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ABOUT THE BEHAVIOUR OF REGULAR NAVIER-STOKES SOLUTIONS NEAR
THE BLOW UP

EUGENIE POULON

ABSTRACT. In this paper, we present some results about blow up of regular solutions to the ho-
mogeneous incompressible Navier-Stokes system, in the case of data in the Sobolev space H*(RR?),
1 3 . R . .. . .
where 5 <s < 3 Firstly, we will introduce the notion of minimal blow up Navier-Stokes solutions and

show that the set of such solutions is not only nonempty but also compact in a certain sense. Secondly,
we will state an uniform blow up rate for minimal Navier-Stokes solutions. The key tool is profile
theory as established by P. Gérard [17].

1. INTRODUCTION

We consider the Navier-Stokes system for incompressible fluids evolving in the whole space IR, De-
noting by u the velocity, a vector field in IR?, by p in R the pressure function, the Cauchy problem for
the homogeneous incompressible Navier-Stokes system is given by

du+u-Vu—Au = —Vp
(1) divu = 0
U‘tzo = ugp.

Throughout this paper, we will adopt the useful notation NS(ug) to mean the maximal solution of the
Navier-Stokes system, associated with the initial data wg.

Definition 1.1. Let s in IR. The homogeneous Sobolev space HS(R3) is the space of tempered
distributions u over R®, the Fourier transform of which belongs to L}OC(Rg) and satisfies

ful ([ e e tag ) < o

It is known that H*(IR?) is an Hilbert space if and only if s < 3. We will denote by (.")HS(Ing the

scalar product in H*(IR®). From now on, for the sake of simplicity, it will be an implicit understanding
that all computations will be done in the whole space R3.

Before stating the results we prove in this paper, we recall two fundamental properties of the incom-
pressible Navier-Stokes system. The first one is the conservation of the L? energy. Formally, let us
take the L? scalar product with the velocity u in the equation. We get

1d
) 33O + 19uOIE = = [ Fuu®) = [ (Tp0lu()

Thanks to the divergence free condition, obvious integration by parts implies that, for any vector field a

(3) (u Va]a) ,=0= (Vp\a) 9
L L

This gives

(4) 3 7 @Iz + IVu@)llz: = 0.
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2 EUGENIE POULON

The second property of the system is the scaling invariance. Let us define the above operator:

n 4 3 o def 1 t v —xo
(5) Ya € R s Ve ]R,* s VCEO eR N )\7:50U(t,$) = )\7‘1“(?’7)

If =1, we note A}\M = A -

It is easy to see that if u is smooth solution of Navier-Stokes system on [0, 7] X R? with pressure p
associated with the initial data ug, then, for any positive A, the vector field and the pressure

def def , o
ux = Myzou and py = A3, p

is a solution of Navier-Stokes system on the interval [0, \>T] x R?, associated with the initial data

ugx = Az Uo-

This leads to the definition of scaling invariant space, which is a key notion to investigate local and
global well-posedness issues for Navier-Stokes system.

Definition 1.2. A Banach space X is said to be scaling invariant, if its norm is invariant under the
scaling transformation defined by u +— u)

[fuallx = [lullx

The first main result on incompressible Navier-Stokes system is due to J. Leray, who proved in [25]
in 1934 that given an initial data in the energy space L?, the associated NS-solutions, called weak
solutions, exist globally in time. The key ingredient of the proof is the L?-energy conservation (4).
Moreover, such solutions are unique in 2-D; but the uniqueness in 3-D is still an open problem. One
way to adress this question of unique solvability in 3-D is to demand smoother initial data. In this
case, we definitely get a unique solution, but the other side of coin is that the problem is only locally
well-posed (and becomes globally well-posed under a scaling invariant smallness assumption on the
initial data). J. Leray stated such a theorem of existence of solutions, which he called semi-regular
solutions.

Theorem 1.1. Let an initial data ug be a divergence free vector field in L? such that Vug belongs to.Lz.
Then, there exists a positive time T, and a unique solution N S(ug) in C°([0,T], H) n L%([0,T], H?).
Moreover, a constant c; exists such that if ||uol|| 2 ||Vuo|| 2 < ¢1, then T' can be chosen equal to co.

