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1. Introduction

Because of its outstanding mechanical properties, particularly its fatigue resistance [1–3], Natural rubber (NR) is a key
material in many industrial applications such as tires. In literature, its ability to crystallize under deformation
(strain-induced crystallization, SIC [4]), in particular in the vicinity of crack tips where the material is largely strained
[5–7], is classically invoked to explain longer service life and better fatigue crack growth resistance than synthetic elasto-
mers. More precisely, authors argue that the crystallized rubber around the crack tip slows down crack growth [3]. However,
the influence of this crystallized zone at crack tip on fatigue crack propagation remains still unproven.

In this context, the present paper aims to relate fatigue crack growth rates in NR samples with the characteristics of the
crystallized zone around crack tip, and then to explain the macroscopic fatigue properties. In this way, three experimental
methods are developed and their results are compared:



Nomenclature

c crack length
dc/dn crack growth rate
h thickness of the deformed PS sample
h0 thickness of the undeformed PS sample
I200 intensity of the X-rays diffracted by the (200) plane
Iamorphous intensity of the X-rays diffracted by the amorphous part of the rubber
l height of the deformed PS sample
l0 height of the undeformed PS sample
n number of cycles
T tearing energy (or energy release rate)
w strain energy
W0 strain energy per unit undeformed volume
v index of crystallinity
U angle of rotation of the principal strain direction
k stretch ratio in the tension direction for the PS sample
k3 stretch ratio in the out-of-plane direction (thickness) for the PS sample

Acronyms
CB carbon black
DIC digital image correlation
IR isoprene rubber
IR50 isoprene rubber filled with 50 phr of carbon black
NR natural rubber
NR50 natural rubber filled with 50 phr of carbon black
phr parts per hundred of rubber
PS pure shear
SIC strain-induced crystallization
WAXD wide-angle X-ray diffraction
� first, classical fatigue crack propagation tests are performed on different pre-cracked "pure shear" (PS) samples of NR
filled with carbon black in order to evaluate crack growth rate;
� second, the strain field around the crack tip is evaluated by digital image correlation (DIC) measurements;
� third, in situ fatigue tests are conducted at the French national synchrotron facility SOLEIL in order to measure in real-

time the crystallinity in the vicinity of the crack tip. The method consists in mapping the crack tip neighbourhood while
recording wide-angle X-ray diffraction (WAXD) patterns; see [8] for details on its development. It permits the measure-
ment of both SIC distribution and deformation state, i.e. principal strain directions and change in thickness, around the
crack during uninterrupted fatigue tests.

2. Experimental method

2.1. Material and sample

The fatigue experiments are conducted with NR samples filled with 50 phr of N347 carbon black (CB). Vulcanization is
carried out with 1.6 phr of sulphur together with CBS (N-Cyclohexyl-2-benzothiazole sulfonamide) that acts as an acceler-
ator. Each blend also contains zinc oxide (ZnO) and stearic acid. 6PPD (N-(1,3-dimethylebutyl)-N0-phenyl-p-phenylenedi-
amine) is used as an antioxydant. In addition, a synthetic isoprene rubber (IR) filled with 50 phr of CB N347 and with
exactly the same amounts of additives than NR compound, is synthesized. As in this IR (89% of CIS configuration) SIC is con-
siderably reduced compared to NR, the corresponding measurements are helpful to discuss SIC influence on fatigue crack
growth properties. The formulation of NR and IR materials are given in Table 1. In the following, these two compounds will
be denoted NR50 and IR50.

The geometry of the samples is a classical "pure shear" geometry (also known as planar tension samples), commonly
employed for fatigue crack growth tests [9–11]. The dimensions are reported in Fig. 1.

