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ABOUT THE BEHAVIOUR OF REGULAR NAVIER-STOKES SOLUTIONS NEAR

THE BLOW UP

EUGÉNIE POULON

Abstract. In this paper, we present some results about blow up of regular solutions to the ho-
mogeneous incompressible Navier-Stokes system, in the case of data in the Sobolev space Ḣ

s(IR3),

where
1

2
< s <

3

2
· Firstly, we will introduce the notion of minimal blow up Navier-Stokes solutions and

show that the set of such solutions is not only nonempty but also compact in a certain sense. Secondly,
we will state an uniform blow up rate for minimal Navier-Stokes solutions. The key tool is profile
theory as established by P. Gérard [17].

1. Introduction

We consider the Navier-Stokes system for incompressible fluids evolving in the whole space IR3. De-
noting by u the velocity, a vector field in IR3, by p in IR the pressure function, the Cauchy problem for
the homogeneous incompressible Navier-Stokes system is given by

(1)





∂tu+ u · ∇u−∆u = −∇p
div u = 0
u|t=0 = u0.

Throughout this paper, we will adopt the useful notation NS(u0) to mean the maximal solution of the
Navier-Stokes system, associated with the initial data u0.

Definition 1.1. Let s in IR. The homogeneous Sobolev space Ḣs(IR3) is the space of tempered
distributions u over IR3, the Fourier transfom of which belongs to L1

loc(IR
3) and satisfies

‖u‖Ḣs

def
=

(∫

IR
3
|ξ|2s|û(ξ)|2dξ

) 1
2

<∞.

It is known that Ḣs(IR3) is an Hilbert space if and only if s < 3
2 . We will denote by (·|·)Ḣs(IR3), the

scalar product in Ḣs(IR3). From now on, for the sake of simplicity, it will be an implicit understanding
that all computations will be done in the whole space IR3.

Before stating the results we prove in this paper, we recall two fundamental properties of the incom-
pressible Navier-Stokes system. The first one is the conservation of the L2 energy. Formally, let us
take the L2 scalar product with the velocity u in the equation. We get

(2)
1

2

d

dt
||u(t)||2L2 + ||∇u(t)||2L2 = −

∫

R3

(
u·∇u(t)|u(t)

)
L2 −

∫

R3

(
∇p(t)|u(u)

)
L2 .

Thanks to the divergence free condition, obvious integration by parts implies that, for any vector field a

(3)
(
u·∇a|a

)
L2 = 0 =

(
∇p|a

)
L2 .

This gives

(4)
1

2

d

dt
||u(t)||2L2 + ||∇u(t)||2L2 = 0.

Key words and phrases. Navier-Stokes equations; blow up; profile decomposition.
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The second property of the system is the scaling invariance. Let us define the above operator:

∀α ∈ IR+, ∀λ ∈ IR+
∗ , ∀x0 ∈ IR3, Λα

λ,x0
u(t, x)

def
=

1

λα
u
( t

λ2
,x− x0

λ

)
.

If α = 1, we note Λ1
λ,x0

= Λλ,x0 .
(5)

It is easy to see that if u is smooth solution of Navier-Stokes system on [0, T ] × IR3 with pressure p
associated with the initial data u0, then, for any positive λ, the vector field and the pressure

uλ
def
= Λλ,x0 u and pλ

def
= Λ2

λ,x0
p

is a solution of Navier-Stokes system on the interval [0, λ2T ]× IR3, associated with the initial data

u0,λ = Λλ,x0 u0.

This leads to the definition of scaling invariant space, which is a key notion to investigate local and
global well-posedness issues for Navier-Stokes system.

Definition 1.2. A Banach space X is said to be scaling invariant, if its norm is invariant under the
scaling transformation defined by u 7→ uλ

||uλ||X = ||u||X

The first main result on incompressible Navier-Stokes system is due to J. Leray, who proved [25] in 1934
that given an initial data in the energy space L2, the associated NS-solutions, called weak solutions,
exist globally in time. The key ingredient of the proof is the L2-energy conservation (4). Moreover,
such solutions are unique in 2-D; but the uniqueness in 3-D is still an open problem. One way to
adress this question of unique solvability in 3-D is to demand smoother initial data. In this case, we
definitely get a unique solution, but the other side of coin is that the problem is only locally well-posed
(and becomes globally well-posed under a scaling invariant smallness assumption on the initial data).
J. Leray stated such a theorem of existence of solutions, which he called semi-regular solutions.

Theorem 1.1. Let an initial data u0 be a divergence free vector field in L2 such that ∇u0 belongs to L2.
Then, there exists a positive time T , and a unique solution NS(u0) in C0([0, T ], Ḣ1) ∩ L2([0, T ], Ḣ2).
Moreover, a constant c1 exists such that if ||u0||L2 ||∇u0||L2 6 c1, then T can be chosen equal to ∞.

The reader will have noticed that the quantity ||u0||L2 ||∇u0||L2 is scaling invariant under the oper-
ator Λλ,x0 . Actually, that is the starting point of many frameworks concerning the global existence
in time of solutions under a scaling invariant smallness assumption on the data. The celebrated
first one was introduced in 1964, by H. Fujita and T. Kato. These authors stated a similar result
as J. Leray, but they demanded less regularity on the data. Indeed, they proved that for any ini-

tial data in Ḣ
1
2 , there exists a positive time T and there exists a unique solution NS(u0) belonging

to C0([0, T ], Ḣ
1
2 ) ∩ L2([0, T ], Ḣ

3
2 ). Moreover, if ‖u0‖

Ḣ
1
2

is small enough, then the solution is global in

time. This theorem can be proved by a fixed-point argument and the key ingredient of the proof is that

the Sobolev space Ḣ
1
2 is invariant under the operator Λλ,x0 . In other words, the Sobolev space Ḣ

1
2

has exactly the same scaling as Navier-Stokes equation. We refer the reader to [1], [13] or [24] for more
details of the proof. But in this paper, we are not interested in the particular kind of space. On the

contrary, we work with initial data belonging to homogeneous Sobolev spaces, Ḣs with
1

2
< s <

3

2
,

which means that we are above the natural scaling of the equation. The first thing to do is to provide
an existence theorem of Navier-Stokes solutions with data in such Sobolev spaces Ḣs. The Cauchy
problem is known to be locally well-posed; it can be proved by a fixed-point procedure in an adequate
function space (we refer the reader to the book [24], from page 146 to 148, of P-G. Lemarié-Rieusset).

We shall constantly be using the following simplified notations:

L∞
T (Ḣs)

def
= L∞([0, T ], Ḣs) and L2

T (Ḣ
s+1)

def
= L2([0, T ], Ḣs+1).
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Let us define the relevant function space we shall be working with in the sequel:

Xs
T

def
= L∞

T (Ḣs) ∩ L2
T (Ḣ

s+1), equipped with ‖u‖2Xs
T

def
= ‖u‖2

L∞

T (Ḣs)
+ ‖u‖2

L2
T (Ḣs+1)

.

Theorem 1.2. Let u0 be in Ḣs, with
1

2
< s <

3

2
. Then there exists a time T and there exists a unique

solution NS(u0) such that NS(u0) belongs to L∞
T (Ḣs) ∩ L2

T (Ḣ
s+1).

Moreover, let T∗(u0) be the maximal time of existence of such a solution. Then, there exists a positive
constant c such that

(6) T∗(u0) ‖u0‖σs

Ḣs
> c, with σs

def
=

1
1
2 (s− 1

2)
·

Remark 1.1. As a by-product of the proof of Picard’s Theorem, we get actually for free the following
property: if the the initial data is small enough (in the sense of there exists a positive constant c0, such
that T ‖u0‖σs

Ḣs
6 c0), then a unique Navier-Stokes solution associated with it exists (locally in time,

until the blow up time given by the relation (6)) and satisfies the following linear control

(7) ∀ 0 6 T 6
c0

‖u0‖σs

Ḣs

, ‖NS(u0)(t, · )‖Xs
T
6 2 ‖u0‖Ḣs .

Formula (6) invites us to consider the lower boundary, denoted by Aσs
c , of the lifespan of such a solution

Aσs
c

def
= inf

{
T∗(u0)‖u0‖σs

Ḣs
| u0 ∈ Ḣs ; T∗(u0) <∞

}
.

Obviously, Aσs
c exists and is a positive real number and we always have the formula

(8) T∗(u0)‖u0‖σs

Ḣs
> Aσs

c .

Throughout this paper, we made the assumption of blow up, which is still an open problem. More
precisely, we claim the following hypothesis.

Hypothesis H: for any 1
2 < s < 3

2 , a divergence-free vector field u0 exists in Ḣs such that the lifespan
T∗(u0) is finite.

Let Bρ be the open ball in Ḣs defined by Bρ = {u0 ∈ Ḣs / ‖u0‖Ḣs < ρ}. Let T∗ > 0 be a fixed time.
We define a critical radius by the following formula

ρs(T∗)
def
=

Ac

T
1
σs∗

·

Defined in this way and thanks to (8), we get an another definition of the critical radius

ρs(T∗) = sup{ ρ > 0 | ‖u0‖Ḣs < ρ =⇒ T∗(u0) > T∗}.
Thanks to this definition, we define the notion of minimal blow up solution for the Navier-Stokes
system.

Definition 1.3. (minimal blow up solution)
We say that u = NS(u0) is a minimal blow up solution if u0 satisfies the two following assumptions:

‖u0‖Ḣs = ρs(T∗) and T∗(u0) = T∗.

Therefore, u = NS(u0) is a minimal blow up solution if and only if Aσs
c is reached: T∗(u0)‖u0‖σs

Ḣs
= Aσs

c .

Question: If ρs(T∗) is finite, do some minimal blow up solutions exist ?
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We will prove a stronger result: the set of initial data generating minimal blow up solutions, denoted
by Ms(T∗), is not only a nonempty subset of Ḣs (which, in particular, gives the positive answer to
the question) but also compact in a sense which is given in Theorem 1.3. We define the set Ms(T∗) as
follows

Ms(T∗)
def
=

{
u0 ∈ Ḣs | T∗(u0) = T∗ and ‖u0‖Ḣs = ρs(T∗)

}
.

Theorem 1.3. Assuming hypothesis H. For any T∗, the set Ms(T∗) is non empty and compact, up
to translations. This means that for any sequence (u0,n)n∈IN of points in the set Ms(T∗), a sequence

(xn)n∈IN of points of (IR3)IN and a function V in Ms(T∗) exist such that, up to an extraction

lim
n→+∞

||u0,n(·+ xn)− V ||Ḣs = 0.

The second result of this paper states that the blow up rate of a minimal blow up solution can be
uniformely controlled since we get a priori bound of these minimal blow up solutions.

Theorem 1.4. (Control of minimal blow up solutions)
Assuming H, there exists a nondecreasing function Fs : [0, Aσs

c [→ IR+ with lim
r→A

σs
c

Fs(r) = +∞

such that for any divergence free vector field u0 in Ḣs, generating minimal blow up solution (it
means T∗ (u0)‖u0‖σs

Ḣs
= Aσs

c ), we have the following control on the minimal blow up solution NS(u0)

∀T < T∗(u0), ‖NS(u0)‖Xs
T
6 ‖u0‖Ḣs Fs(T

1
σs ‖u0‖Ḣs).

The two previous theorems are the analogue of results, proved in the case of the Sobolev space Ḣ
1
2 . We

shall not recall all the statements existing in the literature concerning the regularity of Navier-Stokes

solutions in critical spaces, such as Ḣ
1
2 . We refer for instance the reader to [13] and to the article of

C. Kenig et G. Koch [19], where the authors prove that NS-solutions which remain bounded in the

space Ḣ
1
2 do not become singular in finite time. Concerning Theorem 1.3, we were largely inspired by

the article of W. Rusin and V. S̆verák [29], in which the authors set up the key concept of minimal

blow-up for data in Sobolev space Ḣ
1
2 . Firstly, they defined a critical radius ρ 1

2

ρ 1
2
= sup

{
ρ > 0 ; ‖u0‖

Ḣ
1
2
< ρ =⇒ T∗(u0) = +∞

}
.

Then, they introduced a subset M of Ḣ
1
2 , which describes the set of minimal-norm singularities (we

speak about minimal norm in the sense of ‖u0‖
Ḣ

1
2

is equal to the critical radius ρ 1
2
)

M =
{
u0 ∈ Ḣ

1
2 ; T∗(u0) < +∞ and ‖u0‖

Ḣ
1
2
= ρ 1

2

}
.

