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ABSTRACT

The study of the topological structure of complex networks
has fascinated researchers for several decades, and today
we have a fairly good understanding of the types and reoc-
curring characteristics of many different complex networks.
However, surprisingly little is known today about models to
compare complex graphs, and quantitatively measure their
similarity.

This paper proposes a natural similarity measure for com-
plex networks: centrality distance, the difference between
two graphs with respect to a given node centrality. Central-
ity distances allow to take into account the specific roles of
the different nodes in the network, and have many interest-
ing applications. As a case study, we consider the closeness
centrality in more detail, and show that closeness central-
ity distance can be used to effectively distinguish between
randomly generated and actual evolutionary paths of two
dynamic social networks.
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1. INTRODUCTION
How similar are two graphs G1 and G2? Surprisingly,

today, we do not have good measures to answer this ques-
tion. In graph theory, the canonical measure to compare
two graphs is the Graph Edit Distance (GED) [8]: infor-
mally, the GED dGED(G1, G2) between two graphs G1 and
G2 is defined as the minimal number of graph edit operations
that are needed to transform G1 into G2. The specific set of
allowed graph edit operations depends on the context, but
typically includes some sort of node and link insertions and
deletions.

While graph edit distance metrics play an important role
in computer graphics and are widely applied to pattern anal-
ysis and recognition, we argue that the graph edit distance
is not well-suited for measuring similarities between natu-
ral and complex networks. The set of graphs at a certain

graph edit distance d from a given graph G, are very diverse
and seemingly unrelated: the characteristic structure of G
is lost.

A good similarity measure can have many important ap-
plications. For instance, a similarity measure can be a fun-
damental tool for the study of dynamic networks, answering
questions like: Do these two complex networks have a com-
mon ancestor? Or: What is a likely successor network for
a given network? While the topological properties of com-
plex networks have fascinated researchers for many decades,
(e.g., their connectivity [1, 14], their constituting motifs [13],
their clustering [18] or community patterns [3]), today, we
do not have a good understanding of their dynamics over
time.

Our Contributions. This paper initiates the study of
graph similarity measures for complex networks which go
beyond simple graph edit distances. In particular, we intro-
duce the notion of centrality distance dC(G1, G2), a graph
similarity measure based on a node centrality C.
We argue that centrality-based distances are attractive

similarity measures as they are naturally node-oriented.
This stands in contrast to, e.g., classic graph isomorphism
based measures which apply only to anonymous graphs; in
the context of dynamic complex networks, nodes typically
do represent real objects and are not anonymous!

We observe that the classic graph edit distance can be
seen as a special case of centrality distance: the graph edit
distance is equivalent to the centrality distance where C is
simply the degree centrality, henceforth referred to as the
degree distance dDC. We then discuss alternative centrality
distances and, as a case study, explore the closeness distance
dCC (based on closeness centrality) in more detail.
In particular, we show that closeness distance has interest-

ing applications in the domain of dynamic network predic-
tion. As a proof-of-concept, we consider two dynamic social
networks: (1) An evolving network representing the human
mobility during a cocktail party, and (2) a Facebook-like
Online Social Network (OSN) evolving over time. We show
that actual evolutionary paths are far from being random
from the perspective of closeness centrality distance, in the
sense that the distance variation along evolutionary paths is
low. This can be exploited to distinguish between fake and
actual evolutionary paths with high probability.

Examples. To motivate the need for graph similarity
measures, let us consider two simple examples.

Example 1.1 (Local/Global Scenario). We
consider three graphs G1, G2, G3 over five nodes
{v1, v2, . . . , v5}: G1 is a line, where vi and vi+1 are



connected in a modulo manner; G2 is a cycle, i.e., G1 with
an additional link {v1, v5}; and G3 is G1 with an additional
link {2, 4}.