2.2. Fatigue crack growth rate tests

Fatigue crack growth measurements are based on the energy balance approach of Rivlin and Thomas [12], who extended
the concept of energy release rate of Griffith [13] to the case of non-linear hyperelastic materials. Considering thin planar
2



Table 1
Material formulation

Ingredients Content (phr)

NR 100 –
IR – 100
Carbon black N347 50 50
Stearic acid 2 2
Zinc oxide 2.5 2.5
CBS accelerator 1.6 1.6
6PPD 1.9 1.9
Sulphur 1.6 1.6

Fig. 1. Geometry and dimensions of "pure shear" samples.
samples of uniform undeformed thickness h0, and denoting c the crack length, the ‘‘tearing energy’’ T, i.e. the denomination
of energy release rate for rubber materials, is derived as
T ¼ � 1
h0

@w
@c

�
�
�
�

l

ð1Þ
where w is the strain energy and the suffix �l denotes differentiation with constant displacement of the boundaries over
which forces are applied. In the particular case of PS samples, they established the following relation between T; W0 the
strain energy density per unit undeformed volume, and l0 the height of the undeformed sample
T ¼W0l0 ð2Þ
Fatigue crack growth propagation experiments were performed at Michelin (Clermont-Ferrand, France) on a MTS servo-
hydraulic fatigue machine at room temperature, in air and with a 2 Hz sinusoidal waveform. After clamping, the uncracked
sample is first cycled during 300 cycles at a global stretch ratio k ¼ l=l0 ¼ 1:92, to suppress Mullins effect and lower the resid-
ual stretch mainly due to inherent viscous effects. Cyclic tests with uncracked samples are then conducted at different k from
1.08 to 1.92; the strain energy density W0 is then determined by integrating the area under the stress–strain curve.

After the creation of three pre-cracks (which entails four crack tips) in the sample at the edges (2 cm-long) and in the
middle of the sample (3 cm-long), a short preliminary cyclic test is performed to blunt the crack tips and to transform cutter
incisions into fatigue cracks. Afterwards, the procedure of fatigue crack growth experiments consists in cycling the cracked
sample for different global stretch ratios (corresponding to different values of T). Cyclic tests are paused several times to
measure the mean value of the crack extension dc of the four crack tips with a stereo microscope, from which we deduce
the crack growth rate (dc=dn in nm per cycle). A conventional way to represent the results is a log–log dc=dn vs. T curve [2].

2.3. Digital image correlation (DIC)

The now well-established method of DIC leads to the measurement of the displacement field (and then the 2D strain field)
in the vicinity of a fatigue crack tip in a stretched sample. Moreover, it also provides the principal strain directions. In the
present study, the analysis of the displacement field near the crack tip is performed with the commercial DIC software Davis
(edited by LaVision). The use of this method necessitates a good contrast on the surface of the sample; it is obtained by using
a white talcum powder which provides a satisfactory distribution of gray levels. The acquisition of images is then performed
by a Nikon D90 camera at different levels of extension and the pixel size on each photo is approximately 4 lm (see a typical
example in Fig. 2).

2.4. In situ WAXD experiments

In situ WAXD measurements are conducted with a homemade fatigue machine using two electrical actuators which apply
a cyclic sinusoidal extension to the rubber sample; this machine has been already used in a previous study [14]. It is fixed on
a mobile diffractometer on the DiffAbs beamline at the French national synchrotron facility SOLEIL. The wavelength of the
X-ray beam is 0.1305 nm and the beamsize is approximately 300 lm � 200 lm (full width at half maximum). The
two-dimensional WAXD patterns are recorded by a MAR CCD X-ray detector (SX-165) with an exposure time of 1 s (see
the typical pattern in Fig. 3). In the following, the equatorial direction is the direction that goes through the maximum of
3



Fig. 2. Acquisition of images on a cracked sample of NR50 at different levels of extension for DIC analysis: (a) k ¼ 1, (b) k ¼ 1:31, (c) k ¼ 1:67, (d) k ¼ 1:92.
See the common scale in the bottom right-hand corner.