The reader will have noticed that the quantity ||uol||z2||Vuo||z2 is scaling invariant under the oper-
ator Ay z,. Actually, that is the starting point of many frameworks concerning the global existence
in time of solutions under a scaling invariant smallness assumption on the data. The celebrated
first one was introduced in 1964, by H. Fujita and T. Kato. These authors stated a similar result
as J. Leray, but they demanded less regularity on the data. Indeed, they proved that for any ini-
tial data in H%, there exists a positive time 7' and there exists a unique solution N S(ug) belonging
to C9([0, T, H%) N L2([0, 7], Hg) Moreover, if HUOHH% is small enough, then the solution is global in
time. This theorem can be proved by a fixed-point argument and the key ingredient of the proof is that
the Sobolev space H > is invariant under the operator Ay ,,. In other words, the Sobolev space b3
has exactly the same scaling as Navier-Stokes equation. We refer the reader to [1], [13] or [24] for more
details of the proof. But in this paper, we are not interested in the particular kind of space. On the

: 1
contrary, we work with initial data belonging to homogeneous Sobolev spaces, H® with 3 <s< o1

which means that we are above the natural scaling of the equation. The first thing to do is to provide
an existence theorem of Navier-Stokes solutions with data in such Sobolev spaces H®. The Cauchy
problem is known to be locally well-posed; it can be proved by a fixed-point procedure in an adequate
function space (we refer the reader to the book [24], from page 146 to 148, of P-G. Lemarié-Rieusset).
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We shall constantly be using the following simplified notations:

L%O(Hé) d:ef LOO([O,T],HS) and L%(HS-‘rl) déf L2([0,T],H5+1).

Let us define the relevant function space we shall be working with in the sequel:

def

s del 2
X7 =

. . . . def
LEF(H°) 0 TR, equipped with [lulky < ull2. oy + 025 o)

: 1 3
Theorem 1.2. Let ug be in H®, with 3 <s< ok Then there exists a time T and there exists a unique

solution NS(ug) such that NS(ug) belongs to L (H?®) N LA(H*1).
Moreover, let Ty (ug) be the maximal time of existence of such a solution. Then, there exists a positive
constant ¢ such that

. def 1
(6) Ti(uo) lluoll%, = ¢, with o =
3(s —3)

Remark 1.1. As a by-product of the proof of Picard’s Theorem, we get actually for free the following
property: if the initial data is small enough (in the sense of there exists a positive constant cy, such
that T' |[uol|%;, < co), then a unique Navier-Stokes solution associated with it exists (locally in time,
until the blow up time given by the relation (6)) and satisfies the following linear control

co
Taol%. INS (uo)(t, - )l x5 < 2 [|luoll g7 -

s

(7) YO<T<

Formula (6) invites us to consider the lower boundary, denoted by AZs, of the lifespan of such a solution

Ags 3t inf{ T (uo)[uoll%, | wo € H* ; Tu(uo) < oo}.

Obviously, AZs exists and is a positive real number and we always have the formula
(8) T(uo)l|uoll%, = AZ*

Throughout this paper, we made the assumption of blow up, which is still an open problem. More
precisely, we claim the following hypothesis.

Hypothesis H: for any % <s< %, a divergence-free vector field ug exists in H® such that the lifespan
T\ (uo) is finite.

Let B, be the open ball in H* defined by B, = {ug € H* / lluol| s < p}. Let Ty > 0 be a positive real
number. We define a critical radius by the following formula

def A
ps(T%) = i
TS

Defined in this way and thanks to (8), we get an another definition of the critical radius

ps(Ti) =sup{ p >0 | [luollgs <p = Ti(uo) > Ti}.

Thanks to this definition, we define the notion of minimal blow up solution for the Navier-Stokes
System.

Definition 1.3. (minimal blow up solution)
We say that u = NS(ugp) is a minimal blow up solution if ug satisfies the two following assumptions:

uoll s = ps(Ti) and  Ti(ug) = T.

Therefore, w = N.S(up) is a minimal blow up solution if and only if AZs is reached: T (uo)||uo||%, = Ag®.