In this example, we first observe that G2 and G3 have
the same graph edit distance to G1: dGED(G1, G2) =
dGED(G1, G3) = 1, as they contain one additional edge.
However, in a social network context, one would intuitively
expect G3 to be closer to G1 than G2. For example, in a
friendship network a short-range “triadic closure” [10] link
may be more likely to emerge than a long-range link: friends
of friends may be more likely to become friends themselves
in the future. Moreover, more local changes are also ex-
pected in mobile environments (e.g., under bounded human
mobility and speed). As we will see, the centrality distance
concept introduced in this paper can capture such differ-
ences.

Example 1.2 (Evolution Scenario). As a second
artificial and very simple example, in this paper we will con-
sider two graphs G1 and G2, where G1 is a line topology
and G2 is a “shell network”, shown in Figure 1. We ask
the question: what is the most likely evolutionary path that
would lead from the G1 topology to G2?

Note that the graph edit distance does not provide us with
any information about the likely evolutionary paths from
G1 to G2, i.e., on the order of the edge insertions: there are
many possible orders in which the missing links can be added
to G1, and these orders do not differ in any way. In reality,
however, we often have some expectations on how a graph
may have evolved between the two given snapshots G1 and
G2. For example, applying the triadic closure principle to
our example, we would expect that the missing links are in-
troduced one-by-one, from left to right. A similar evolution
may also be predicted by a temporal preferential attachment
model [14]: the degree of the most highly connected node is
likely to grow further in the future.

The situation may look different in a technological, man-
planned network. For example, adding links from left to
right only slowly improves the “routing efficiency” of the
network: after the addition of t edges from left to right, the
longest shortest path is n− t hops, for t < n− 1. A “better”
evolution of the network can be obtained by adding links to
the middle of the network, reducing the much faster in the
beginning: after t edge insertions, the distance is roughly
reduced by a factor t.

2. MODEL AND BACKGROUND
This paper focuses on named (a.k.a. labeled) graphs G =

(V,E): graphs where vertices v ∈ V have unique identifiers
and are connected via undirected edges e ∈ E. We focus on
node centralities, centralities assigning “importance values”
to nodes v ∈ V .

Definition 2.1 (Centrality). A centrality C is a
function C : (G, v) → R

+ that takes a graph G = (V,E)
and a vertex v ∈ V (G) and returns a positive value C(G, v).
The centrality function is defined over all vertices V (G)
of a given graph G. Although we here consider named
graphs, we require centrality values of vertices to be inde-
pendent of the vertex’s identifier, i.e., centralities are un-
changed by a permutation of identifiers: given any permuta-
tion π of V (G), ∀v ∈ V (G), C(π(G), π(v)) = C(G, v), where
π(G) = (V (G), {(π(v), π(v′)) : (v, v′) ∈ E(G)}.

Centralities are a common way to characterize complex
networks and their vertices. Frequently studied centralities
include the degree centrality (DC), the betweenness central-
ity (BC) and the closeness centrality (CC), among many
more. A node is DC-central if it has many edges: the degree
centrality is simply the node degree; a node is BC-central if
it is on many shortest paths: the betweenness centrality is
the number of shortest paths going through the node; and
a node is CC-central if it is close to many other nodes: the
closeness centrality measures the inverse of the distances to
all other nodes. Formally:

1. Degree Centrality: For any node v ∈ V (G) of a network
G, let Γ(v) be the set of neighbors of node v: Γ(v) =
{w ∈ V s.t. {v, w} ∈ E}. The degree centrality DC of
a node v ∈ V is defined as: DC(G, v) = |Γ(v)|.

2. Betweenness Centrality: For any pair (v, w) ∈ E(G),
let σ(v, w) be the total number of different shortest
paths between v and w, and let σx(v, w) be the number
of shortest paths between v and w that pass through
x ∈ V . The betweenness centrality BC of a node v ∈ V
is defined as: BC(G, v) =

∑
x,w∈V σv(x,w)/σ(x,w).

As a slight variation from the classic definition, we as-
sume that a node is on its own shortest path: ∀v, w ∈
V 2, σv(v, w)/σ(v, w) = 1. We adopt the convention:
∀v ∈ V, σv(v, v)/σ(v, v) = 0. The reason of this varia-
tion will become clear in the next section.