Thanks to these definitions, W. Rusin and V. S̆verák proved that if there exist elements in the space Ḣ
1
2

which develop singularities in finite time (we assume that blow-up occurs), then some of these elements

are of minimal Ḣ
1
2 -norm (and thus, the set M is nonempty) and compact up to translations and

dilations. It means that for any sequence (u0,n)n∈IN of points in the set M, a sequence (λn, xn)n∈IN

and a function ϕ in M exist such that, up to an extraction, we have

lim
n→+∞

||u0,n − Λλn,xnϕ||Ḣ 1
2
= 0.

Let us point out that I. Gallagher, G. Koch and F. Planchon generalize in [16] the result of W. Rusin

and V. S̆verák to critical Lebesgue and Besov spaces, such as L3.

Concerning Theorem 1.4, our main source of inspiration is a result established by I. Gallagher in [14].
Given an initial data u0 in the open ball Bρ 1

2

. Then, by definition of ρ 1
2
, NS(u0) is a global solution and

thus belongs to the space L4(IR+, Ḣ
1), thanks to the important paper [15] of I. Gallagher, D. Iftimie

and F. Planchon. In this way, the blow up in the EIR+ = L∞(IR+, Ḣ
1
2 ) ∩ L2(IR+, Ḣ

3
2 )-norm does not

occur. Even better: I. Gallagher proved in [14] the a priori control of the Navier-Stokes solution with



ABOUT THE BEHAVIOUR OF REGULAR NAVIER-STOKES SOLUTIONS NEAR THE BLOW UP 5

data in the open ball Bρ 1
2

in the sense of there exists a nondecreasing function F defined from [0, ρ 1
2
[

to IR+ such that for any divergence free vector field u0 in the open ball Bρ 1
2

, we have

‖NS(u0)‖EIR+
6 F (‖u0‖

Ḣ
1
2
).

Notation. We shall denote by C a constant which does not depend on the various parameters
appearing in this paper, and which may change from line to line. We shall also denote sometimes x . y
to mean there exists an absolute constant C > 0 such that x 6 C y.

The paper is organized in the following way:
In section 2, we recall the fundamental tool of this paper : profile decomposition of a bounded sequence
in Ḣs. Then, we give the proof of the compactness of minimal blow up solutions set (Theorem 1.3)
and control of of such solutions (Theorem 1.4). These two results are based on the crucial Theorem

2.2 about the lifespan of a Navier-Stokes solution associated with a bounded sequence of Ḣs.
Section 3 is devoted to the proof of Theorem 2.2, thanks to a regularization process. Firstly, we will
see that it is an immediate consequence of Lemma 3.1, which gives the structure of a Navier-Stokes
solution associated with a bounded sequence of data in Ḣs. Secondly, we will provide some helpful
tools in order to prove Lemma 3.1.
In section 4, we prove Lemma 3.1, the result on which all others are based on. This section is the
most technical part of the paper. It relies on classical product and paraproduct estimates, which are
collected in Appendix A and B.

Acknowledgements. I am very grateful to I. Gallagher for fruitful discussions around the question
of non-scale invariant spaces and to P. Gérard for many helpful comments.

2. Profiles theory, compactness result and application

This section is devoted to the proof of Theorems 1.3 and 1.4. Following I. Gallagher [14], W. Rusin

and V. S̆verák [29], C. Kenig and G. Koch [19] and I. Gallagher, G. Koch, F. Planchon [16], we shall
use profile decomposition theory. The original motivation of this theory was the desciption of the
default of compactness in Sobolev embeddings (see for instance the pionneering works of P.-L. Lions
in [26], [27] and H. Brezis, J.-M. Coron in [7]. Here, we will use the theorem of P. Gérard [17], which

gives, up to extractions, the structure of a bounded sequence of Ḣs, with s between 0 and
3

2
· More

precisely, the default of compactness in the critical Sobolev embedding Ḣs ⊂ Lp is descibed in terms
of a sum of rescaled and translated orthogonal profiles, up to a small term in Lp. That was generalized

to other Sobolev spaces Ḣs,p(IRd) with 0 < s <
d

p
by S. Jaffard in [18], to Besov spaces by G. Koch

in [23] and to general critical embeddings by H. Bahouri, A. Cohen and G. Koch in [2]. Let us notice
the recent work [5] of H. Bahouri, M. Majdoud and N. Masmoudi concerning the lack of compactness
of the Sobolev embedding of H1(IR2) in the critical Orlicz space L(R2). Then profile decomposition
techniques have been applied in many works of evolution problems such as the high frequency study
of finite energy solutions to quintic wave equations on IR3, by H. Bahouri and P. Gérard [4]. C. Kenig
and F. Merle investigated in [20] the blow up property for the energy critical focusing non linear wave
equation. Profile techniques turned out to be also a relevant tool in the study of Schrödinger equations.
Notice this kind of decomposition was stated and developped, independently from [17], by F. Merle
and L. Vega [28] for L2-solutions of the critical non linear Schrödinger in 2D, in the continuation of the
work of J. Bourgain [6]. Then, S. Keraani revisited in [22] the work of H. Bahouri and P. Gérard [4]
in the context of energy critical non linear Schrödinger equations. C. Kenig and F. Merle investigated
in [21] the global well-posedness, scattering and blow up matter for such solutions in the focusing and
radial case.
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Remark 2.1. Using notation (5), we can prove easily that the Lp (as well as Ḣs)-norm is conserved

under the transformation u 7→ Λ
3
p

λ,x0
u. It means ‖Λ

3
p

λ,x0
u‖ = ‖u‖.

Theorem 2.1. Let (u0,n)n∈IN be a bounded sequence in Ḣs. Then, up to an extraction:

- There exists a sequence vectors fields, called profiles (V j)j∈IN in Ḣs.
- There exists a sequence of scales and cores (λn,j , xn,j)n,j∈IN, such that, up to an extraction

∀J > 0, u0,n(x) =

J∑

j=0

Λ
3
p

λn,j ,xn,j
V j(x) + ψJ

n(x) with lim
J→+∞

lim sup
n→+∞

‖ψJ
n‖Lp = 0, and p =

6

3− 2s
·

Where, (λn,j, xn,j)n∈IN,j∈IN
∗ are sequences of (IR∗

+ × IR3)IN with the following orthogonality property:
for every integers (j, k) such that j 6= k, we have

either lim
n→+∞

(λn,j
λn,k

+
λn,k
λn,j

)
= +∞ or λn,j = λn,k and lim

n→+∞
|xn,j − xn,k|

λn,j
= +∞.

Moreover, for any J ∈ IN, we have the following orthogonality property

(9) ‖u0,n‖2Ḣs =

J∑

j=0

‖V j‖2
Ḣs + ‖ψJ

n‖2Ḣs + ◦(1), when n→ +∞.

A first application of this, is Theorem 2.2 about the lifespan of a NS-solution associated with bounded
data in Ḣs. The proof of it will be given in section 3.

Theorem 2.2. Let (u0,n) be a bounded sequence of initial data in Ḣs such that its profiles decompo-
sition is given by

u0,n(x) =

J∑

j=0

Λ
3
p

λn,j ,xn,j
V j(x) + ψJ

n(x) with lim
J→+∞

lim sup
n→+∞

‖ψJ
n‖Lp = 0.

Then,

lim inf
n→+∞

T∗(u0,n) > inf
j∈J1

T∗(V
j).

where J1 is the subset of J , such that for any j in J1, for any n in IN , we have λn,j = 1.

This result gives us an important information: whenever a sequence of initial data which satisfies
profiles hypothesis (it means a bounded sequence in Ḣs), we get an information on the lifespan of
the NS-solution associated with such a sequence of initial data: it mainly depends on the lifespan
of profiles with a constant scale (up to a regularization process). Note that the orthogonality prop-
erty on scales and cores in Theorem 2.1 implies either the scales are different (in the sense that

lim
n→+∞

(λn,j
λn,k

+
λn,k
λn,j

)
= +∞) or the scales are the same (λn,j = λn,k), equal to a constant, and the

cores go away from one another, in the sense that lim
n→+∞

|xn,j − xn,k|
λn,j

= +∞. In the last case where

scales are equal to a constant, we shall assume that it is one, up to rescaling profiles by a fixed constant.
Theorem 2.2 has a key role in the proof of the compactness Theorem 1.3: the set Ms(T∗), recalled
below, is non empty and compact, up to translations.

Ms(T∗) :=
{
u0 ∈ Ḣs | T∗(u0) = T∗ and ‖u0‖Ḣs = ρs(T∗)

}
.
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2.1. Proof of the compactness Theorem 1.3.

Proof. By definition of Aσs
c , we consider a minimizing sequence (u0,n)n>0 such that

lim
n→+∞

T∗(u0,n) ‖u0,n‖σs

Ḣs
= Aσs

c .

Up to a rescaling process, we can assume that the minimizing sequence (u0,n)n>0 satisfies

(10) lim
n→+∞

‖u0,n‖Ḣs = ρs(T∗) and T∗(u0,n) = T∗.

Indeed, consider the sequence (v0,n)n>0 defined as

v0,n(x)
def
=

(T∗(u0,n)
T∗

) 1
2
u0,n

((T∗(u0,n)
T∗

) 1
2
x
)
.

The reader notices that the Navier-Stokes solution associated with such a sequence (v0,n) has a lifespan

equal to T∗. As ‖v0,n‖σs

Ḣs
=

(T∗(u0,n)
T∗

)
‖u0,n‖σs

Ḣs
, it seems clear now we can assume (10), by vertue of

definition of ρs(T∗). As defined, (u0,n)n>0 is a sequence of points of the set Ms(T∗); it is a bounded

sequence in Ḣs and thus we can apply Theorem 2.1. Taking limit when n→ +∞ in (9), we get

ρ2s(T∗) >
J∑

j=0

‖V j‖2
Ḣs .

Let us assume that there are two profiles at least. Then we should have

∀j ∈ {0, · · · , J}, ‖V j‖2
Ḣs < ρ2s(T∗).

By definiton of ρs(T∗), it means all profiles V j generate solutions whose lifespan satisfies

(11) T∗(V
j) > T∗, ∀j ∈ {0, · · · , J}

In particular, for any j in J1, we have T∗(V
j) > T∗ and thus T̃ := inf

j∈J1
T∗(V

j) > T∗.

By hypothesis on (u0,n)n∈IN and thanks to Theorem 2.2, we get a contradiction, since we have

lim inf
n→+∞

T∗(u0,n) = T∗ > T̃ > T∗.

It means there exists an integer j0 such that the profile, V j0 has a lifespan which satisfies T j0∗ 6 T∗.
In particular, by definition of ρs(T∗), it implies that ‖V j0‖2

Ḣs
> ρ2s(T∗). And, thanks to the orthogonal

property of the Ḣs-norm (9), we deduce the equality

‖V j0‖2
Ḣs = ρ2s(T∗).

Now, we have just to check that T∗ = T j0∗ . We have already proved a first inequality: T j0∗ 6 T∗.
The other way is given by (8): we have always the following relation: T j0∗ ‖V j0‖σs

Ḣs
> Aσs

c . Thanks to

the result ‖V j0‖σs

Ḣs
= ρσs

s (T∗) =
Aσs

c

T∗
, we get the second inequality: T j0

∗ > T∗. Thus, the set Ms(T∗)

is non empty and thus, there exists some minimal Navier-Stokes solutions. The compactness of the
set Ms(T∗) is a consequence of the above work. Thanks to (9) and ‖V j0‖Ḣs = ρs(T∗), we infer that

∀j 6= j0, V
j = 0 and lim

n→+∞
‖ψJ

n‖2Ḣs = 0.

The above assumption implies in particular that for any j 6= j0, T∗(V
j) = +∞ and thus, applying

Theorem 2.2, we should have T∗ = +∞, which is absurd. As a result, there exists a unique integer j0
in J1, such that

u0,n(x) = V j0(x− xn,j0) + ψJ
n(x).

The property lim
n→+∞

‖ψl
n‖2Ḣs = 0 implies lim

n→+∞
‖u0,n(·+xj0,n)− V j0‖Ḣs = 0. �
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2.2. Proof of Theorem 1.4.

Proof. Let us consider the following set, for any T < T∗(u0)

N s
T

def
=

{‖NS(u0)‖XT

‖u0‖Ḣs

∣∣∣ u0 in Ḣs such that T
1
σs∗ (u0)‖u0‖Ḣs = Ac

}
.