Question: If ps(Ty) is finite, do some minimal blow up solutions exist ?
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We will prove a stronger result: the set of initial data generating minimal blow up solutions, denoted
by M(T%), is not only a nonempty subset of H® (which, in particular, gives the positive answer to
the question) but also compact in a sense which is given in Theorem 1.3. We define the set M(T) as

follows
def

M,(T,) L {uo € H* | Tu(up) =T, and [uol . = ps(T*)}.
Theorem 1.3. Assuming hypothesis H. For any finite time Ty, the set My(T) is non empty and
compact, up to translations. This means that for any sequence (ug n)nen of points in the set Mg(T%),
a sequence (T, )nen of points of (R3)YN and a function V' in M(T,,) exist such that, up to an extraction
lim ||uon(- +2n) = V|[g. = 0.

n—-+oo

The second result of this paper states that the blow up rate of a minimal blow up solution can be
uniformely controlled since we get a priori bound of these minimal blow up solutions.

Theorem 1.4. (Control of minimal blow up solutions)

Assuming H, there exists a nondecreasing function Fy : [0, A% [— R with lirlgj Fy(r) = +o0
r—A:®
such that for any divergence free vector field ug in H®, generating minimal blow up solution (it

means T, (u0)||u0H;’;s = A?*), we have the following control on the minimal blow up solution N.S(ug)

1
VT < Ti(uo), [NS(uo)lxs < lluollgs Fs(T7s [Juoll z)-

1
Remark 1.2. Let us point out that the quantity T'7s ||ug|| ;. is scaling invariant; which is obviously
necessary.

The two previous theorems are the analogue of results, proved in the case of the Sobolev space 3. We
shall not recall all the statements existing in the literature concerning the regularity of Navier-Stokes
solutions in critical spaces, such as H 2. We refer for instance the reader to [13] and to the article of
C. Kenig et G. Koch [19], where the authors prove that NS-solutions which remain bounded in the
space H 2 do not become singular in finite time. Concerning Theorem 1.3, we were largely inspired by
the article of W. Rusin and V. Sverdk [29], in which the authors set up the key concept of minimal
blow-up for data in Sobolev space H 2, Firstly, they defined a critical radius p 1

pr=sup{p>0 ; |uol, 3 <p = Ti(uo) = +oo}.

1
2

Then, they introduced a subset M of H %, which describes the set of minimal-norm singularities (we
speak about minimal norm in the sense of HUOHH 3 is equal to the critical radius py)
2

M:{UOGH% ; T*(U())<+OO and HUOHH% :p%}.

Thanks to these definitions, W. Rusin and V. Sversk proved that if there exist elements in the space H 2
which develop singularities in finite time (we assume that blow-up occurs), then some of these elements
are of minimal F3-norm (and thus, the set M is nonempty) and compact up to translations and
dilations. It means that for any sequence (ugn)nen of points in the set M, a sequence (A, 2 )neN
and a function ¢ in M exist such that, up to an extraction, we have

TLEEI}OO HUO,n - AA’NJZTLSOHH% = 0

Let us point out that I. Gallagher, G. Koch and F. Planchon generalize in [16] the result of W. Rusin
and V. Sverdk to critical Lebesgue and Besov spaces, such as L3.

Concerning Theorem 1.4, our main source of inspiration is a result established by I. Gallagher in [14].
Given an initial data g in the open ball B,, . Then, by definition of p1, N.S(ug) is a global solution and
3 2
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thus belongs to the space L*(R,, H'), thanks to the important paper [15] of I. Gallagher, D. Iftimie

and F. Planchon. In this way, the blow up in the Egr, = L*(Rq, H%) NL*(R,, H%)—norm does not

occur. Even better: I. Gallagher proved in [14] the a priori control of the Navier-Stokes solution with

data in the open ball B, in the sense of there exists a nondecreasing function F' defined from [0, p1 |
3 2

to R™ such that for any divergence free vector field ug in the open ball B,, , we have
2

INS (uo)ll pw, < F(lluoll ;1)-

Notation. We shall denote by C a constant which does not depend on the various parameters
appearing in this paper, and which may change from line to line. We shall also denote sometimes = < y
to mean there exists an absolute constant C' > 0 such that z < C'y.

The paper is organized in the following way:

In section 2, we recall the fundamental tool of this paper : profile decomposition of a bounded sequence
in H5. Then, we give the proof of the compactness of minimal blow up solutions set (Theorem 1.3)
and control of of such solutions (Theorem 1.4). These two results are based on the crucial Theorem 2.2
about the lifespan of a Navier-Stokes solution associated with a bounded sequence of H*.