3. Closeness Centrality: The closeness centrality CC
of a node v ∈ V is defined as: CC(G, v) =∑

w∈V \v 2
−d(v,w).

By convention, we define the centrality of a node with no
edges to be 0. Moreover, throughout this paper, we will
define the graph edit distance between two graphs G1 and
G2 as the minimum number of operations to transform G1

into G2 (or vice versa), where an operation is one of the
following: link insertion, link removal, node insertion, node
removal.

3. GRAPH DISTANCES
We now introduce our centrality-based graph similarity

measure. We will refer to the set of all possible topologies
by G, and we will sometimes think of G being a graph itself:
the“graph-of-graphs”which connects graphs with graph edit
distance 1. Figure 2 illustrates the concept.

Definition 3.1 (Centrality Distance). Given a
centrality C, we define the centrality distance dC(G1, G2)
between two neighboring graphs as the component-wise
difference:

∀(G1, G2) ∈ E(G), dC(G1, G2) =
∑

v∈V

|C(G1, v)− C(G2, v)|.

This definition extends naturally for non-neighboring
graph couples: the distance dC(G1, G2) between G1 and G2

is simply the graph-induced distance.

As we will see, the distance axioms are indeed fulfilled for
the major centralities. The resulting structure supports the
formal study with existing algorithmic tools. Let us first
define the notion of sensitivity.
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Figure 1: Left: Local/Global Scenario: G1 is a line graph, G2 and G3 are obtained from G1 by adding a link.
Right: Evolution Scenario: G1 describes a line graph, G2 describes a shell graph.
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Figure 2: Left: The graph-of-graph G connects
named networks (represented as stars). Two net-
works are neighboring iff they differ by a graph edit
distance of one. The centrality distance defines a
distance for each pair of neighboring graphs. Right:

Two possible evolutionary paths from a line graph
G1 to a shell graph G2.

Definition 3.2 (Sensitive Centrality). A central-
ity C is sensitive if any single edge modification of any graph
G changes the centrality value of at least one node of G. For-
mally, a centrality C is sensitive iff

∀G ∈ G, ∀e ∈ E(G), ∃v ∈ V (G) s.t. C(G, v) 6= C(G\{e}, v),

where G \ {e} is the result of removing edge e from G.

Lemma 3.3. DC, BC and CC are sensitive centralities.

It is easy to see that also other centralities, such as cluster
centralities and Page Rank centralities are sensitive. The
distance axioms now follow directly from the graph-induced
distance.

Theorem 3.4. For any centrality C, dC is a distance on
G iff C is sensitive.

The centrality distance metric of Definition 3.1 however
comes with the drawback that it is expensive to compute.
Thus, we propose the following approximate version:

Definition 3.5 (Approximate Centrality Distance).
Given a centrality C, we define the approximate central-

ity distance d̃C(G1, G2) between any two graphs as the
component-wise difference:

∀(G1, G2), d̃C(G1, G2) =
∑

v∈V

|C(G1, v)− C2(G2, v)|.

Note that d̃C ≤ dC always holds. As we will see, while
the approximate distance can be far from the exact one in
the worst case, it features some interesting properties.

4. EXAMPLE: CLOSENESS DISTANCE
To illustrate the concepts, we will follow the example of

a topological evolution changing a line graph into a shell
graph (depicted in Figure 2 (right)). This figure shows two
different paths: A incrementally connects node v1 to node
vi for i = 3, . . . , n, whereas path B dichotomically connects
vi to nodes vn, vn/2, v3n/4, vn/4, v7n/8, v5n/8, . . ..
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Figure 3: Evolution of closeness centrality distance
dCC from GL to GS for n = 40. Dichotomic and incre-
mental paths are depicted in Figure 2 (right). Both
order define a different path in G from GL to GS. At
each step, the closeness centrality-induced distance
between Gi and Gi−1 is computed.

4.1 Degree Distance
As a baseline and for comparison with alternative central-

ities, we will consider the degree distance dDC(G1, G2): the
distance between two graphs simply counts the number of
different edges. We first make the simple observation that
the number of graph edits is equivalent to the differences in
the centrality vectors.