Fig. 3. Typical WAXD pattern. The black arrows indicate the tensile direction. The black shadow represents a direct beam blocker.
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the two (200) reflections in azimuthal angle. The polar direction is simply defined as the perpendicular direction to the equa-
torial direction; it is parallel to the global stretching direction in Fig. 3 and more generally it corresponds to the maximum
principal strain direction. The transmitted beam is blocked by a Pb beamstop on which a Si PIN photodiode is placed to
measure the transmitted intensity through the rubber, and then retrieve the thickness of the sample. For in situ WAXD
experiments, only one fatigue pre-crack is introduced in the sample. After the same accommodation procedure as the one
performed for fatigue crack growth test, the WAXD acquisition starts. It consists in mapping the neighbourhood of the crack
tip with WAXD measurement in 90 points (rectangular mapping of 9 � 10 points) without stopping the cyclic loading.
Diffraction data are acquired at the top of each cycle (see Fig. 4) and the sample is moved with respect to the beam between
two cycles in order to perform the next WAXD acquisition in the next point of the mapping. A minimum 1 s exposure time of
the detector is needed to obtain satisfactory WAXD patterns with our experimental conditions. For this reason and in order
to accurately displace the sample between two successive measurements, it is necessary to prescribe a low loading fre-
quency, i.e. 0.1 Hz, during data acquisition. Each map contains 90 diffraction patterns; in fact, it is assumed that during those
90 cycles, the growth of the crack is negligible as compared to the mapping size in the fatigue crack propagation direction.
This assumption has been verified a posteriori from the measurement of the crack length after each loading sequence; in any
case the crack advance was smaller than 10% of the crystallized zone’s length, in the crack propagation direction. Fig. 4
summarizes the procedure. For the sake of brevity, we do not present here the complete treatment of the data; interested
reader can refer to [8] for details. However, it is to note that the calculation of the index of crystallinity has been improved
compared with the procedure described in [8]. Indeed, in order to account for the oriented amorphous phase, the misorien-
tation of crystallites (which leads to larger reflections) and the influence of carbon black fillers, we extract the total diffracted
intensity (averaged over an azimuthal angle of 40�, whereas only 1� was considered in [8]), at azimuthal angles correspond-
ing to the (200) and the (120) Bragg reflections. Then, we deconvolute the amorphous and crystallized peaks, and an addi-
tional peak due to the addition of CB with Pearson VII functions. The deconvolution of a typical pattern is shown in Fig. 5.
Practically, an angle larger than 40� would have led to a longer and more difficult deconvolution due to the peaks corre-
sponding to (201) reflections. Moreover the small peak besides the (120) peak was not considered in the deconvolution
as it did not influence significantly the value of crystallinity. The index of crystallinity is then defined as
Fig. 4.
two me
loading
v ¼
R

I200R
I200 þ

R
Iamorphous

ð3Þ
WAXD measurements during fatigue tests. Top: each diffraction pattern is recorded at the maximum displacement of each cycle. Bottom: between
asurements, the sample moves with respect to the beam to reach the next point on the prescribed map. The arrow indicates the scan direction. The
direction is horizontal.
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Fig. 5. Deconvolution and fitting of a pattern.

Fig. 6. Rotation of Bragg reflections nearby the crack tip in NR50 with k ¼ 1:92. It provides the mean orientation of crystallites and indirectly the rotation of
principal strain directions.
where
R

I200 is the area under the (200) peak and
R

Iamorphous is the area under amorphous peaks. It is worth noting that the
amorphous intensity is averaged in the polar and equatorial directions (for an azimuthal angle of 40� in each direction)
which permits to take into account for the calculation of v the orientation of the amorphous phase during sample stretching.
However, this orientation has not been quantified here.

These measurements lead finally to the plot of iso-v curves around the crack tip. Thus, it provides both size and shape of
the crystallized zone. Moreover, considering the transmitted intensity as a measurement of the thickness, it is also possible
to compute the volume of this crystallized zone around the crack tip. Finally, the rotation of principal directions near the
crack tip is also measurable by considering the rotation of Bragg reflections of the different recorded WAXD patterns, as
it was done by Pannier et al. [15]. Fig. 6 shows the rotation of the Bragg reflections in front of the crack tip. This rotation
is quantified by the angle U.