Theorem 1.3 claims that the set N s
T is nonempty. The aim is to prove that supN s

T is finite for any T .

If not, a sequence (u0,n)n>0 in Ḣs exists, such that, for any T < T∗(u0,n), we have

(12) T∗ (u0,n)‖u0,n‖σs

Ḣs
= Aσs

c and lim
n→+∞

‖NS(u0,n)‖XT
= ∞.

By hypothesis, the sequence (u0,n)n>0 belongs to the set Ms(T∗). Therefore, there exist a sequence of
cores (xn)n∈IN and a function V in Ms(T∗) such that, up to an extraction:

(13) lim
n→+∞

||u0,n(·+ xn)− V ||Ḣs = 0.

We can prove easily that, for any T < T∗(V ):

(14) NS(u0,n(·+ xn)) = NS(V ) +Rn, with lim
n→+∞

‖Rn‖XT
= 0

Indeed, we define

R0,n
def
= u0,n(·+ xn)− V.

Because of (13), the sequence (R0,n)n>0 converges to 0 in Ḣs-norm, for n large enough. Moreover, the
error term Rn satifies the following perturbed Navier-Stokes system

(15)





∂tRn +Rn · ∇Rn −∆Rn +Rn · ∇NS(V ) +NS(V ) · ∇Rn = −∇p
div Rn = 0
Rn|t=0 = R0,n.

Applying Theorem 6.1, we infer that, for any T < T∗(V ) and for n large enough

‖NS(u0,n(·+ xn))‖XT
<∞.

This is at odds with the assumption, since:

‖NS(u0,n(·+ xn))‖XT
= ‖NS(u0,n)‖XT

.(16)

�

3. Proof of Theorem 2.2 and tool box for Lemma 3.1

All the previous results are based on Theorem 2.2. In this section, we prove this theorem, which relies
on Lemma 3.1. This last one gives the structure of the Navier-Stokes solution associated with an initial
data which has a profile decomposition. In others words, we wonder if, given the profile decomposition
of a sequence of data, we get a similar decomposition on the Navier-Stokes solution itself. Lemma 3.1
gives a positive answer.
Let us recall to the reader that this question has already been studied by I. Gallagher in [14] in the case

of initial data in the Sobolev space Ḣ
1
2 and the same author with G. Koch, F. Planchon [16] in others

critical spaces (e.g scaled invariant under the Navier-Stokes transformation). In our case, the difficulty

is that the homogeneous Sobolev space Ḣs is not a scale invariant space under the natural scaling of
the Navier-Stokes equation. To overcome this issue, the method consists in cutting off frequencies of
profiles [4] (such profiles will have the useful property to belong to any Ḣs, for any s). In particular,

profiles scaled by 0 (resp. ∞) will tend to 0 in some Sobolev spaces (more precisely in Ḣs1 with s1 < s),

(resp. Ḣs2 with s2 > s) and therefore, will not perturb the profile decomposition of the NS-solution.
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3.1. Regularization process and statement. Firstly, let us introduce some notations. Let (u0,n)n>0

be a bounded sequence of initial data in Ḣs. Thanks to Theorem 2.1, (u0,n)n>0 can be written as
follows, up to an extraction

u0,n(x) =
J∑

j=0

Λ
3
p

λn,j ,xn,j
V j(x) + ψJ

n(x).

Let η > 0 be the parameter of rough cutting off frequencies. We define by uη(x) and ucη(x) the
elements which Fourier transform is given by

(17) ûη(ξ) = û(ξ)1{ 1
η
6|ξ|6η} and ûcη(ξ) = û(ξ)

(
1− 1{ 1

η
6|ξ|6η}

)
.

After rough cutting off frequencies with respect to the notations (17), we get

u0,n(x) =

J∑

j=0

Λ
3
p

λn,j ,xn,j
V j
η (x) + ψJ

n,η(x) with ψJ
n,η(x) =

J∑

j=0

Λ
3
p

λn,j ,xn,j
V j

cη(x) + ψJ
n(x).

From the above decomposition, we sort profiles supported in the annulus 1{ 1
η
6|ξ|6η} according to their

scale (thanks to the orthogonality property of scales and cores, given by Theorem 2.1). We get the
following profile decomposition

u0,n(x) =
∑

j∈J1
V j
η (x− xn,j) +

∑

j∈J0
Λ

3
p

λn,j ,xn,j
V j
η (x) +

∑

j∈J∞
Λ

3
p

λn,j ,xn,j
V j
η (x) + ψJ

n,η(x)(18)

where for any j ∈ J1 ⊂ J , λn,j = 1, for any j ∈ J0 ⊂ J , lim
n→+∞

λn,j = 0 and for any j ∈
J∞ ⊂ J , lim

n→+∞
λn,j = +∞

Under these notations, we claim we have the following structure lemma of the Navier-Stokes solutions,
which proof will be provided in section 4.

Lemma 3.1. (Profile decomposition of the Navier-Stokes solution)

Let (u0,n)n>0 be a bounded sequence of initial data in Ḣs which profile decomposition is given by

u0,n(x) =
J∑

j=0

Λ
3
p

λn,j ,xn,j
V j(x) + ψJ

n(x).

Then, lim inf
n>0

T∗(u0,n) > T̃
def
=

J

inf
j=0

T∗(V
j) and for any t < T∗(u0,n), we have

NS(u0,n)(t, x) =
∑

j∈J1
NS(V j

η )(t, x− xn,j)

+ et∆
(∑

j∈J0
Λ

3
p

λn,j ,xn,j
V j
η (x) +

∑

j∈J∞
Λ

3
p

λn,j ,xn,j
V j
η (x) + ψJ

n,η(x)
)
+RJ

n,η(t, x)
(19)

where the remaining term RJ
n,η satisfies lim

J→+∞
lim

η→+∞
lim

n→+∞
‖RJ

n,η‖Xs
T
= 0.

Proof of Theorem 2.2. Clearly, Theorem 2.2 is an immediate consequence of Lemma 3.1. Assume
we prove Lemma 3.1; in particular, we get the “profile” decomposition of the Navier-Stokes solution
and thus the lifespan of sequence NS(u0,n) depends on the lifespan of profiles, scaled by 1 (up to the

regularization procedure). As a result, T∗(u0,n) > inf
j∈J1

T∗(V
j
η ). Then, because the map u0 7→ T∗(u0) is
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a lower semi-continous function in Ḣs (cf Proposition 6.2 in Annex B), we infer T∗(V
j
η ) > T∗(V

j)− 1

n
,

for any n > 1. As a result,

T∗(u0,n) > inf
j∈J1

T∗(V
j)− 1

n
·

This ends up the proof of Theorem 2.2.

3.2. Tool box. In this subsection, we recall some basic facts about homogeneous Besov spaces and
we prove some properties we need to the proof of Lemma 3.1. We refer the reader to [1], from page 63,
for a detailed presentation of the theory and analysis of homogeneous Besov spaces.

Definition 3.1. Let s be in IR, (p, r) in [1,+∞]2 and u in S ′. A tempered distribution u is an element

of the Besov space Ḃs
p,r if u satifies

‖u‖Ḃs
p,r

def
=

(∑

j∈Z
2jrs ||∆̇ju||rLp

) 1
r
<∞,

where ∆̇j is a frequencies localization operator (called Littlewood-Paley operator), defined by

∆̇ju(ξ)
def
= F−1

(
ϕ(2−j |ξ|)û(ξ)

)
,

with ϕ ∈ D([12 , 2]), such that
∑

j∈Z
ϕ(2−jt) = 1, for any t > 0.

Remark 3.1. We have the embedding Ḣs ⊂ Ḃs
2,2. These spaces coincide if s < 3

2 .

The first thing we have to notice is the following: given a bounded sequence of data in Ḣs (thus we get
a profile decomposition of this sequence), Theorem 2.1 implies that the term ψJ

n(x), (which is bounded

in Ḣs), satisfies:

lim
J→+∞

lim sup
n→+∞

‖ψJ
n‖Lp = 0.

In fact, thanks to an interpolation argument, we can prove that the remaining term ψJ
n tends to 0 in

certain Besov spaces. That is the point in the following proposition.

Proposition 3.2. For any 0 < θ < 1, let pθ be a positive real number given by the interpolation
relation

1

pθ
=
θ

p
+

1− θ

2
·

Then, under the same hypothesis of Theorem 2.1, we have:

lim
J→+∞

lim sup
n→+∞

‖ψJ
n‖Ḃs(1−θ)

pθ,pθ

= 0·

Proof. Interpolation inequality in the Lebesgue spaces and multiplication by the factor 2js(1−θ) give

2js(1−θ)‖∆̇jψ
J
n‖Lpθ 6 ‖∆̇jψ

J
n‖θLp

(
2js‖∆̇jψ

J
n‖L2

)1−θ
.

Applying Hölder’s inequality in the above expression, we get

‖ψJ
n‖Ḃs(1−θ)

pθ,pθ

6 ‖ψJ
n‖θḂ0

p,p
‖ψJ

n‖1−θ

Ḃs
2,2

.

Because p is greater than 2, Lp is continuously included in Ḃ0
p,p. Remark 3.1 leads to

(20) ‖ψJ
n‖Ḃs(1−θ)

pθ,pθ

6 ‖ψJ
n‖θLp‖ψJ

n‖1−θ

Ḣs
.

By vertue of Theorem 2.1, we get the result. �
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Let us come back to the profile decomposition of the sequence (u0,n)n>0. After rough cutting off
frequencies and sorting profiles according to their scale, we had got previously

u0,n(x) =
∑

j∈J1
V j
η (x− xn,j) +

∑

j∈J0
Λ

3
p

λn,j ,xn,j
V j
η (x) +

∑

j∈J∞
Λ

3
p

λn,j ,xn,j
V j
η (x) + ψJ

n,η(x)

with ψJ
n,η(x) =

J∑

j=0

Λ
3
p

λn,j ,xn,j
V j

cη(x) + ψJ
n(x).

Firstly, we check the remaining term ψJ
n,η is still small in Ḃ

s(1−θ)
pθ,pθ -norm, in the following sense. That

is the point of the proposition below.

Proposition 3.3. Let 0 < θ < 1. Under the interpolation relation
1

pθ
=
θ

p
+

1− θ

2
, we have

lim
J→+∞

lim
η→+∞

lim sup
n→+∞

‖ψJ
n,η‖Ḃs(1−θ)

pθ,pθ

= 0

Proof. Let 0 < θ < 1. By definition of ψJ
n,η and thanks to (a+ b)2 6 2 (a2 + b2), we have

‖ψJ
n,η‖2Ḃs(1−θ)

pθ,pθ

6 2
(∥∥∥

J∑

j=0

Λ
3
p

λn,j ,xn,j
V j

cη(x)
∥∥∥
2

Ḃ
s(1−θ)
pθ,pθ

+ ‖ψJ
n‖2Ḃs(1−θ)

pθ,pθ

)
.(21)

The embedding Ḣs ⊂ Ḃs(1−θ)
pθ,pθ

and orthogonality of scales/cores imply

‖ψJ
n,η‖2Ḃs(1−θ)

pθ,pθ

.
∥∥∥

J∑

j=0

Λ
3
p

λn,j ,xn,j
V j

cη(x)
∥∥∥
2

Ḣs
+ ‖ψJ

n‖2Ḃs(1−θ)
pθ,pθ

.
( J∑

j=0

∥∥Λ
3
p

λn,j ,xn,j
V j

cη(x)
∥∥2
Ḣs + ◦(1)

)
+ ‖ψJ

n‖2Ḃs(1−θ)
pθ,pθ

, when n→ +∞.

(22)

By scaling invariance of the norm Ḣs under the transformation u 7→ Λ
3
p

λn,j ,xn,j
u, we get

‖ψJ
n,η‖2Ḃs(1−θ)

pθ,pθ

.
( ∞∑

j=0

∥∥V j
cη(x)

∥∥2
Ḣs + ◦(1)

)
+‖ψJ

n‖2Ḃs(1−θ)
pθ,pθ

, when n→ +∞.