Section 3 is devoted to the proof of Theorem 2.2, thanks to a regularization process. Firstly, we will
see that it is an immediate consequence of Lemma 3.1, which gives the structure of a Navier-Stokes
solution associated with a bounded sequence of data in H*. Secondly, we will provide some helpful
tools in order to prove Lemma 3.1.

In section 4, we prove Lemma 3.1, the result on which all others are based on. This section is the
most technical part of the paper. It relies on classical product and paraproduct estimates, which are
collected in Appendix A and B.

Acknowledgements. 1 am very grateful to 1. Gallagher for fruitful discussions around the question
of non-scale invariant spaces and to P. Gérard for many helpful comments.

2. PROFILES THEORY, COMPACTNESS RESULT AND APPLICATION

This section is devoted to the proof of Theorems 1.3 and 1.4. Following I. Gallagher [14], W. Rusin
and V. Sverédk [29], C. Kenig and G. Koch [19] and I. Gallagher, G. Koch, F. Planchon [16], we shall
use profile decomposition theory. The original motivation of this theory was the desciption of the

default of compactness in Sobolev embeddings (see for instance the pionneering works of P.-L. Lions
in [26], [27] and H. Brezis, J.-M. Coron in [7]. Here, we will use the theorem of P. Gérard [17], which

gives, up to extractions, the structure of a bounded sequence of H? , with s between 0 and 3 More

precisely, the default of compactness in the critical Sobolev embedding H?® c L” is descibed in terms
of a sum of rescaled and translated orthogonal profiles, up to a small term in LP. That was generalized

i d
to other Sobolev spaces H*P(IR?) with 0 < s < — by S. Jaffard in [18], to Besov spaces by G. Koch

in 23] and to general critical embeddings by H. gahouri, A. Cohen and G. Koch in [2]|. Let us notice
the recent work [5] of H. Bahouri, M. Majdoud and N. Masmoudi concerning the lack of compactness
of the Sobolev embedding of H'(IR?) in the critical Orlicz space £(IR?). Then profile decomposition
techniques have been applied in many works of evolution problems such as the high frequency study
of finite energy solutions to quintic wave equations on IR?, by H. Bahouri and P. Gérard [4]. C. Kenig
and F. Merle investigated in [20] the blow up property for the energy critical focusing non linear wave
equation. Profile techniques turned out to be also a relevant tool in the study of Schrédinger equations.
Notice this kind of decomposition was stated and developped, independently from [17], by F. Merle
and L. Vega [28] for L?-solutions of the critical non linear Schrdinger in 2D, in the continuation of the
work of J. Bourgain [6]. Then, S. Keraani revisited in [22] the work of H. Bahouri and P. Gérard [4]
in the context of energy critical non linear Schrédinger equations. C. Kenig and F. Merle investigated
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in [21] the global well-posedness, scattering and blow up matter for such solutions in the focusing and
radial case.

Remark 2.1. Using notation (5), we can prove easily that the L (as well as H*®)-norm is conserved

under the transformation u — Ap u. It means HA ull = ||ul.

)\:Eo >\330

Theorem 2.1. Let (upn)new be a bounded sequence in Hs. Then, up to an extraction:
- There exists a sequence of vectors fields, called profiles (V) e in H®.
- There exists a sequence of scales and cores (An j, Tn j)n jenN, such that, up to an extraction

(z) + ;) (x)  with hm limsup |4 |r» =0, and p=

n]:xnj —+00 pn—+too 3—2s

Mk

VJ 0 uo, n
7=0

Where (Anj, Tnj)nenN,jen+ are sequences of (IR7 x R3N with the following orthogonality property:
for every integers (j, k) such that j # k, we have

Ang A Tpi—
either lim (ﬂ + nk) =+00 or A j=A,r and lim [ng = Tnpl _ +00.
oo nd )\nd P ’ n—+oo >\’l’l,]
Moreover, for any J in IN, we have the following orthogonality property
J
(9) luonllFre = DIV % + 105115, + (1),  when n — +oo.

J=0

A first application of this, is Theorem 2.2 about the lifespan of a NS-solution associated with bounded
data in H?®. The proof of it will be given in section 3.