3. Results and discussion

3.1. Fatigue crack growth rates

The fatigue crack growth properties of NR filled with 50 parts per hundred of rubber (phr) of CB is compared with the ones
of IR filled with the same amount of carbon black. The crack growth rates are presented in Fig. 7. For a given tearing energy,
the crack growth rate is lower for NR50 than for IR50; it is particularly noticeable for high values of tearing energy. This
observation is confirmed by the slopes of the power law fits: 1.85 for NR50 and 2.73 for IR50. Nevertheless, crack growth
6



Fig. 7. Fatigue crack growth rates in NR50 (unfilled symbols) and IR50 (filled symbols).

Fig. 8. Absolute value of the rotation angle U (in degrees) of the principal strain directions, corresponding to the maximum stretch ratio, with respect to the
global stretching direction at crack tip measured by DIC (top) and WAXD (bottom) in NR50 with k ¼ 1:92 (deformed configuration). The grayscale applies to
both plots.
rates for T < 5000 J=m2 does not significantly differ. These results are in good agreement with previously published data:
even if a comparison between highly different materials might be hazardous, we note that Lake [16] obtained similar results
by comparing NR with SBR (styrene-butadiene rubber), a completely amorphous material.
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3.2. Multiaxial deformation at crack tip

3.2.1. Principal strain directions
Fig. 8 shows the orientation of the principal strain directions measured by DIC and WAXD. This orientation corresponds to

the angle U (see Fig. 6) which is the angle between the global stretching direction, and the direction of the maximum prin-
cipal strain with respect to the undeformed configuration for each measurement point. Indeed, U represents the rotation of
the principal strain directions induced by the crack tip because the normal-to-the-crack propagation direction is the princi-
pal strain direction that corresponds to the maximum stretch ratio in the uncracked sample.

To compare the two experimental techniques, Fig. 9 presents the distribution of U along the axis perpendicular to the
crack direction at the crack tip (see axis Z in the figure). This figure emphasizes the very good agreement between the
techniques; it also illustrates an original use of the WAXD results to investigate mechanical quantities at the local scale.
3.2.2. Change in thickness
A mapping of the change in thickness h=h0 (which corresponds to the out-of-plane stretch ratio k3), with h the deformed

thickness at a given point, is proposed in Fig. 10; this result is obtained by the transmitted X-ray beam for a NR50 sample
with a global stretch ratio k ¼ 1:92. As expected, it highlights the substantial change in thickness in the vicinity of the crack
tip, as compared to the global change in thickness far from it. To quantify this difference, Fig. 11 presents the change in thick-
ness along two axes which cross at crack tip. The data obtained by transmitted X-ray beam are compared with those
obtained by DIC. More precisely, for the latter method the change in thickness is calculated from the in-plane strain
measures and considering the incompressibility assumption for the material. The very good agreement of the measurements
permits first to conclude on the relevance of the transmitted X-ray beam method to evaluate the out-of-plane strain but also
to validate the in-plane strain measured from DIC, even near the crack tip. Second, the comparison of the results from the
two methods validate the incompressibility assumption classically adopted for rubber-like materials [17–19] even in the
near crack tip region. Nevertheless, it is thought by the authors that, if the material is not perfectly incompressible, the devi-
ation from incompressibility would be small especially if one considers that the effect of SIC would counterbalance the effect
of cavitation. This point was investigated by Chenal et al. [20]. According to this author, the volume variation is less than 2.5%
in a filled NR after a few cycles (i.e. after Mullins effect). Consequently, it would not have a significant influence on the curves
given in Fig. 11.
Fig. 9. Distribution of U measured by DIC and WAXD in front of the crack tip along an axis perpendicular to the crack propagation in NR50 with k ¼ 1:92
(deformed configuration).
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Fig. 10. Change in thickness h=h0 in the vicinity of the crack tip, as deduced from measuring the transmitted X-ray beam in NR50 with k ¼ 1:92 (deformed
configuration).