Observation 1. The graph edit distance is equivalent to
the degree distance, i.e., dGED ≡ dDC.

This connection is established by the topological shortest
path in the graph-of-graphs G. Let us consider our example
from Figure 2 (right): Since all paths from G1 to G2 which
do not introduce unnecessary edges have the same cost, the
order in which edges are inserted is irrelevant. From a dGED

perspective the incremental (left) and the dichotomic (right)
paths of Figure 2 (right) are equivalent.

We make the following observation:



Observation 2. The degree distance resp. graph edit dis-
tance does not provide much insights into graph evolution
paths: essentially all paths have the same costs.

4.2 Closeness Distance
Intuitively, a high closeness distance indicates a large dif-

ference in the distances of the graph. The closeness distance
dCC has some interesting properties. For example, the short-
est path in the graph-of-graph is connected the the topolog-
ical shortest path. In particular, if two graphs are related
by inclusion, the shortest closeness path is also a topological
shortest path, as shown in the following.

Theorem 4.1. Let G1 and G2 two graphs in G such that
E(G1) ⊂ E(G2). Then all the topological shortest paths ( i.e.
paths that only add edges from G1 to G2) are equivalent for
closeness.

The inclusion property is a relevant property in many tem-
poral networks, e.g., where links do not age (e.g. if an edge
denotes that u has ever met/traveled/read v).

To give some intuition of the closeness distance, Figure 4
plots the evolution of the distance terms over time. As we
can see, in the dichotomic order, first longer links are added,
while the first incremental steps are more or less stable.

The dichotomic path has the larger impact on the dy-
namic graph’s shortest path distances. This indicates that
the closeness distance could even be used for “greedy rout-
ing”, in the sense that efficient topological evolutions can be
computed by minimizing the distance to a target topology.

5. EXPERIMENTAL CASE STUDIES
This section studies the power and limitation of closeness

distance empirically, in two case studies: the first scenario
is based on a data set we collected during a cocktail party
and models a human mobility pattern; the second scenario
is based on an evolving online social network (OSN) data
set which is publicly available.

Datasets. The first case study is based on the SOUK

dataset [9]. This dataset captures the social interactions
of 45 individuals during a cocktail, see [9] for more details.
The dataset consists in 300 discrete timesteps, describing
the dynamic interaction graph between the participants, one
timesteps every 3 seconds.

The second case study is based on a publicly available
dataset FBL [15], capturing all the messages exchanges re-
alized on an online Facebook-like social network between
roughly 20k users over 7 months. We discretized the data
into a dynamic graph of 187 timesteps representing the daily
message exchanges among users. For each of these two
graphs series, we compare each graph Gt with the subse-
quent one: Ga = Gt,Gb = Gt+1. First, we generate a
set S of 200 samples such that ∀G2 ∈ S, dGED(Ga, G2) =
dGED(Ga, Gb). Then we compare the centrality induced dis-
tance dC from Ga to the samples of S against dC(Ga, Gb).

Methodology. We study the question whether cen-
trality distances could be used to predict the evolution of
a temporally evolving network. To this end, we intro-
duce a simple methodology: We take a graph G1 and a
graph G2 following G1 later in time in the given experi-
ment. For these two graphs, the graph edit distance (or
“radius”) R := dGED(G1, G2) is determined, and we gen-
erate alternative graphs Gi at the same graph edit dis-
tance R uniformly at random. We investigate the ques-

Gi 

CD=r 

G1 

GED=R 

G2 

Figure 4: Illustration of our methodology: Given an
initial graph G1, graphs Gi at a given graph edit dis-
tance dGED = R are generated uniformly at random.
The actual later graph observed in the experiment
is denoted by G2. We test the hypothesis that G2 is
closer to G1 than other graphs Gi with respect to a
certain centrality distance dC .

tion whether closeness centrality distance can help to effec-
tively distinguish G2 from other graphs Gi, in the sense that
dCC(G1, G2) ≪ dCC(G1, Gi) for i 6= 2. Figure 4 illustrates
our methodology.