Theorem 2.2. Let (ug) be a bounded sequence of initial data in H* such that its profiles decompo-
sition is given by

T3
o, ( ZAiwwn; (z) + ) (x)  with hm limsup ||¢ || » = 0.

=0 n—-+00

Let us define Jy as the subset of indices j in IN, such that the profile V7 is non-zero and such that the
associated scale )\, ; is identically equal to 1.

If 71 =0, then lig}rnf T (uopn) = +o0.
If then liminf T.(ug,) > inf T.(V7).
Ji# 0, then liminf T.(uo,) ot (V7)

Remark 2.2. Let us point out some facts. Firstly, if T, (V) = 400 for any j, then limJirnf T (ug,n) = +00.
n—-+0oo
Secondly, in the case where [J; is non empty, the quantity jn} T.(V7) exists and obviously, if |7;] is
JeN
finite, we get immediately that 4in§ T.(V7) = mf}l T, (V7). In the case where | 71] is infinite, we get the
J€I1 j€T

same conclusion. Indeed, by vertue of (9), the serie Z % Hip
j=0
in the summation integers belonging to J1), and thus ,ligrn V7|l ;75 = 0. Thanks to Inequality (6), we
j—+oo

is summable (a fortiori if we consider

deduce that lim T,(V7) = 400 and thus
J—+o0o

inf 7.(V7) >0 and  inf T.(V’) = min T.(V7).
JjEN JjEN JET
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This result gives us an important information: whenever a sequence of initial data which satisfies
profiles hypothesis (it means a bounded sequence in H ®), we get an information on the lifespan of
the NS-solution associated with such a sequence of initial data: it mainly depends on the lifespan of
profiles with a constant scale. Note that the orthogonality property on scales and cores in Theorem 2.1
implies either the scales are different (in the sense that lim ( Tl Ak
n—+00 )\n,k An7j
the same (A, j = An k), equal to a constant, and the cores go away from one another, in the sense that
lim |xn,j — T,k
n—-+0oo )\nd-
it is one, up to rescaling profiles by a fixed constant.
Theorem 2.2 has a key role in the proof of the compactness Theorem 1.3: the set M(T}), recalled
below, is non empty and compact, up to translations.

M(T,) == {ug €H* | Tu(up) =T, and [uol g = ps(T*)}.

) = +00) or the scales are

= +o00. In the last case where scales are equal to a constant, we shall assume that

2.1. Proof of the compactness Theorem 1.3.

Proof. By definition of A%, we consider a minimizing sequence (ug,)n>0 such that
Os

ngrfoo Ti(uon) lluonllF. = AZ:-

Up to a rescaling process, we can assume that the minimizing sequence (ug)n>0 satisfies

(10) Im  |uopl g = ps(Ty) and  Ti(uop) = Ts.

n—-+4o0o

Indeed, consider the sequence (vg)n>0 defined as

1 1
von(z) (T* (;3@) 2 UO’n«T* (;f,n)> 2 x)

The reader notices that the Navier-Stokes solution associated with such a sequence (vg ) has a lifespan
T* (UO,n)
T
definition of ps(7%). As defined, (upn)n>0 is a sequence of points of the set My(T%); it is a bounded

sequence in H* and thus we can apply Theorem 2.1. Taking limit when n — 400 in (9), we get

equal to Ty. As ||von|%, = ( ) lluon]| %, , it seems clear now we can assume (10), by vertue of

J
VIZ0, pAT) =D |V,
=0

Let us assume that there are two non-zero profiles at least. Then we should have

Vi e {0, I} V3. < p3(T%).
By definiton of p4(7%), it means all profiles V7 generate solutions whose lifespan satisfies
(11) T.(VI) > T,, ¥Vj € {0,---,J}

As Ty (up ) = Ty < oo for any n, Theorem 2.2 implies that J; # (): there exists at least one profile

with constant scale. Moreover, thanks to Remark 2.2, we have jn} T.(V7) = m? T.(V7). Combining
JeN JeN

this with Relation (11) implies that

7% it 7,(v9) > 1o
JjeN

By hypothesis on (4o n)new and thanks to Theorem 2.2, we get a contradiction, since we have

liminf T (ugp) = To = T > T
n—-+o00
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It means there exists an integer jo such that the profile, V7o has a lifespan which satisfies T’ 90 L T,
In particular, by definition of ps(7%), it implies that ||V70||§-{S > p2(T,). And, thanks to the orthogonal

property of the H*-norm (9), we deduce the equality
V%, = p3(Te).