Fig. 11. Change in thickness k3 ¼ h=h0 in the vicinity of the crack tip: in the crack direction (Y) and in the direction normal to the crack (Z) in NR50 with
k ¼ 1:92 (deformed configuration). We recall that k3 corresponds to the out-of-plane stretch ratio.
3.3. Crystallized zone at crack tip

3.3.1. Size of the crystallized zone
Fig. 12 presents the iso-crystallinity plots obtained after the WAXD measurements around the fatigue crack tip of NR50

samples for four different values of T. It logically emphasizes the influence of this parameter on the size of the crystallized
zone: as the global stretch ratio increases, the local strain levels increase in the vicinity of the crack and then more matter
crystallizes. These results corroborate the ones of Lee and Donovan [5], Trabelsi et al. [6]; and also Brüning et al. [7], whose
measurements of SIC where performed in dynamic conditions. All those studies report an enlargement of the crystallized
zone for a carbon black filled NR [5,7] and an unfilled NR [6], respectively. Nevertheless, quantitative comparisons with these
results are not possible, because experimental conditions, i.e. materials, samples geometry and loading conditions,
noticeably differ.
9



(a)

(b)

(c)

(d)

Fig. 12. Distribution of the index of crystallinity around a fatigue crack tip in NR50 for four different values of tearing energy (deformed configuration): (a)
T ¼ 4620 J=m2, (b) T ¼ 7290 J=m2, (c) T ¼ 10;390 J=m2, (d) T ¼ 14140 J=m2. The lowest value of the index is 0.0025; it corresponds to the threshold of
detection.
Furthermore, it is to note that the frequency decrease (from 2 to 0.1 Hz) applied to perform the acquisition and the
mapping might have a slight effect on the observed results. Recent studies dealing with the kinetics of SIC [21–23] have
highlighted that the crystallization characteristic time in NR is short, around 20 ms according to Candau et al. [21], which
is much smaller than the duration of a half fatigue cycle at 2 Hz (250 ms). It means that SIC still exists at 2 Hz especially
when the distance to the crack tip is reduced because the stretch ratios are very high. However, according to Candau
et al. [21] this characteristic time can rise to 200 ms when the stretch ratio is close to the onset of crystallization, which
means that the crystallized zone is smaller in real fatigue conditions (2 Hz) compared with the one measured at 0.1 Hz.
3.3.2. Relationship between T and crystallinity
In order to propose a preliminary result on the influence of SIC on fatigue crack growth, one can compare the crack growth

and the quantity of matter that is crystallized. In this way, the volume of matter that contains crystals around the crack tip is
computed by multiplying the surface of the crystallized zone by the deformed thickness measured by the transmitted inten-
sity measurement presented above. Fig. 13 presents the evolution of this quantity with respect to the tearing energy.

In order to comment this figure, we recall the results of Fig. 7 which compares the crack growth rate of NR and IR. It is to
note that IR does almost not crystallize when stretched, thus it is not plotted in Fig. 13. On the one hand, the resistance to
fatigue crack growth in NR is greater than the one in IR, and it is all the more true for high values of T. On the other hand, the
volume of the crystallized zone at crack tip in NR increases with T. It tends to prove that SIC slows down crack growth. To
sum up: the higher the tearing energy, the larger the crystallized zone at crack tip and the lower the crack growth rate in NR
as compared to IR.
10



Fig. 13. Volume of the crystallized zone around crack tip as a function of tearing energy for NR50. The line represents a fitted power law.
4. Conclusion

In this paper, the multiaxiality of strain and the strain-induced crystallization in the vicinity of a fatigue crack tip have
been investigated thanks to both the DIC technique and an original experimental set-up, which consists in the association
of a homemade fatigue machine with synchrotron WAXD. The discussion of these experimental results with respect to fati-
gue crack growth rates permits to emphasize the influence of crystallinity on crack growth in filled elastomers, and leads to
an explanation of the remarkable resistance to fatigue crack growth of natural rubber.

As a conclusion, the contributions of this work are twofold. First, from a methodological point of view, the interest of
using WAXD technique to measure crystallinity, principal strain directions and out-of-plane strain has been demonstrated.
We can also argue that our WAXD study validates both in-plane DIC measurements and incompressibility assumption.
Second, as a preliminary result, we have established a simple relationship between the tearing energy and the crystallized
volume in the vicinity of the crack tip. This first quantitative result paves the way for further investigation on strain-
crystallizing elastomers in fatigue: comparison of materials, influence of carbon black reinforcement and effect of complex
loading conditions.
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