Results. Figure 5 (left) provides a temporal perspective
on the evolution of dGED for both the 300 timesteps of the
SOUK dynamic graph and the 187 timesteps of the FB dataset.
Both datasets exhibit very different dynamics: FB has a high
dynamics for the first 50 timestemps, and is then relatively
stable, whereas SOUK exhibits a more regular dynamics.

Figure 5 (right) presents the results of our experiment
on the SOUK dataset. It represents the closeness distance
dCC from each graph Gt to Gt+1 in red. The distribu-
tion of dCC values from Gt to the 200 randomly sampled
graphs of St+1 is represented as follows: the blue line is the
median, while the gray lines represent the 5 and 95 per-
centiles of the distribution. One can observe that although
∀G2 ∈ St+1, dGED(Gt, G2) = dGED(Gt, Gt+1), most of the
time dCC(Gt, Gt+1) ≤ dCC(Gt, G2), ∀G2 ∈ St+1. In other
words, most of the times, the measured graph Gt+1 is closer
to Gt in closeness distance than the 5% closest randomly
sampled graphs. Figure 6 (Left) presents the same results
on the FB dataset. Here, although most of the time the mea-
sured topology is closer in closeness distance, this is mostly
true for the first, most dynamic, time steps.

Figure 6 (right) provides a more aggregate view of this
observation: it shows the rank of dC(Gt, Gt+1) in the
{dC(Gt, G2), G2 ∈ St+1} distribution for the closeness (CC)
centrality distance for both dynamic graphs. Values are
sorted increasingly, so rank 0 represents the smallest. This
graph shows that out of the 300 timesteps of SOUK, the ob-
served graph is closer than any of the 200 random samples
in 298 timesteps for the closeness distance. The same state-
ment holds for 73% of the 187 snapshots of the FB dataset.
The observation one can draw from this plot is that when

we measure the raw evolution of topologies (in terms of de-
gree distance) we only grasp a very incomplete, and rather
pessimistic view of the dynamics on both datasets. Com-
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pared to a random evolution that would create the same
degree distance difference, actual topology evolution leaves
most of nodes importance as connectors (closeness distance)
unchanged.

6. RELATED WORK
To the best of our knowledge, our paper is the first to

combine the important concepts of graph distances and cen-
tralities. In the following, we will review the related works
in the two fields in turn, and subsequently discuss additional
literature on dynamic graphs.

Graph distances. Graph edit distances have been used
extensively in the context of inexact graph matchings in the
field of pattern analysis. Central to this approach is the
measurement of the similarity of pairwise graphs. Graph
edit distances are attractive for their error-tolerance to noise.
We refer the reader to the good survey by Gao et al. [8] for
more details.

However, we in this paper argue that the graph edit dis-
tance fails to capture important semantic differences, and
are not well suited to measure similarities between complex
networks. Accordingly, we introduce a distance which is
based on a parameterizable centrality.

In classic graph theory, notions of similarity often do not
take into account the individual nodes. A special case are
graph isomorphism problems: The graph isomorphism prob-
lem is the computational problem of determining whether
two finite graphs are isomorphic. While the problem is of
practical importance, and has applications in mathemati-
cal chemistry, many complex networks and especially so-
cial networks are inherently non-anonymous. For example,
for the prediction of the topological evolution of a network
such as Facebook, or for predicting new topologies based
on human mobility, individual nodes should be taken into
account. Moreover, fortunately, testing similarity between
named graphs is often computationally much more tractable.

Graph characterizations and centralities. Graph
structures are often characterized by the frequency of small
patterns called motifs [4, 13, 19, 17], also known as
graphlets [16], or structural signatures [6]. Another impor-
tant graph characterization, which is also studied in this
paper, are centralities. [5] Dozens of different centrality in-
dices have been defined over the last years, and their study is
still ongoing, and a unified theory missing. We believe that
our centrality distance framework can provide new inputs
for this discussion.