For any j > 0, the term
∥∥V j

cη(x)
∥∥2
Ḣs tends to 0 for η large enough, by Lebesgue Theorem. Therefore,

applying Lebesgue Theorem once again, we infer that lim
η→+∞

∞∑

j=0

∥∥V j
cη(x)

∥∥2
Ḣs = 0. As a result, we take

in first the limit of ‖ψJ
n,η‖2Ḃs(1−θ)

pθ,pθ

, when n → +∞. Then, we take limit for η → +∞ and at the last,

for J → +∞. Thanks to Proposition 3.2, Proposition 3.3 is proved. �

As it was already mentionned previously, the point of such rough cutting off in frequencies is that
profiles which are supported in the annulus 1{ 1

η
6|ξ|6η}, belong to the Sobolev spaces Ḣs, for any s > 0.

In particular, we can look at such profiles in the Sobolev spaces such as Ḣs1 with s1 < s and Ḣs2

with s2 > s. That is the point in the following proposition: according to the size of the scale (either
small j ∈ J0 or large j ∈ J∞), profiles, trapped in the annulus, behave theirselves as “remaining terms”,
seen from the point of view of solving Navier-Stokes.
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Proposition 3.4.

For any η > 0, s1 < s, and j ∈ J0, e.g lim
n→+∞

λn,j = 0, then lim
n→+∞

∥∥∥Λ
3
p

λn,j ,xn,j
V j
η (x)

∥∥∥
Ḣs1

= 0.

For any η > 0, s2 > s, and j ∈ J∞, e.g lim
n→+∞

λn,j = +∞, then lim
n→+∞

∥∥∥Λ
3
p

λn,j ,xn,j
V j
η (x)

∥∥∥
Ḣs2

= 0.

Proof. Let s1 < s. Let j ∈ J0 and η > 0. Definition of Ḣs1-norm and a variable change yield
∥∥∥Λ

3
p

λn,j ,xn,j
V j
η (x)

∥∥∥
2

Ḣs1 (IR3)
=

∫

IR3
|ξ|2s1

∣∣∣λn,j3(1−
1
p
)
V̂ j
η (λn,jξ)

∣∣∣
2
dξ

= λ
2(s−s1)
n,j

∫

IR3
|ξ|2s1 |V̂ j

η (ξ)|2dξ.
(23)

Let us introduce the factor |ξ|. The hypothesis of the ring implies that
∥∥∥Λ

3
p

λn,j ,xn,j
V j
η (x)

∥∥∥
2

Ḣs1
= λn,j

2(s−s1)

∫

IR3
|ξ|2s |V̂ j

η (ξ)|2
1

|ξ|2(s−s1)
dξ

6 (η λn,j)
2(s−s1)‖V j‖2

Ḣs .

(24)

As λn,j tends to 0; this proves the first part of the proposition. The second part relies on similar
arguments and thus the proof is omitted. �

4. Proof of Lemma 3.1

Given a bounded sequence (u0,n) in Ḣs which profile decomposition is given by Theorem 2.1, we search
sequences associated solutions NS(u0,n), under the form of

NS(u0,n) = Uapp
n,η +RJ

n,η, where

Uapp
n,η

def
=

∑

j∈J1
NS(V j

η )(t, · −xn,j) + et∆
(
U0
n,η + U∞

n,η + ψJ
n,η

)
,(25)

with U0
n,η

def
=

∑

j∈J0
Λ

3
p

λn,j ,xn,j
V j
η and U∞

n,η
def
=

∑

j∈J∞
Λ

3
p

λn,j ,xn,j
V j
η .

Plugging this decomposition into the Navier-Stokes equation leads to the following perturbed equation
on the error term RJ

n,η

(26)





∂tR
J
n,η +RJ

n,η.∇RJ
n,η −∆RJ

n,η +RJ
n,η · ∇Uapp

n,η + Uapp
n,η .∇RJ

n,η = −F J
n,η −∇pJn

div RJ
n,η = 0

RJ
n,η |t=0

= 0.

where the forcing term F J
n,η is given by F J

n,η =
4∑

ℓ=1

F J,ℓ
n,η, with

F J,1
n,η =

∑

06j,k6J1;j 6=k

NS(V j
η (t, · −xn,j))·∇NS(V k

η (t, · −xn,k)),

F J,2
n,η = et∆

(
U0
n,η + U∞

n,η + ψJ
n,η

)
·∇

(
et∆

(
U0
n,η + U∞

n,η + ψJ
n,η

))
,

F J,3
n,η = et∆

(
U0
n,η + U∞

n,η + ψJ
n,η

)
·∇

(∑

j∈J1
NS(V j

η )(t, · −xn,j)
)
,

F J,4
n,η =

(∑

j∈J1
NS(V j

η )(t, · −xn,j)
)
·∇

(
et∆

(
U0
n,η + U∞

n,η + ψJ
n,η

))
.

(27)

Let us admit for a while the two following propositions



ABOUT THE BEHAVIOUR OF REGULAR NAVIER-STOKES SOLUTIONS NEAR THE BLOW UP 13

Proposition 4.1. With notations (25), the sequence Uapp
n,η is bounded in the space Xs

T , uniformly in J
and η,

‖Uapp
n,η ‖Xs

T
<∞, ∀T < T̃

def
= inf

j∈J1
T∗(V

j).

Proposition 4.2.

lim
J→+∞

lim
η→+∞

lim sup
n→+∞

‖F J
n,η‖2L2

T (Ḣs−1)
= 0.

Completion of the proof of Lemma 3.1. Let ε0 > 0. Let T0 be the time defined by

T0
def
= sup{0 < T < T̃ | ‖RJ

n,η(t)‖2L∞

T (Ḣs)
6 ε0}.

Therefore, for any T < T0 6 T̃ , Theorem 6.1 implies

‖RJ
n,η‖2Xs

T
. ‖F J

n,η‖2L2
T (Ḣs−1)

exp
(
ε

2
2s−1

0 T̃ + T̃ s− 1
2 ‖Uapp

n,η ‖2Xs
T
+ T̃ ‖Uapp

n,η ‖
4

2s−1

L∞

T (Ḣs)

)
.(28)

Combining Propositions 4.1 and 4.2, Lemma 3.1 is proved. Therefore, to complete the proof, we shall
prove the two above propositions.

Proof of Proposition 4.1. By definition of Uapp
n,η and vertue of (a+ b)2 6 2

(
a2 + b2

)
, we have

(29) ‖Uapp
n,η ‖2Xs

T
6 2

(∥∥∥
∑

j∈J1
NS(V j

η )(t, · −xn,j)
∥∥∥
2

Xs
T

+
∥∥∥et∆

(
U0
n,η + U∞

n,η + ψJ
n,η

)∥∥∥
2

Xs
T

)
.

Let us focus for a moment on the heat term et∆
(
U0
n,η + U∞

n,η + ψJ
n,η

)
. It is well-known that an Ḣs-

energy estimate on the heat equation implies that
∥∥et∆u

∥∥2
Xs

T

6 ‖u0‖2Ḣs , for any u solution associated

with data u0 in Ḣs. As a result, we get
∥∥∥et∆

(
U0
n,η + U∞

n,η + ψJ
n,η

)∥∥∥
2

Xs
T

6
∥∥∥U0

n,η + U∞
n,η + ψJ

n,η

∥∥∥
2

Ḣs
.

The profile decomposition getting after the regularization process in (18) yields, up to triangular and
Young’s inequalites

∥∥et∆
(
U0
n,η + U∞

n,η + ψJ
n,η

)∥∥2
Xs

T

6
∥∥∥u0,n −

∑

j∈J1
V j
η (· −xn,j)

∥∥∥
2

Ḣs

6 2
∥∥u0,n

∥∥2
Ḣs + 2

∥∥∥
∑

j∈J1
V j
η (· −xn,j)

∥∥∥
2

Ḣs
.

Let us admit for a while the following statement

(30) ∀η > 0,
∥∥∥
∑

j∈J1
V j
η (· −xn,j)

∥∥∥
2

Ḣs
=

∑

j∈J1

∥∥V j
η

∥∥2
Ḣs + ◦(1), when n→ +∞.

Thanks to the orthogonality relation (9), the term
∑

j∈J1

∥∥V j
η

∥∥2
Ḣs satisfies

∑

j∈J1

∥∥V j
η

∥∥2
Ḣs 6

∥∥u0,n
∥∥2
Ḣs + ◦(1),

for n large enough. As a result, there exists a constant C such that

(31) ∀η > 0,
∥∥∥et∆

(
U0
n,η + U∞

n,η + ψJ
n,η

)∥∥∥
2

Xs
T

6 C
(∥∥u0,n

∥∥2
Ḣs + ◦(1)

)
, when n→ +∞.

Now, let us come back to (29). Thanks to the previous estimate (31), we infer that

∀η > 0, ‖Uapp
n,η ‖2Xs

T
6 C

(∥∥∥
∑

j∈J1
NS(V j

η )(t, · −xn,j)
∥∥∥
2

Xs
T

+
∥∥u0,n

∥∥2
Ḣs + ◦(1)

)
, when n→ +∞.
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We admit for a while the following statement, for any T < T̃
def
= inf

j∈J1
T∗(V

j) and η > 0.

(32)
∥∥∥
∑

j∈J1
NS(V j

η )(t, · −xn,j)
∥∥∥
2

Xs
T

6
∑

j∈J1

∥∥NS(V j
η )(t, · )

∥∥2
Xs

T

+ ◦(1), when n→ +∞.

Therefore, we have for any T < T̃
def
= inf

j∈J1
T∗(V

j)

∀η > 0, ‖Uapp
n,η ‖2Xs

T
6 C

(∑

j∈J1

∥∥NS(V j
η )

∥∥2
Xs

T

+
∥∥u0,n

∥∥2
Ḣs + ◦(1)

)
, when n→ +∞.

As NS(V j
η ) solves NS-equation with initial data V j

η belonging to Ḣs and since the time T is far away
from the blow up time, we infer that each term in the right-hand side is bounded, uniformly in J and η.
Now let us prove (30). Clearly we have, thanks to the translations invariance of the Ḣs-norm

∥∥∥
∑

j∈J1
V j
η (· −xn,j)

∥∥∥
2

Ḣs
=

∑

j∈J1

∥∥V j
η (· −xn,j)

∥∥2
Ḣs + 2

∑

(j,k)∈J1×J1
j 6=k

(
V j
η (· −xn,j), V k

η (· −xn,k)
)
Ḣs

=
∑

j∈J1

∥∥V j
η

∥∥2
Ḣs + 2

∑

(j,k)∈J1×J1
j 6=k

(
ΛsV j

η (· −xn,j), ΛsV k
η (· −xn,k)

)
L2
,

where Λ =
√
−∆. The orthogonality of cores (e.g. lim

n→∞
|xn,j − xn,k| = +∞) implies in particular that

the term Λs V k
η (x+ (xn,j − xn,k)) weakly converges to 0 in L2 and thus (notice that Λs V j

η (x) belongs

to L2, by hypothesis)

∀η > 0, ∀(j, k) ∈ J1 × J1, lim
n→∞

∫

IR3
Λs V j

η (x)Λ
s V k

η (x+ (xn,j − xn,k)) dx = 0,

which ends up the proof of statement (30). Concerning statement (32), the proof is similar. Let ε > 0.

As for any T 6 T̃ − ε, NS(V j
η ) belongs to the space Xs

T
def
= CT (Ḣs) ∩ L2

T (Ḣ
s+1). In particular, the

map t ∈ [0, T̃ − ε] 7→ NS(V j
η )(t, · ) belongs to Ḣs. Previous computations hold and, by vertue of

translation invariance of the Ḣs-norm, we get for any t < T̃ and η > 0,
∥∥∥
∑

j∈J1
NS(V j

η )(t, · −xn,j)
∥∥∥
2

Ḣs
=

∑

j∈J1

∥∥NS(V j
η )(t, · )

∥∥2
Ḣs

+ 2
∑

(j,k)∈J1×J1
j 6=k

(
ΛsNS(V j

η )(t, · −xn,j),ΛsNS(V k
η )(t, · −xn,k)

)
L2
.

(33)

Then, for any t in [0, T̃ − ε], we get
∥∥∥
∑

j∈J1
NS(V j

η )(t, · −xn,j)
∥∥∥
2

L∞

T (Ḣs)
6

∑

j∈J1

∥∥NS(V j
η )(t, · )

∥∥2
L∞

T (Ḣs)
+ 2

∑

(j,k)∈J1×J1
j 6=k

Γs,j,k
ε,n ,

where Γs,j,k
ε,n is defined by

Γs,j,k
ε,n

def
= sup

t∈[0,T̃−ε]

(
ΛsNS(V j

η )(t, · −xn,j),ΛsNS(V k
η )(t, · −xn,k)

)
L2

= sup
t∈[0,T̃−ε]

∫

IR3
ΛsNS(V j

η )(t, · )ΛsNS(V k
η )(t, ·+(xn,j − xn,k)) dx.

