper.

VIII. CONCLUSION

In order to protect smartphones from obfuscated code

attacks based on control dependencies, we have proposed

a technical and formal approach that combines static and

dynamic analysis. In this paper, we presented obfuscated

attacks in control flow statements that exploit taint prop-

agation to leak sensitive information. We formally spec-

ified two propagation rules to detect these attacks based

on control dependencies. We showed how our approach

can successfully avoid them. Thus, using our technique,

malicious applications cannot bypass the Android system

and get privacy sensitive information through obfuscated

code attacks. Future work will be to characterize the

performance of our enhanced android system that tracks

control flows and compare it with the original android

system. Also, we will test more complex conditional

structures (nested control branches, switch,. . . ) and other

types of attacks based on control dependencies using our

approach. Finally, we will plan to refine our apporach to

reduce the number of false alarms.

REFERENCES

[1] “Appstore,” http://www.apple.com/iphone/
apps-for-iphone/.

[2] “Android market,” http://www.android.com/market/.

[3] W. Enck, P. Gilbert, B.G. Chun, L.P. Cox, J. Jung, P. Mc-
Daniel, and A.N. Sheth, “Taintdroid: An information-flow
tracking system for realtime privacy monitoring on smart-
phones,” in Proceedings of the 9th USENIX conference
on Operating systems design and implementation. USENIX
Association, 2010, pp. 1–6.

[4] Mariem Graa, Nora Cuppens-Boulahia, Frédéric Cuppens,
and Ana Cavalli, “Detecting control flow in smarphones:
Combining static and dynamic analyses,” in Cyberspace
Safety and Security, pp. 33–47. Springer, 2012.

[5] Mariem Graa, Nora Cuppens-Boulahia, Frédéric Cuppens,
and Ana Cavalli, “Formal characterization of illegal control
flow in android system,” in Signal Image Technology &
Internet Systems. IEEE, 2013.

[6] Golam Sarwar, Olivier Mehani, Roksana Boreli, and Dali
Kaafar, “On the effectiveness of dynamic taint analysis
for protecting against private information leaks on android-
based devices,” in 10th International Conference on Secu-
rity and Cryptography (SECRYPT), 2013.

[7] Patrick Schulz, “Code protection in android,” 2012.

[8] Eric Lafortune et al., “Proguard,” 2006.

[9] L. Wall, T. Christiansen, and J. Orwant, Programming perl,
O’Reilly Media, 2000.

[10] A. Hunt and D. Thomas, “Programming ruby: The prag-
matic programmer’s guide,” New York: Addison-Wesley
Professional., vol. 2, 2000.

[11] J. Newsome and D. Song, “Dynamic taint analysis for
automatic detection, analysis, and signature generation of
exploits on commodity software,” Citeseer, 2005.

[12] W. Cheng, Q. Zhao, B. Yu, and S. Hiroshige, “Tainttrace:
Efficient flow tracing with dynamic binary rewriting,” in
ISCC’06. Proceedings. 11th IEEE Symposium on. IEEE,
2006, pp. 749–754.

[13] F. Qin, C. Wang, Z. Li, H. Kim, Y. Zhou, and Y. Wu,
“Lift: A low-overhead practical information flow tracking
system for detecting security attacks,” in Proceedings of
the 39th Annual IEEE/ACM International Symposium on
Microarchitecture. IEEE Computer Society, 2006, pp. 135–
148.

[14] H. Yin, D. Song, M. Egele, C. Kruegel, and E. Kirda,
“Panorama: capturing system-wide information flow for
malware detection and analysis,” in Proceedings of the
14th ACM Conference on Computer and Communications
Security. ACM, 2007, pp. 116–127.

[15] William Enck, Damien Octeau, Patrick McDaniel, and
Swarat Chaudhuri, “A study of android application secu-
rity.,” in USENIX security symposium, 2011.

[16] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bod-
den, Alexandre Bartel, Jacques Klein, Yves Le Traon,
Damien Octeau, and Patrick McDaniel, “Flowdroid: Precise
context, flow, field, object-sensitive and lifecycle-aware
taint analysis for android apps,” 2014.

[17] Peter Hornyack, Seungyeop Han, Jaeyeon Jung, Stuart
Schechter, and David Wetherall, “These aren’t the droids
you’re looking for: retrofitting android to protect data from
imperious applications,” in Proceedings of the 18th ACM
conference on Computer and communications security.
ACM, 2011, pp. 639–652.

[18] Lorenzo Cavallaro, Prateek Saxena, and R Sekar, “On the
limits of information flow techniques for malware analysis
and containment,” in Detection of Intrusions and Malware,
and Vulnerability Assessment, pp. 143–163. Springer, 2008.

[19] Manuel Egele, Christopher Kruegel, Engin Kirda, Heng
Yin, and Dawn Song, “Dynamic spyware analysis,” in
Usenix Annual Technical Conference, 2007.

[20] D. Song, D. Brumley, H. Yin, J. Caballero, I. Jager,
M. Kang, Z. Liang, J. Newsome, P. Poosankam, and
P. Saxena, “Bitblaze: A new approach to computer security
via binary analysis,” Information Systems Security, pp. 1–
25, 2008.

[21] M.G. Kang, S. McCamant, P. Poosankam, and D. Song,
“Dta++: Dynamic taint analysis with targeted control-flow
propagation,” in Proc. of the 18th Annual Network and
Distributed System Security Symp. San Diego, CA, 2011.

[22] S.K. Nair, P.N.D. Simpson, B. Crispo, and A.S. Tanenbaum,
“A virtual machine based information flow control system
for policy enforcement,” Electronic Notes in Theoretical
Computer Science, vol. 197, no. 1, pp. 3–16, 2008.



[23] J.S. Fenton, “Memoryless subsystem,” Computer Journal,
vol. 17, no. 2, pp. 143–147, 1974.

[24] J. Brown and T.F. Knight Jr, “A minimal trusted computing
base for dynamically ensuring secure information flow,”
Project Aries TM-015 (November 2001), 2001.

[25] D.E.R. Denning, Secure information flow in computer
systems, Ph.D. thesis, Purdue University, 1975.

[26] D.E. Denning and P.J. Denning, “Certification of programs
for secure information flow,” Communications of the ACM,
vol. 20, no. 7, pp. 504–513, 1977.

[27] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman, Com-
pilers: principles, techniques, and tools, Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 1986.

[28] Frances E Allen, “Control flow analysis,” in ACM Sigplan
Notices. ACM, 1970, vol. 5, pp. 1–19.

[29] Tao Bao, Yunhui Zheng, Zhiqiang Lin, Xiangyu Zhang,
and Dongyan Xu, “Strict control dependence and its effect
on dynamic information flow analyses,” in Proceedings of
the 19th international symposium on Software testing and
analysis. ACM, 2010, pp. 13–24.