Dynamic graphs. Researchers have been fascinated by
the topological structure and the mechanisms leading to
them for many years. While early works focused on simple
and static networks [7], later models, e.g., based on preferen-
tial attachment [2], also shed light on how new nodes join the
network, resulting in characteristic graphs. Nevertheless, to-
day, only very little is known about the dynamics of social
networks. This is also partly due to the lack of good data,
which renders it difficult to come up with good methodolo-
gies for evaluating, e.g., link prediction algorithms [12, 20].

An interesting related work to ours is by Kunegis [11],
who also studied the evolution of networks, but from a spec-
tral graph theory perspective. In his thesis, he argues that
the graph spectrum describes a network on the global level,
whereas eigenvectors describe a network at the local level,
and uses these results to devise link prediction algorithms.

7. CONCLUSION
We believe that our work opens a rich field for future

research. In this paper, we mainly focused on closeness dis-
tance, and showed that it has interesting properties when
applied to the use case of dynamic social networks. How-
ever, our early results indicate that other centralities have
very interesting properties as well. For instance, it can be
seen that using betweenness distance to move from a graph
G1 to a smaller graph G2 results in the same graph sequence
as Newman’s graph clustering algorithms, indicating that
betweeness distance can be used to study graph clusterings
over time. The properties, opportunities and limitations of
alternative centralities will be the main focus of our future
work.
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APPENDIX

A. PROOF OF LEMMA 3.3
Let G ∈ G, and e = (u, v) ∈ E(G).

Degree centrality: DC(G, u) = DC(G \ {e}, u) + 1: DC is
sensitive.

Betweenness centrality: Recall our slightly changed
definition of betweenness. Now, BC(G, u) =∑

x,w∈V σu(x,w)/σ(x,w). In G\{e}, all shortest paths
are at least as long as in G, and the shortest path be-
tween u and v has increased at least one unit: BC is
sensitive.

Closeness centrality: CC(G, u) =
∑

w∈V \{u} 2
−d(u,w). In

G\{e}, all distances are greater or equal than in G, and
strictly greater for the couple (u, v): CC is sensitive.

B. PROOF OF THEOREM 3.4



We show that dC is a metric on G:

Separation ∀G1, G2 ∈ G, dC(G1, G2) ≥ 0 since all sum-
mands are non-negative.

Coincidence If G1 = G2, we have
∑

v∈V |C1(v)−C1(v)| =
0. If G1 6= G2 and C is sensitive, since ∀G ∈
N(G1), dC(G1, G) > 0, necessarily dC(G1, G2) > 0.
For the sake of contradiction, assume C is not sensitive:
∃G ∈ G, e ∈ E(G) s.t. ∀v ∈ G,C(G, v) = C(G \ {e}, v),
and therefore dC(G,G \ {e}) = 0 with G 6= G \ {e}: dC
is not a metric.

Symmetry Straightforward since |C(G2, v) − C(G1, v)| =
|C(G1, v)− C(G2, v)|.

Triangle inequality Observe that the neighbor-based dC
definition associates each edge of G with a strictly posi-
tive weight. The multi-hop distance dC is the weighted
shortest path in G given those weights. Since the
weighted shortest path obeys the triangle inequality for
strictly positive weights, dC does as well.

C. PROOF OF THEOREM 4.1
Let P be a topological shortest paths connecting G1 and

G2: |P | = dGED(G1, G2). Since E(G1) ⊂ E(G2), P con-
tains only edge additions to G1, where |P | denotes the
path length. Also ∀u, v ∈ V 2, ∀i, dP [i](u, v) ≥ dP [i+1](u, v),
where P [i] denotes the i-th node on the path. Therefore
|CC(P [i], (v))−CC(P [i+1], (v))| = CC(P [i], v)−CC(P [i+
1], v).

Therefore:

dCC(G1, G2) ≤

|P |−1∑

i=1

dCC(P [i], P [i+ 1])

=

|P |−1∑

i=1

∑

v∈V

CC(P [i], v)−CC(P [i+ 1], v)

=
∑

v∈V

CC(G1, v)−CC(G2, v)

= d̃CC(G1, G2) ≤ dCC(G1, G2)

(1)

The sum of the closeness distances on this path P is the
exact closeness distance, for any such path P : all shortest
paths are equivalent for dCC in this case.