(34)

Because the map ψ : t ∈ [0, T̃ − ε] 7→ ΛsNS(V j
η )(t, · )ΛsNS(V k

η )(t, ·+(xn,j − xn,k)) ∈ L1 in continu-

ous on the compact [0, T̃ − ε] (as product of continuous functions), ψ([0, T̃ − ε]) is precompact in the
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Lebesgue space L1 and thus can be covered by a finite open ball with an arbitrarily radius α > 0.

Let α be a positive radius. There exists an integer N , such that for any t ∈ [0, T̃ − ε], ψ(t) belongs

to

N⋃

l=1

B
(
ψ(tl), α

)
. Thus, for any t belonging to the compact [0, T̃ − ε], there exists a time tl such that

(35) ‖ψ(t)‖L1 6 α+ ‖ψ(tl)‖L1 .

By vertue of the simple fact

∫
f 6

∫
|f |, we infer that

Γs,j,k
ε,n 6 α+ ‖ψ(tl)‖L1

= α+

∫

IR3

∣∣∣ΛsNS(V j
η )(tl, · )ΛsNS(V k

η )(tl, ·+(xn,j − xn,k))
∣∣∣ dx.

Now, in order to conclude, we notice that Lebesgue theorem combining with the orthogonality property
of cores imply that the right-hand-side tends to 0, when n tends to +∞ (since we can choose α
arbitrarily small) and thus, we get

∀η > 0, ∀(j, k) ∈ J1 × J1, lim
n→∞

sup
t∈[0,T̃−ε]

(
ΛsNS(V j

η )(t, · −xn,j),ΛsNS(V k
η )(t, · −xn,k)

)
L2

= 0.

Therefore, we have proved for any T < T̃ and η > 0,

∥∥∥
∑

j∈J1
NS(V j

η )(t, · −xn,j)
∥∥∥
2

L∞

T (Ḣs)
6

∑

j∈J1

∥∥NS(V j
η )(t, · )

∥∥2
L∞

T (Ḣs)
+ ◦(1), when n→ +∞.

Concerning the L2
T (Ḣ

s+1)-norm, we write estimate (33) in Ḣs+1-norm. Then, the L2
T (Ḣ

s+1)-norm of
crossed terms tends to 0, thanks to Lebesgue theorem and orthogonality of cores. Details are left to
the reader. Finally, we get (32)

∥∥∥
∑

j∈J1
NS(V j

η )(t, · −xn,j)
∥∥∥
2

Xs
T

6
∑

j∈J1

∥∥NS(V j
η )(t, · )

∥∥2
Xs

T

+ ◦(1), when n→ +∞.

In order to complete the proof of Proposition 4.1, we have to prove that the term
∑

j∈J1

∥∥NS(V j
η )(t, · )

∥∥2
Xs

T

is bounded, uniformly in J1 (and thus in J) and η. This will result from Remark 1.1 and the orthog-

onality of Ḣs-norm (9) in profile theorem. Indeed, by vertue of profile decomposition of the bounded

sequence (u0,n)n>0 in the Sobolev space Ḣs, we know that
∑

j∈J1
‖V j

η ‖2Ḣs is bounded. It means that

∀ε > 0, ∃J∗
1 ⊂ J1, with |J∗

1 | <∞ ∀ j ∈ J1 \ J∗
1 , ‖V j

η ‖Ḣs 6 ε.

By vertue of Remark 1.1, we infer that for any j belonging to J1 \ J∗
1 , the Navier-Stokes solu-

tions NS(V j
η ) associated with such profiles V j

η satisfy
∥∥NS(V j

η )(t, · )
∥∥
Xs

T

6 2
∥∥V j

η

∥∥
Ḣs . Therefore, we

infer that
∑

j∈J1

∥∥NS(V j
η )(t, · )

∥∥2

Xs
T

6
∑

j∈J∗

1

∥∥NS(V j
η )(t, · )

∥∥2

Xs
T

+ 4
∑

j∈J1\J∗

1

‖V j
η ‖2Ḣs

6
∑

j∈J∗

1

∥∥NS(V j
η )(t, · )

∥∥2

Xs
T

+ 4
∑

j∈J1
‖V j

η ‖2Ḣs

6
∑

j∈J∗

1

∥∥NS(V j
η )(t, · )

∥∥2

Xs
T

+ 4 lim sup
n→+∞

‖u0,n‖2Ḣs .

(36)
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As we are not so close to the blow up time (since T < inf
j∈J1

T∗(V
j)), the term

∑

j∈J∗

1

∥∥NS(V j
η )(t, · )

∥∥2

Xs
T

is

bounded, uniformly in J1 (since J∗
1 is finite and depends only on the sequence of profiles V j). Thus,

the proof of Proposition 4.1 is complete.

Proof of Proposition 4.2. We recall a basic property due to divergence free condition: for any vector
field u, smooth enough and divergence-free,

(37) u · ∇v = div(u⊗ v)·
The property (37) provides us another expression of the exterior force term F J

n,η

F J
n,η = IJ,1n,η + IJ,2n,η + IJ,3n,η.(38)

where

IJ,1n,η = div
((

2
∑

j∈J1
NS(V j

η )(t, · −xn,j) + et∆
(
U0
n,η + U∞

n,η + ψJ
n,η

))
⊗ et∆

(
U0
n,η + U∞

n,η

))
.

IJ,2n,η = div
((

2
∑

j∈J1
NS(V j

η )(t, · −xn,j) + et∆
(
U0
n,η + U∞

n,η + ψJ
n,η

))
⊗ et∆ψJ

n,η

)
.

IJ,3n,η = F J,1
n,η =

∑

06j,k6J1;j 6=k

NS(V j
η (t, · −xn,j))·∇NS(V k

η (t, · −xn,k)).

(39)

Concerning IJ,1n,η, we apply (47) of Proposition 5.5, for any δ > 0, such that s+ δ < 3
2 ,

‖IJ,1n,η‖L2
T (Ḣs−1) 6 C T

1
2
(s− 1

2
)
(
T

−δ
2 ||U0

n,η||Ḣs−δ + T
δ
2 ||U∞

n,η||Ḣs+δ

)

×
∥∥∥2

∑

j∈J1
NS(V j

η )(t, · −xn,j) + et∆
(
U0
n,η + U∞

n,η + ψJ
n,η

)∥∥∥
Xs

T

6 C T
1
2
(s− 1

2
)
(
T

−δ
2 ||U0

n,η||Ḣs−δ + T
δ
2 ||U∞

n,η||Ḣs+δ

)

×
(
2 ‖Uapp

n,η ‖Xs
T
+
∥∥et∆

(
U0
n,η + U∞

n,η + ψJ
n,η

)∥∥∥
Xs

T

)
.

(40)

From (31), we infer that

‖IJ,1n,η‖L2
T (Ḣs−1) 6 C T

1
2
(s− 1

2
)
(
T

−δ
2 ||U0

n,η||Ḣs−δ + T
δ
2 ||U∞

n,η||Ḣs+δ

)

×
(
‖Uapp

n,η ‖Xs
T
+ ‖u0,n‖Ḣs + ◦(1)

)
, when n→ +∞.

Propositions 3.4 and 4.1 implies that IJ,1n,η tends to 0 when n tends to infinity

∀ε > 0, ∃ñ1(ε, J, η), ∀n > ñ1(ε, J, η),
∥∥∥IJ,1n,η

∥∥∥
L2
T (Ḣs−1)

6 ε.

Concerning IJ,2n,η, we apply the estimate (46) of Proposition 5.5

‖IJ,2n,η‖L2
T (Ḣs−1) 6 C T

1
2
(s− 1

2
) ||ψJ

n,η||Ḃs(1−θ)
pθ,pθ

×
∥∥∥2

∑

j∈J1
NS(V j

η )(t, · −xn,j) + et∆
(
U0
n,η + U∞

n,η + ψJ
n,η

)∥∥∥
Xs

T

6 C T
1
2
(s− 1

2
) ||ψJ

n,η||Ḃs(1−θ)
pθ,pθ

(
‖Uapp

n,η ‖Xs
T
+ ‖u0,n‖Ḣs + ◦(1)

)
, when n→ +∞.

(41)

Thanks to Proposition 3.3, we infer

∀ε > 0, ∃J̃(ε), ∀J > J̃(ε), ∃η̃(J), ∃ñ2(J),∀η > η̃(J), ∀n > ñ2(J), ‖IJ,2n,η‖L2
T (Ḣs−1) 6 ε.
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Concerning IJ,3n,η, the argument relies on the approximation Lemma 5.6 applied with with σ = s
2 + 3

4 ,
which proof is given in Appendix A. For the sake of simplicity, we note:

Φj = NS(V j
η ) and Φk = NS(V k

η ).

Remark 4.1. As Φj and Φk belong to the space L∞
T (Ḣs)∩L2

T (Ḣ
s+1), an interpolation argument implies

they belong to the space L4
T (Ḣ

s
2
+ 3

4 ). Indeed, we have

‖u‖
Ḣ

s
2+ 3

4
6 ‖u‖

1
2
(s+ 1

2
)

Ḣs
‖u‖

1
2
( 3
2
−s)

Ḣs+1
.

Then, by integrating in time, we deduce that

‖u‖4
L4
T
(Ḣ

s
2+3

4 )
6 T s− 1

2 ‖u‖2(s+
1
2
)

L∞

T (Ḣs)
‖u‖3−2s

L2
T (Ḣs+1)

.

Thanks to the divergence-free condition, we have ‖Φj .∇Φk‖2
Ḣs−1 = ‖Φj ⊗ Φk‖2

Ḣs and thus

‖Φj.∇Φk‖2
L2
T (Ḣs−1)

=

∫ T

0
‖Φj ⊗ Φk‖2

Ḣs

6

∫ T

0
‖(Φj − Φj

ε)⊗ Φk‖2
Ḣs +

∫ T

0
‖Φj

ε ⊗ (Φk − Φk
ε)‖2Ḣs +

∫ T

0
‖Φj

ε ⊗ Φk
ε‖2Ḣs .

As
s

2
+

3

4
<

3

2
, a product rule in Sobolev spaces implies

(42) ‖u v‖Ḣs 6 C(s) ‖u‖
Ḣ

s
2+ 3

4
‖v‖

Ḣ
s
2+ 3

4
·

Therefore, we infer that :

‖Φj.∇Φk‖2
L2
T (Ḣs−1)

.

∫ T

0
‖(Φj − Φj

ε)‖2
Ḣ

s
2+ 3

4
‖Φk‖2

Ḣ
s
2+ 3

4
+

∫ T

0
‖Φj

ε‖2
Ḣ

s
2+ 3

4
‖Φk − Φk

ε‖2
Ḣ

s
2+3

4

+

∫ T

0
‖Φj

ε ⊗ Φk
ε‖2Ḣs .

Finally, Cauchy-Schwarz inequality and approximation Lemma 5.6 yield

‖Φj.∇Φk‖2
L2
T (Ḣs−1)

. ε2‖Φk‖2
L4
T (Ḣ

s
2+ 3

4 )
+ ε2‖Φj‖2

L4
T (Ḣ

s
2+ 3

4 )
+ ‖Φj

ε ⊗ Φk
ε‖2L2

T (Ḣs)
.

To conclude, we have to prove that ‖Φj
ε ⊗ Φk

ε‖2L2
T (Ḣs)

tends to 0, for ε small enough. This will come

from the orthogonality of cores. By definition, Φj
ε (resp. Φk

ε) is an approximation of Φj (resp. Φk).

Because of translations by cores, we define Φj,n
ε (t, x−xn,j) (resp. Φk,n

ε (t, x−xn,k)) as an approximation

of Φj(t, x− xn,j) (resp. Φk(t, x− xn,k)). As Φj,n
ε and Φk,n

ε are compactly supported and concentrated
around xn,j and xn,k, the divergence of cores ( lim

n→+∞
|xn,j − xn,k| = +∞) implies they are supported

on disjointed compacts. Therefore, the term ‖Φj
ε ⊗ Φk

ε‖2L2
T (Ḣs)

converges to 0, for n large enough.