Now, we have just to check that T, = T; 90 We have already proved a first inequality: T 90 < T
The other way is given by (8): we have always the following relation: T7° V7 1%, = AZs. Thanks to

Os

: A .
the result [|[V7°%, = pd*(Ty) = TC , we get the second inequality: 77° > T,. Thus, the set M(T})
*

is non empty and thus, there exists some minimal Navier-Stokes solutions. The compactness of the
set M,(T%) is a consequence of the above work. Thanks to (9) and [[V?°|| ;. = ps(T), we infer that

Vj#jo, V/=0 and lim [j¢]|%, =0.
n—-+00

The above assumption implies in particular that jo € J;. Indeed, if jo ¢ Jp, then 73 = () and thus we
should have T, = 400, which is absurd. As a result, there exists a unique integer jo € J1, such that

o () = Vo (x — 2nj,) + w,{(x)

The property nll)rfoo Hwéﬂzs = 0 implies nEToo [0, (- +Tjon) — VI s = 0. O

2.2. Proof of Theorem 1.4.

1

Proof. Let us consider a critical element u = N.S(ug) : T¥° (uo)||uo|| 7. = Ae. By vertue of a rescaling,
1

we can asume that [|uol| ;. = 1 and thus T (ug) = A.. Let us introduce the following set

s dof {”NS(U0>HXT ug in H® such that |[ugl|ys =1 and T < Ags}.

Theorem 1.3 claims that the set N7 is nonempty. The aim is to prove that sup N7 is finite for any 7'
If not, a sequence (ugn)n>0 in H® exists, such that for any 7' < Ty (ug,), we have
(12) [uonllys =1, Ti(uon) = AZ® and  Tim [[NS(uon)|xs = oo

n——+00

By hypothesis, the sequence (ug n)n>0 belongs to the set M(Ty). Therefore, there exist a sequence of
cores (Tp)new and a function V' in M (Ty) such that, up to an extraction:

(13) i [Juo( +2n) = V| 7. =0,
We can prove easily that, for any 7' < T,(V):
(14) NS(uon(-+zn)) = NS(V) + R, with Er}g |Rnllx, =0
Indeed, we define
def
RO,n = UO,n(' + xn) - V.

Because of (13), the sequence (Ro.,)n>0 converges to 0 in H*-norm, for n large enough. Moreover, the
error term R, satifies the following perturbed Navier-Stokes system

O Ry + Ry - VR, — ARy + Ry - VNS(V) + NS(V) - VR, = —Vp
(15) div R, = 0
Rn\t:O = RO,n-

Applying forthcoming Theorem 6.1, we infer that, for any 7' < T (V') and for n large enough
INS(uon(- +2n))x7 < [NS(V)l[x7 4 0(1).

As ||NS(uon(- + xn))llxp = [|NS(uon)| x,, we take the limit when n — 400 in the above inequality
and thus we get a contradiction with the assumption. O
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3. PROOF OF THEOREM 2.2 AND TOOL BOX FOR LEMMA 3.1

All the previous results are based on Theorem 2.2. In this section, we prove this theorem, which relies
on Lemma 3.1. This last one gives the structure of the Navier-Stokes solution associated with an initial
data which has a profile decomposition. In others words, we wonder if, given the profile decomposition
of a sequence of data, we get a similar decomposition on the Navier-Stokes solution itself. Lemma 3.1
gives a positive answer.

Let us recall to the reader that this question has already been studied by I. Gallagher in [14] in the case
of initial data in the Sobolev space H? and the same author with G. Koch, F. Planchon [16] in others
critical spaces (e.g scaled invariant under the Navier-Stokes transformation). In our case, the difficulty
is that the homogeneous Sobolev space H? is not a scale invariant space under the natural scaling of
the Navier-Stokes equation. To overcome this issue, the method consists in cutting off frequencies of
profiles [4] (such profiles will have the useful property to belong to any H*, for any s). In particular,
profiles scaled by 0 (resp. 0o) will tend to 0 in some Sobolev spaces (more precisely in H! with s; < s),
(resp. H*®? with so > s) and therefore, will not perturb the profile decomposition of the NS-solution.