In other words, we have

∀ε > 0, ∃ñ(ε), ∀n > ñ(ε),
∥∥∥NS(V j

η (t, · −xn,j))·∇NS(V k
η (t, · −xn,k))

∥∥∥
L2
T (Ḣs−1)

6
ε

|J1|
·

Therefore, we infer that, ∀ε > 0, ∃ñ(ε), ∀n > ñ(ε),
∥∥∥IJ,3n,η

∥∥∥
L2
T (Ḣs−1)

=
∥∥∥

∑

06j,k6J1;j 6=k

NS(V j
η (t, · −xn,j))·∇NS(V k

η (t, · −xn,k))
∥∥∥
L2
T (Ḣs−1)

6 ε.(43)

This concludes the proof of Proposition 4.2.
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5. Appendix A. Product and paraproduct estimates

In this section, we give some typical product estimates, in which splitting frequency allows for a much
finer control of the product. The main tool is the homogeneous paradifferential calculus. For a de-
tailed presentation of it, we refer the reader to [1], page 85. We recall two fundamental statements
(see for instance Theorem 2.47 and 2.52 in [1]) about continuity of the homogeneous paraproduct op-
erator T , and the remainder operator R. We shall constantly be using these two theorems in the sequel.

Theorem 5.1. There exists a constant C such that for any real number s and any (p, r) in [1,∞]2,

we have for any (u, v) in L∞ × Ḃs
p,r,

‖Tuv‖Ḃs
p,r

6 C1+|s| ‖u‖L∞ ‖v‖Ḃs
p,r

Moreover, for any (s, t) in IR×]−∞, 0[, (p, r1, r2) in [1,∞]3, and (u, v) in Ḃt
∞,r1

× Ḃs
p,r2

, we have

‖Tuv‖Ḃs+t
p,r

6
C1+|s+t|

−t ‖u‖Ḃt
∞,r1

‖v‖Ḃs
p,r2

with
1

r

def
= min

{
1,

1

r1
+

1

r2

}

Theorem 5.2. A constant C exists which satisfies the following properties.
Let (s1, s2) be in IR2 and (p1, p2, r1, r2) in [1,∞]4. Let us assume that

1

p

def
=

1

p1
+

1

p2
6 1 and

1

r

def
=

1

r1
+

1

r2
6 1.

If s1 + s2 is positive, then we have for any (u, v) in Ḃs1
p1,r1

× Ḃs2
p2,r2

,

‖R(u, v)‖
Ḃ

s1+s2
p,r

6
C1+|s1+s2|

s1 + s2
‖u‖Ḃs1

p1,r1
‖v‖Ḃs2

p2,r2
.

A lot of results of continuity may be deduced from the two above Theorems. For instance, we can
state the Lemma below.

Lemma 5.3. (Product rule in Ḣs)

Let u and v be two functions in Ḣs with −3

2
< s <

3

2
, then

‖uv‖Ḣs 6 C(s)
(
‖u‖Ḣs ‖v‖

Ḣ
3
2
+ ‖u‖

Ḣ
3
2
‖v‖Ḣs

)
and ‖uv‖Ḣs 6 C(s) ‖u‖

L∞ ∩ Ḣ
3
2
‖v‖Ḣs .

Proof. We have to estimate a product in Sobolev space thus, we shall use the paradifferential calculus.
In particular, thanks to the Bony’s paraproduct decomposition, we get

u v = Tuv +R(u, v) + Tvu.

The term R(v, u) can be estimated in Ḣs-norm easily, thanks to Theorem 5.2,

‖R(u, v)‖
Ḃ

s+ 3
2

1,1

6 C‖u‖Ḣs ‖v‖
Ḣ

3
2
.

Therefore, thanks to embeddings Ḃ
s+ 3

2
1,1 →֒ Ḃs

2,1 →֒ Ḃs
2,2 and Remark 3.1, we infer that

(44) ‖R(u, v)‖Ḣs 6 C‖u‖Ḣs‖v‖
Ḣ

3
2
.

Concerning Tvu and Tuv, we use once again estimates of Theorem 5.1, which gives

‖Tuv‖Ḣs 6 C(s) ‖u‖
Ḃ

s− 3
2

∞,∞

‖v‖
Ḃ

3
2
2,2

.

Because s− 3
2 is negative, Bernstein’s inequality and the classical embedding ℓ2(Z) ⊂ ℓ∞(Z) give

Ḃs
2,2 →֒ Ḃ

s− 3
2

∞,2 →֒ Ḃ
s− 3

2∞,∞.
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Therefore, we deduce that
‖Tuv‖Ḣs 6 C(s) ‖u‖Ḣs ‖v‖

Ḣ
3
2
.

Permuting the roles of u and v and using (44) gives the first part of the result. The second part of
Lemma 5.3 is easy. By vertue of Theorem 5.1, we have

‖Tuv‖Ḣs 6 C(s) ‖u‖L∞ ‖v‖Ḣs and ‖Tvu‖Ḣs 6 C(s) ‖v‖Ḣs ‖u‖
Ḣ

3
2
.

Moreover, it seems clear that, due to Theorem 5.2

‖R(u, v)‖
Ḃ

s+ 3
2

1,1

6 C‖v‖Ḣs ‖u‖
Ḣ

3
2
.

This leads to the proof of ‖uv‖Ḣs 6 C(s) ‖u‖
L∞ ∩ Ḣ

3
2
‖v‖Ḣs . �

Remark 5.1. Let us point out an interpolation inequality: by definition of s we have

(45) ‖u‖
Ḣ

3
2
6 C‖u‖s−

1
2

Ḣs
‖u‖

3
2
−s

Ḣs+1
.

Therefore, combining this with Lemma 5.3, we get the result following which will be a frequent use
later

Corollary 5.4. Let u and v be in Ḣs with
1

2
< s <

3

2
, then

‖uv‖Ḣs 6 C(s)
(
‖u‖Ḣs ‖v‖s−

1
2

Ḣs
‖v‖

3
2
−s

Ḣs+1
+ ‖u‖s−

1
2

Ḣs
‖u‖

3
2
−s

Ḣs+1
‖v‖Ḣs

)
.

Proposition 5.5. Let 0 < θ < 1. Under the interpolation relation
1

pθ
=
θ

p
+

1− θ

2
,

(46) ‖u⊗ et∆r0‖L2
T (Ḣs) 6 C T

1
2
(s− 1

2
)‖u‖Xs

T
||r0||Ḃs(1−θ)

pθ,pθ

.

(47) For any
1

2
< α <

3

2
, ‖u ⊗ et∆r0‖L2

T (Ḣs) 6 C T
1
2
(α− 1

2
)‖u‖Xs

T
||r0||Ḣα .

Proof. Let us start by proving the first inequality. Bony’s paraproduct decomposition implies

u⊗ et∆r0 = Tet∆r0u+R(et∆r0, u) + Tu(e
t∆r0).

The first two terms can be estimated in Ḣs-norm easily. Thanks to Theorem 5.1, we have

‖Tet∆r0
(u)‖Ḣs=Ḃs

2,2
6 C‖et∆r0‖

Ḃ
s− 3

2
∞,∞

‖u‖
Ḃ

3
2
2,2

.

Let us recall that
1

pθ
is defined by

1

pθ
=
θ

p
+

1− θ

2
, for any θ in ]0, 1[.

A classical result due to Bernstein’s inequality gives the following embedding Ḃs(1−θ)
pθ,∞ →֒ Ḃ

s− 3
2∞,∞.

Therefore we infer that

‖Tet∆r0(u)‖L2
T (Ḣs) . ‖et∆r0‖L∞

T (Ḃ
s(1−θ)
pθ,∞

)
‖u‖

L2
T (Ḣ

3
2 )
.

On the one hand, thanks to the hypothesis 1
2 < s < 3

2 , we recover the Navier-Stokes solution u

in Xs
T -norm by an interpolation argument. As ‖u‖

Ḣ
3
2
. ‖u‖s−

1
2

Ḣs
‖u‖

3
2
−s

Ḣs+1
, we get

‖u‖2
L2
T (Ḣ

3
2 )

=

∫ T

0
‖u‖2s−1

Ḣs
‖u‖3−2s

Ḣs+1
dt . ‖u‖2s−1

L∞

T (Ḣs)
T s− 1

2 ‖u‖3−2s
L2
T (Ḣs+1)

. T s− 1
2 ‖u‖2Xs

T

(48)

On the other hand, the simple embedding ℓpθ(Z) ⊂ ℓ∞(Z) implies

‖et∆r0‖L∞

T (Ḃ
s(1−θ)
pθ,∞

)
6 ‖r0‖Ḃs(1−θ)

pθ,∞
6 ‖r0‖Ḃs(1−θ)

pθ,pθ

.
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Finally, we have proved the proposition for the first two terms

‖R(et∆r0, u)‖L2
T (Ḣs) + ‖Tet∆r0

(u)‖L2
T (Ḣs) . T

1
2
(s− 1

2
) ‖r0‖Ḃs(1−θ)

pθ,pθ

‖u‖Xs
T
.

The last term Tu(e
t∆r0) is more delicate. Note that, here, as we work locally in time, low frequencies do

not play a major role, unlike high frequencies. As a result, we have to handle low and high frequencies
separately. It is natural to split them according to their size: either the frequencies are low (in the

sense that
√
T2j 6 C) or the frequenties are high (in the sense that

√
T2j > C).

Firstly, let us observe that

‖Tu(et∆r0)‖L2
T (Ḣs) = ‖Tu(et∆r0)‖L2

T (Ḃs
2,2)

=
(
2js‖∆̇jTu(e

t∆r0)‖L2
T
(L2)

)
ℓ2(Z)

.

We split, according to low and high frequencies

‖Tu(et∆r0)‖L2
T (Ḣs) 6

(
2js‖∆̇jTu(e

t∆r0)‖L2
T (L2)1{

√
T2j6C}

)
ℓ2(Z)

+
(
2js‖∆̇jTu(e

t∆r0)‖L2
T
(L2)1{

√
T2j>C}

)
ℓ2(Z)

.
(49)

A classical result in Littlewood Paley theory gives the following estimates

∆̇jTu(e
t∆r0) =

∑

|j−j′|64

Ṡj′−1u ∆̇j′(e
t∆r0).

Therefore, Hölder’s inequality yields

‖∆̇jTu(e
t∆r0)‖L2 6

∑

|j−j′|64

‖Ṡj′−1u‖Lqθ ‖∆̇j′(e
t∆r0)‖Lpθ with

1

2
=

1

pθ
+

1

qθ
.

In particular, Bernstein’s inequality implies

‖Ṡj′−1u‖Lqθ 6

j′−2∑

j′′=−∞
‖∆̇j′′u‖Lqθ

.

j′−2∑

j′′=−∞
2
3j′′( 1

2
− 1

qθ
)‖∆̇j′′u‖L2 =

j′−2∑

j′′=−∞
2
j′′( 3

pθ
−s)

2j
′′s‖∆̇j′′u‖L2 .

Applying Young’s inequality, we infer there exists a sequence (cj(t))j∈Z belonging to the sphere
of ℓqθ(Z), such that

‖Ṡj′−1u‖Lqθ 6 C cj′(t) 2
j′( 3

pθ
−s) ‖u(t)‖Ḃs

2,qθ

.

As qθ > 2, ℓ2(Z) is included in ℓqθ(Z), which implies that

‖Ṡj′−1u‖Lqθ 6 C cj′(t) 2
j′( 3

pθ
−s) ‖u(t)‖Ḃs

2,2
.

Therefore, we have

‖∆̇jTu(e
t∆r0)‖L2 .

∑

|j−j′|64

cj′(t)2
j′( 3

pθ
−2s+θ s)‖u(t)‖Ḃs

2,2
2sj

′(1−θ)‖∆̇j′(e
t∆r0)‖Lpθ .

As j and j′ are equivalent, we can write

‖∆̇jTu(e
t∆r0)‖L2 . cj(t)2

j( 3
pθ

−2s+θ s)‖u(t)‖Ḃs
2,2

2js(1−θ)‖∆̇j(e
t∆r0)‖Lpθ .(50)

On the other hand, we have (see for instance Lemma 2.4 of [1])

(51) ‖∆̇j′(e
t∆r0)‖Lpθ . e−t22j

′

‖∆̇j′r0‖Lpθ .
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As e−t22j
′

6 1, integration in time yields

‖∆̇j′(e
t∆r0)‖Lpθ

T (Lpθ ) . T
1
pθ ‖∆̇j′r0‖Lpθ .