3.1. Key Lemma and application. Let (uo,)n>0 be a bounded sequence of initial data in Hs.
Thanks to Theorem 2.1, (ugn)n>0 can be written as follows, up to an extraction

UOn Z n],ﬂﬁng )+¢J( )

=0

By vertue of orthogonality of scales and cores given by Theorem 2.1, we sort profiles according to their
scales

(16) ton(@) = Y Ve )+ 3 AL L V@) (@)

JET JETT
Jsd i<J

where for any j € Ji, forany n € N, A\, ; =1
We claim we have the following structure lemma of the Navier-Stokes solutions, which proof will be
provided in section 4. This lemma highlights the specific role of profiles with constant-scales.
Lemma 3.1. (Profile decomposition of the Navier-Stokes solution)
Let (uon)n>0 be a bounded sequence of initial data in H® which profile decomposition is given by

J 3

o () =Y A} VIi(x)+ ().

An,jsTn,j
Jj=0

Then, u is a Navier-Stokes solution associated with the bounded sequence ug, (e.g u = NS(uoy)) if

and only if the error term R;) defined by R def NS(ugn) — UXPY is a solution of the below perturbed
Navier-Stokes equation

&R + R].VR] — AR} + R] - VU™ 4 UP*' YR] = —FJ - Vp!
(17) div R;{ = 0
R%\t:o = 0.

where F! is a forcing term which will be explicitely detailed in (26) and

) 3 .

Uz, 2) E ST NSV (ta = ) + (DAL L V@) + 0l (@),
j§51 jejlc
Jj<d Jj<d
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Moreover, the lifespan 7;) of the error term R; satisifies

Ve>0,3J>03Iny;=>0Yn>ny, 7)> inf T.(V7) —e.
J€J1

Proof of Theorem 2.2. Clearly, Theorem 2.2 is an immediate consequence of Lemma 3.1. Assume

Lemma 3.1 is proved. On the one hand, if there is no non zero profile with constant scale (e.g J1 = 0),

the “profile decomposition” of the solution in Lemma 3.1 implies that limJirnf T (ug,n) = +00. On the
n—-+0oo

other hand, if J; # 0, the lifespan of sequence NS(uy,,) is given by the lifespan of profiles, scaled by
the constant 1 and T (uoz) > jn} T, (V7). This ends up the proof of Theorem 2.2.
e

3.2. Tool box. In this subsection, we recall some basic facts about homogeneous Besov spaces and
we prove some properties we need to the proof of Lemma 3.1. We refer the reader to [1], from page 63,
for a detailed presentation of the theory and analysis of homogeneous Besov spaces.

Definition 3.1. Let s be in R, (p,r) in [1,+00]? and u in §'. A tempered distribution u is an element
of the Besov space B, if u satifies

1

def ; : T
lull s, % (327 1Asullfe)" < oo,
' jEZL

where Aj is a frequencies localization operator (called Littlewood-Paley operator), defined by

A def _ —ile
Aju(§) = FH (e (27 IEha9).
with ¢ € D([3,2]), such that Z ©(277t) = 1, for any t > 0.
JEZ
Remark 3.1. We have the embedding H*® C B§2 These spaces coincide if s < 3.

The first thing we have to notice is the following: given a bounded sequence of data in H? (thus we get
a profile decomposition of this sequence), Theorem 2.1 implies that the term ¢ (), (which is bounded
in H*), satisfies:
lim limsup |97 ||z = 0.
J—=+00 n—too
In fact, thanks to an interpolation argument, we can prove that the remaining term w;{ tends to 0 in
certain Besov spaces. That is the point in the following proposition.