Above result combining with Hölder’s inequality in time imply

2js‖∆̇jTu(e
t∆r0)‖L2

T
(L2) . 2

j( 3
pθ

−s+θ s)‖u(t)‖L∞

T (Ḣs)‖cj(t)‖Lqθ
T
T

1
pθ 2js(1−θ) ‖∆̇jr0‖Lpθ .

Therefore, as far as the low frequencies are concerned (
√
T2j 6 C), we have

2js‖∆̇jTu(e
t∆r0)‖L2

T (L2)1{
√
T2j6C} . T

− 1
2
( 3
pθ

−s+θ s)‖u(t)‖L∞

T (Ḣs)‖cj(t)‖Lqθ
T

× T
1
pθ 2js(1−θ) ‖∆̇jr0‖Lpθ .

Applying Hölder’s inequality for the ℓ2(Z)-norm, we have
(
2js‖∆̇jTu(e

t∆r0)‖L2
T (L2)1{

√
T2j6C}

)
ℓ2(Z)

6 T
− 1

2
( 3
pθ

−s+θ s)+ 1
pθ ‖u(t)‖L∞

T (Ḣs)

×
(
‖cj(t)‖Lqθ

T

)
ℓqθ (Z)

‖r0‖Ḃs(1−θ)
pθ,pθ

.

Clearly, we have
(
‖cj(t)‖Lqθ

T

)
ℓqθ (Z)

6 T
1
qθ . Besides, we have

−1

2

(
3

pθ
− s+ θ s

)
+

1

pθ
+

1

qθ
= −1

2

(
3

pθ
− s+ θ s− 1

)
= −1

2

(
3θ

p
+

3(1− θ)

2
− s+ θ s− 1

)

= −1

2

(
3θ

2
− θ s+

3(1 − θ)

2
− s+ θ s− 1

)
=

1

2

(
s− 1

2

)
·

As a result, we infer that(
2js‖∆̇jTu(e

t∆r0)‖L2
T (L2)1{

√
T2j6C}

)
ℓ2(Z)

6 T
1
2
(s− 1

2
) ‖u(t)‖L∞

T
(Ḣs)‖r0‖Ḃs(1−θ)

pθ,pθ

.

This completes the proof in the case of low frequencies. For the high frequencies, we need to use the
smoothing effect of the heat flow. Thanks to (51), we infer

(52) ‖∆̇j′(e
t∆r0)‖Lpθ

T (Lpθ ) . 2
−2j′

pθ ‖∆̇j′r0‖Lpθ .

We write an estimate for 2js‖∆̇jTu(e
t∆r0)‖L2

T (L2)1{
√
T2j>C}. We come back to (50), we integrate in

time, applying Hölder’s inequality

2js‖∆̇jTu(e
t∆r0)‖L2

T (L2) . 2
j( 1

pθ
−s+θ s) ‖u(t)‖L∞

T (Ḣs) ‖cj(t)‖Lqθ
T

× 2
j
(
(1−θ)s+ 2

pθ

)

‖∆̇j(e
t∆r0)‖Lpθ

T (Lpθ ).

(53)

High frequencies hypothesis implies

2js‖∆̇jTu(e
t∆r0)‖L2

T (L2)1{
√
T2j>C} . T

− 1
2
( 1
pθ

−s+θ s)‖u(t)‖L∞

T (Ḣs)‖cj(t)‖Lqθ
T

× 2
j((1−θ)s+ 2

pθ
) ‖∆̇j(e

t∆r0)‖Lpθ
T

(Lpθ ).

Thanks to (52), we infer

2js‖∆̇jTu(e
t∆r0)‖L2

T (L2)1{
√
T2j>C} . T

− 1
2
( 1
pθ

−s+θ s)‖u(t)‖L∞

T (Ḣs)‖cj(t)‖Lqθ
T

× 2j((1−θ)s) ‖∆̇jr0‖Lpθ .
(54)

Once again, we apply Hölder’s inequality for the ℓ2(Z)-norm and we have
(
2js‖∆̇jTu(e

t∆r0)‖L2
T (L2)1{

√
T2j>C}

)
ℓ2(Z)

. T
− 1

2
( 1
pθ

−s+θ s)+ 1
qθ ‖u(t)‖L∞

T (Ḣs)‖r0‖Lpθ
T (Ḃ

(1−θ)s
pθ,pθ

)
.
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Then, the simple computation −1

2

( 1

pθ
− s+ θ s

)
+

1

qθ
=

1

2

(
s− 1

2

)
implies

(
2j‖∆̇jTu(e

t∆r0)‖L2
T (L2)1{

√
T2j>C}

)
ℓ2(Z)

. T
1
2
(s− 1

2
) ‖u(t)‖L∞

T (Ḣs)‖r0‖Ḃs(1−θ)
pθ,pθ

.

This ends up the proof for the case of high frequencies and therefore the first inequality of the propo-
sition is proved.

Now, let us prove the second inequality. The proof of which is very close to the previous one. We gives
only outlines. Thanks to Bony’s decomposition, we have

u⊗ et∆r0 = Tet∆r0
u+R(et∆r0, u) + Tu(e

t∆r0).

The first two terms can be estimated in Ḣs-norm easily, thanks to mapping of paraproduct in the
Besov spaces (cf Theorem 5.1)

‖Tet∆r0u‖Ḃs
2,2

6 C‖et∆r0‖
Ḃ

α−
3
2

∞,∞

‖u‖
Ḃ

s+3
2−α

2,2

.

On the one hand, Bernstein’s Lemma and obvious embedding ℓ2(Z) ⊂ ℓ∞(Z) ensure that

Ḃα
2,2 →֒ Ḃ

α− 3
2

∞,2 →֒ Ḃ
α− 3

2∞,∞ and thus ‖et∆r0‖
Ḃ

α−
3
2

∞,∞

. ‖et∆r0‖Ḃα
2,2
.

On the other hand, as s 6 s+ 3
2 − α 6 s+ 1, u belongs to Ḃ

s+ 3
2
−α

2,2 . Interpolation argument yields

‖u‖
Ḃ

s+3
2−α

2,2

6 C ‖u‖
Ḣ

s+3
2−α 6 ‖u‖α−

1
2

Ḣs
‖u‖

3
2
−α

Ḣs+1
.

By integration in time and thanks to Hölder’s inequality, we have

‖u‖2
L2
T (Ḣs+3

2−α)
6

∫ T

0
‖u(t, · )‖2α−1

Ḣs
‖u(t, · )‖3−2α

Ḣs+1
dt

6 Tα− 1
2 ‖u‖2α−1

L∞

T (Ḣs)
‖u‖3−2α

L2
T (Ḣs+1)

.

Finally, we get

‖u‖
L2
T (Ḣs+3

2−α)
6 T

1
2
(α− 1

2
) ‖u‖Xs

T
.

Therefore, we deduce an estimate of the term ‖Tet∆r0
(u)‖L2

T (Ḣs) and ‖R(et∆r0, u)‖L2
T (Ḣs).

‖Tet∆r0
u‖L2

T (Ḣs) 6 T
1
2
(α− 1

2
) ‖u‖Xs

T
‖r0‖Ḣα .

‖R(et∆r0, u)‖L2
T (Ḣs) 6 T

1
2
(α− 1

2
) ‖u‖Xs

T
‖r0‖Ḣα .

Now, in order to estimate the last term ‖Tu(et∆r0)‖L2
T (Ḣs), we shall need splitting, according low and

high frequencies (e.g
√
T 2j 6 1 or

√
T 2j > 1). That is exactly the same computations as in the proof

of the first inequality of the proposition

‖∆̇jTu(e
t∆r0)‖L2 .

∑

|j−j′|64

‖Ṡj′−1u‖Lp‖∆̇j′(e
t∆r0)‖

L
3
s
.

Thanks to the property ‖Ṡj′−1u‖Lp . ‖u‖Lp and the equivalence between j and j′, we get

‖∆̇jTu(e
t∆r0)‖L2 . ‖u‖Lp‖∆̇j(e

t∆r0)‖
L

3
s
.

By vertue of Sobolev embedding and integration in time

2js ‖∆̇jTu(e
t∆r0)‖L2

T
(L2) 6 2js ‖u‖L∞

T (Ḣs) ‖∆̇j(e
t∆r0)‖

L2
T (L

3
s ) .
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Concerning low frequencies (e.g
√
T 2j 6 1), we combine (51) with the rough boundary e−t22j 6 1 and

we get

2js ‖∆̇jTu(e
t∆r0)‖L2

T (L2) 1{
√
T2j6C} . 2js ‖u‖L∞

T (Ḣs) ‖∆̇j(r0)‖
L2
T (L

3
s )

. 2js ‖u‖L∞

T (Ḣs) 2
−j(α+s− 3

2
) 2j(α+s− 3

2
) ‖∆̇j(r0)‖

L2
T (L

3
s )

. 2−j(α− 3
2
) ‖u‖L∞

T (Ḣs) 2
j(α+s− 3

2
) T

1
2 ‖∆̇j(r0)‖

L
3
s
.

Hypothesis of low frequencies implies

(55)
(
2js ‖∆̇jTu(e

t∆r0)‖L2
T (L2) 1{

√
T2j6C}

)
ℓ2(Z)

. T
1
2
(α− 1

2
) ‖u‖L∞

T (Ḣs) ‖r0‖
Ḃ

α+s− 3
2

3
s ,2

.

As far as high frequencies are concerned (e.g
√
T 2j > 1), (51) combining with the integration of the

term e−t22j on [0, T ], gives

2js ‖∆̇jTu(e
t∆r0)‖L2

T (L2) 1{
√
T2j>C} . 2js ‖u‖L∞

T (Ḣs) 2
−j‖∆̇j(r0)‖

L
3
s

. 2j(s−1) ‖u‖L∞

T (Ḣs) 2
−j(α+s− 3

2
) 2j(α+s− 3

2
) ‖∆̇j(r0)‖

L
3
s

. 2−j(α− 1
2
) ‖u‖L∞

T (Ḣs) 2
j(α+s− 3

2
) ‖∆̇j(r0)‖

L
3
s
.

Hypothesis of high frequencies gives

(56)
(
2js ‖∆̇jTu(e

t∆r0)‖L2
T (L2) 1{

√
T2j>C}

)
ℓ2(Z)

. T
1
2
(α− 1

2
) ‖u‖L∞

T (Ḣs) ‖r0‖
Ḃ

α+s− 3
2

3
s ,2

Combining (55) and (56) with the fact that Ḃα
2,2 is embedded in Ḃ

α+s− 3
2

3
s
,2

, we get finally

(57) ‖Tu(et∆r0)‖L2
T (Ḣs) . T

1
2
(α− 1

2
) ‖u‖L∞

T (Ḣs) ‖r0‖Ḣα

This completes the proof of the second inequality of the proposition. Now, let us state an approximation
lemma. �

Lemma 5.6. Let 0 < σ < 3
2 and ε > 0. Let a be an element of L4

T (Ḣ
σ). Then, there exists a

constant C > 0, there exists a family of compactly supported functions, aε, which satisfies for any
positive T

lim
ε→0

‖a− aε‖L4
T (Ḣσ) = 0 and(58)

‖aε‖L4
T (Ḣσ) 6 C ‖a‖L4

T (Ḣσ).(59)

Proof. Let us introduce the approximation function aε defined by

aε = χ(ε· )a,
where χ is the usual fonction of D(IR3) with value 1 near 0.
Let us start by proving (59). Due to product rule in Sobolev spaces recalled in Lemma 5.3, we have

‖aε‖Ḣσ 6 C(σ) ‖χ(ε· )‖
L∞ ∩ Ḣ

3
2
‖a‖Ḣσ

6 C(σ) ‖χ‖
L∞ ∩ Ḣ

3
2
‖a‖Ḣσ

6 C(σ) ‖a‖Ḣσ

(60)

Now we prove (58). In order to apply Lebesgue Theorem, we have to prove there exists a positive
constant C, such that

(61) lim
ε→0

‖aε − a‖Ḣσ = 0 and ‖aε − a‖Ḣσ 6 C.
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Let us notice that ‖aε − a‖Ḣσ is bounded, thanks to (60). Concerning the proof of lim
ε→0

‖aε − a‖Ḣσ = 0,

one way is to approach the function a by an truncated element Aε which Fourier transform is defined

by Âε(ξ) = â(ξ)1{ε6|ξ|6 1
ε
}. In this way, by vertue of Lebesgue Theorem, it seems clear that

(62) lim
ε→0

‖Aε − a‖Ḣσ = 0.