Proposition 3.2. For any 0 < 6 < 1, let pg be a positive real number given by the interpolation
relation

1 0 1-0

Py P 2
Then, under the same hypothesis of Theorem 2.1, we have:

lim L I\l wsa—0) = O
Sl Tim sup [ B0

Proof. Interpolation inequality in the Lebesgue spaces and multiplication by the factor 2750-9) give
is(1=0) || A .1\ J A J0 IS\ A oy 1-6
25001 Agil oo <AL (2P I1AG0711L2) -
Applying Hélder’s inequality in the above expression, we get
J J|0 J)1-0
qu/}n ||B;é{;99) < ||wn HBgm qu/)n| BS,Q‘
Because p is greater than 2, L? is continuously included in ng. Remark 3.1 leads to

J J 0 J1-60
(18) 1 oo < Nl 1% e 10
PgPo
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By vertue of Theorem 2.1, we get the result. O

Let us come back to the profile decomposition of the sequence (ug n)n>0 and introduce some notations.
Let n > 0 be the parameter of rough cutting off frequencies. We define by u,(z) and ue,(z) the
elements which Fourier transform is given by

(19) (&) = WE) L1 ey and (&) = WO (1 = Lz gjgany)-

From the profiles decomposition (16), we infer, thanks to the orthogonality property of scales, that
among profiles V7 such that j belongs to €71, there are profiles with small scales (j € Jp) and large
scales (j € Jx)- These profiles are cut (according to the parameter ), with respect to notations (19)
and we get

3

U(] TL Z V] x - .Tn] + Z An, ,39Tn,j J:) + Z Ain,j,mn,j‘/nj(x) + w;l]m(x)
JE.{} JG.? j§~<7z>]o
< < J<
(20) J J

J def 3 J
where wnﬁl(x) = Z A§\Jn jvanV] ( ) + r(/]n (l'),
JETE=ToUT o0
JisJ
with for any j € Jp, lim A, ; =0 and for any j € Js, lim A, ; = +oo.
n—+400 n—-4o0o
Firstly, we check the remaining term w;{m is still small in B;{g}];e)—norm, in the following sense. That
is the point of the proposition below.
.. . . .1 6 1-—60
Proposition 3.3. Let 0 < 0 < 1. Under the interpolation relation — = — + 5 we have
pg P

li li li . =0.
J—1>Too 77—1>r—|1—1c>o ;IESUP Hwnn” <1 9>

Proof. Let 0 < 6 < 1. By definition of 1,&‘] and thanks to (a + b)? < a® + b2, we have

w tagen SIS AL 0

jejl
i<J

2

J|2
) + . (1—6) -
B;‘(gl,;:) 2% “Bpé%p60>

The embedding H* B;glp 99) and the orthogonality of scales and cores imply

2
00 % | 3 INCAC) 19 -

H

jegg

is<J
(22) 3 ' - .

J
S (Z HAinyj,l’n,j ‘/Cn(x)HHs Hs + O(]‘)) + ||¢n HB;él.;:)‘
jegs '
J<J
. 3

By scaling invariance of the norm H*® under the transformation u — A S, We get

9l (Z!

For any j > 0, the term ‘

2
(@) s + o ))"‘WnH (-0 when n — +o0.

tends to 0 for n large enough by Lebesgue Theorem. Therefore,

@)%

)sz = 0. As a result, we take

applying Lebesgue Theorem once again, we infer that hm
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in first the upper limit of HwnnH £1-0) when n — +o00. Then, we take the limit for n — 400 and at
the last, for J — 4+00. Thanks to Prop081t10n 3.2, Proposition 3.3 is proved. U

As it was already mentionned previously, the point of such rough cutting off in frequencies is that
profiles which are supported in the annulus 1{l<|§|<n}’ belong to the Sobolev spaces H?, for any s > 0.
77\ X

In particular, we can look at such profiles in the Sobolev spaces such as H*!' with s; < s and H*
with s9 > s. That is the point in the following proposition: according to the size of the scale (either
small j in Jy or large j in Ju), profiles, trapped in the annulus, behave theirselves as “remaining
terms”, seen from the point of view of solving Navier-Stokes.

Proposition 3.4.

. . L p ] _
For anyn >0, s; <s, and j € Jo, €.8 ngrf Anj =0, then hm HA Mg s V] (aU)HHS1 =0.
. . R P .] _
For anyn >0, s3> s, and j € T, €.8 ngr}rl Anj = +00, then hm ‘A Nosions Vi (x)HHsz =0.

Proof. Let s; < s. Let j € Jo and n > 0. Definition of H*'-norm and a variable change yield
’ J 2 281 3(1-1)7,J