Therefore, we have

‖aε − a‖Ḣσ = ‖(1 − χ(ε · )) a‖Ḣσ

6 ‖(1 − χ(ε · )) (a−Aε) ‖Ḣσ + ‖(1 − χ(ε · ))Aε‖Ḣσ .

By vertue of Lemma 5.3, we have

‖aε − a‖Ḣσ 6 ‖1− χ(ε · )‖
Ḣ

3
2∩L∞

‖a−Aε‖Ḣσ + ‖(1 − χ(ε · ))Aε‖Ḣσ

6
(
1 + ‖χ‖

Ḣ
3
2 ∩L∞

)
‖a−Aε‖Ḣσ + ‖(1− χ(ε · ))Aε‖Ḣσ .

Now, we have just to prove that lim
ε→0

‖(1 − χ(ε · ))Aε‖Ḣσ = 0. This comes from an interpolation argu-

ment. For any 0 < σ < 3
2 and σ < s <

3

2
,

‖(1− χ(ε · ))Aε‖Ḣσ 6 ‖(1− χ(ε · ))Aε‖
1−σ

s

L2 ‖(1 − χ(ε · ))Aε‖
σ
s

Ḣs

6 ‖(1− χ(ε · ))Aε‖
1−σ

s

L2

(
1 + ‖χ‖

Ḣ
3
2 ∩L∞

)
‖Aε‖

σ
s

Ḣs
.

To conclude, we have just to notice that the term ‖(1 − χ(ε · ))Aε‖
1−σ

s

L2 tends to 0 for ε small enough,
by vertue of Lebesgue Theorem. The other term is obviously bounded, since Aε belongs to any Sobolev
spaces, for any ε > 0, thanks to truncature process. �

6. Appendix B.

In this appendix, we prove a general Theorem about an estimate in the Xs
T -space of a solution of a

perturbed Navier-Stokes system. The method is standard: the first step consists in establishing an Ḣs-
energy estimate. Then, some computations on scalar-product terms lead to an inequality on which we
can apply Gronwall’s lemma. In particular, we apply this Theorem to prove that the map u0 7→ T∗(u0)
is a lower semi-continous function on Ḣs.

Theorem 6.1. Let q be an element belonging to the space Xs
T , defined by for any T < T̃ (q) = T̃

‖q‖2Xs
T

def
= ‖q‖2

L∞

T (Ḣs)
+ ‖q‖2

L2
T (Ḣs+1)

.

Let r be a solution of the following perturbed Navier-Stokes system




∂tr + r.∇r −∆r + r · ∇q + q.∇r = −f −∇p
div r = 0
r|t=0 = r0.

Let ε0 > 0. Let T0 be the time defined by

T0
def
= sup

{
0 < T < T̃ (q) | ‖r(t)‖2

L∞

T (Ḣs)
6 ε0

}
.

Then, for any t 6 T0, we have

‖r‖2Xs
T
.

(
‖r0‖2Ḣs + ‖f‖2

L2
T (Ḣs−1)

)
exp

(
ε

2
2s−1

0 T̃ + T̃ s− 1
2 ‖q‖2Xs

T
+ T̃ ‖q‖

4
2s−1

L∞

T (Ḣs)

)
.
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Proof. A Ḣs scalar-product, time integration and triangular inequality yield

‖r‖2
X̃s

T

def
= ‖r‖2

Ḣs + 2

∫ t

0
‖r(t′)‖2

Ḣs+1dt
′

6 ‖r0‖2Ḣs + 2

∫ t

0

∣∣((r · ∇r) | r
)
Ḣs

∣∣ dt′ + 2

∫ t

0

∣∣((q · ∇r) | r
)
Ḣs

∣∣ dt′

+ 2

∫ t

0

∣∣((r · ∇q) | r
)
Ḣs

∣∣ dt′ + 2

∫ t

0

∣∣(f | r
)
Ḣs

∣∣ dt′.

(63)

We assess each term in the right-hand side; the divergence-free condition implies
∣∣((r · ∇r) | r

)
Ḣs

∣∣ 6 ‖r · ∇r‖Ḣs−1 ‖r‖Ḣs+1

6 ‖r ⊗ r‖Ḣs ‖r‖Ḣs+1 ·

Thanks to Corollary 5.4, we infer that

∣∣((r · ∇r) | r
)
Ḣs

∣∣ 6 C(s) ‖r‖s+
1
2

Ḣs
‖r‖

5
2
−s

Ḣs+1
·

Then, integrating in time and applying Young’s inequality
(
ab 6

ap

p
+
bp

′

p′
, with

1

p
+

1

p′
= 1

)
yield

∫ t

0

∣∣((r · ∇r) | r
)
Ḣs

∣∣ dt′ 6 C(s)

∫ t

0
‖r‖s+

1
2

Ḣs
‖r‖

5
2
−s

Ḣs+1
dt′

6 C(s)

∫ t

0
‖r‖2

2s+1
2s−1

Ḣs
dt′ +

1

12

∫ t

0
‖r‖2

Ḣs+1dt
′.

(64)

Now we have to estimate

∫ t

0

∣∣((r · ∇q) | r
)
Ḣs

∣∣ dt′ and

∫ t

0

∣∣((q · ∇r) | r
)
Ḣs

∣∣ dt′. Actually, thanks to the

divergence-free condition, it is exactly the same estimate and we get
∣∣((r · ∇q) | r

)
Ḣs

∣∣ 6 ‖r · ∇q‖Ḣs−1 ‖r‖Ḣs+1

6 ‖r ⊗ q‖Ḣs ‖r‖Ḣs+1 .

Once again, Corollary 5.4 gives
∫ t

0

∣∣((r · ∇q) | r
)
Ḣs

∣∣ dt′ 6 C(s)

∫ t

0
‖r‖Ḣs‖q‖s−

1
2

Ḣs
‖q‖

3
2
−s

Ḣs+1
‖r‖Ḣs+1dt

′

+ C(s)

∫ t

0
‖q‖Ḣs ‖r‖s−

1
2

Ḣs
‖r‖

5
2
−s

Ḣs+1
dt′.

Young’s inequality implies
∫ t

0

∣∣((r · ∇q) | r
)
Ḣs

∣∣ dt′ 6 C(s)

∫ t

0
‖r‖2

Ḣs‖q‖2s−1
Ḣs

‖q‖3−2s
Ḣs+1

dt′

+ C(s)

∫ t

0
‖q‖

4
2s−1

Ḣs
‖r‖2

Ḣsdt
′ +

2

12

∫ t

0
‖r‖2

Ḣs+1dt
′.

(65)

Same arguments give an estimate of exterior force term
∫ t

0

∣∣(f | r
)
Ḣs

∣∣dt′ 6
∫ t

0
‖f‖Ḣs−1 ‖r‖Ḣs+1 dt

′

6 C

∫ t

0
‖f‖2

Ḣs−1dt
′ +

1

12

∫ t

0
‖r‖2

Ḣs+1dt
′.

(66)
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Combining Inequalities (63), (64), (65) and (66), we get

‖r‖2
X̃s

T

6 ‖r0‖2Ḣs + C

∫ t

0
‖f‖2

Ḣs−1dt
′ + 2

∫ t

0

6

12
‖r‖2

Ḣs+1dt
′

+ C(s)

∫ t

0
‖r‖2

Ḣs

(
‖r‖

4
2s−1

Ḣs
+ ‖q‖2s−1

Ḣs
‖q‖3−2s

Ḣs+1
+ ‖q‖

4
2s−1

Ḣs

)
dt′.

(67)

Let us introduce the time T0 defined by

T0
def
= sup

{
0 < T < T̃ | ‖r(t)‖2

L∞

T (Ḣs)
6 ε0

}
.

Therefore, for any t 6 T0, we have

‖r‖2Xs
T

def
= ‖r‖2

Ḣs +

∫ t

0
‖r(t′)‖2

Ḣs+1dt
′

. ‖r0‖2Ḣs +

∫ t

0
‖f‖2

Ḣs−1dt
′ +

∫ t

0
‖r‖2

Ḣs

(
ε

2
2s−1

0 + ‖q‖2s−1
Ḣs

‖q‖3−2s
Ḣs+1

+ ‖q‖
4

2s−1

Ḣs

)
.

Thanks to Gronwall’s lemma, we infer that for any T < T0 6 T̃

‖r‖2Xs
T
.

(
‖r0‖2Ḣs + ‖f‖2

L2
T
(Ḣs−1)

)
exp

(
ε

2
2s−1

0 T̃ + T̃ s− 1
2 ‖q‖2Xs

T
+ T̃ ‖q‖

4
2s−1

L∞

T (Ḣs)

)
.

This concludes the proof Theorem 6.1. �

Proposition below is well-known and can be seen as a consequence of Theorem 6.1. We perturb a
data by a small term and we are interesting in the consequence on the lifespan of the Navier-Stokes
solution associated with such a perturbed data. The lifespan of perturbed Navier-Stokes solution can
not decrease too much, compared to the lifespan of the non-perturbed one. More precisely, we have
the following proposition.

Proposition 6.2. The map u0 7→ T∗(u0) is a lower semi-continous function on Ḣs

e.g. ∀ε > 0,∃α > 0, ∀v0 in Ḣs such that ‖v0‖Ḣs < α, then T∗(u0 + v0) > T∗(u0)− ε.

Moreover, (under notations of Theorem 6.1), a constant C > 0 exists such that for any T 6 T∗(u0)− ε
‖NS(u0 + v0)−NS(u0)‖2Xs

T
6 C ‖v0‖2Ḣs

× exp
(
ε

2
2s−1

0 T + T s− 1
2 ‖NS(u0)‖2Xs

T
+ T ‖NS(u0)‖

4
2s−1

L∞

T
(Ḣs)

)
.

(68)

Proof. Let u0 and v0 two elements in Ḣs. We operate a small perturbation of the data u0 by v0 (the
aim is to quantify this smallness condition) and we want to prove that the lifespan of the perturbed
Navier-Stokes solution NS(u0 + v0) can not be much less than the lifespan of NS(u0). The process is
standard. We introduce an error term R defined by

R(t, x) = NS(u0 + v0)−NS(u0).

Classical computations imply that R is solution of the following perturbed Navier-Stokes system

(69)





∂tR+R · ∇R−∆R+R · ∇NS(u0) +NS(u0) · ∇R = −∇p
div R = 0
R|t=0 = v0.

Let ε0 > 0. Let us introduce the time T0 defined by

T0 := sup
{
0 < T < T∗(u0) | ‖R(t)‖2L∞

T
(Ḣs)

6 ε0
}
.

Thanks to Theorem 6.1, we infer that for any T 6 T0

‖R‖2Xs
T
6 C ‖v0‖2Ḣs exp

(
ε

2
2s−1

0 T + T s− 1
2 ‖NS(u0)‖2Xs

T
+ T ‖NS(u0)‖

4
2s−1

L∞

T (Ḣs)

)
.(70)
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The above expression gives the smallness condition on ‖v0‖Ḣs . Indeed, suppose that v0 satifies

(71) C ‖v0‖2Ḣs exp
(
ε

2
2s−1

0 T + T s− 1
2 ‖NS(u0)‖2Xs

T
+ T ‖NS(u0)‖

4
2s−1

L∞

T
(Ḣs)

)
6 ε0.

Therefore, the error term R, keeps on living until the time T∗(u0) − ε, for any ε > 0. This concludes
the proof of the proposition. �

References

[1] H. Bahouri, J.-Y. Chemin, R. Danchin: Fourier Analysis and Nonlinear Partial Differential Equations, Springer,
343, 2011.

[2] H. Bahouri, A. Cohen, G. Koch: A general wavelet-based profile decomposition in the critical embedding of function
spaces, Confluentes Mathematici, 3, 2011, pages 1-25.

[3] H. Bahouri and I. Gallagher: On the stability in weak topology of the set of global solutions to the Navier-Stokes
equations, Archive for Rational Mechanics and Analysis, 209, 2013, pages 569-629.

[4] H. Bahouri, P. Gérard: High frequency approximation of solutions to critical nonlinear wave equations, American

Journal of Math, 121, 1999, pages 131-175.
[5] H. Bahouri, M. Majdoub and N. Masmoudi: Lack of compactness in the 2D critical Sobolev embedding, the general

case, to appear in Journal de Mathématiques Pures et Appliquées.
[6] J. Bourgain: Refinements of Strichartz’ inequality and applications to 2 D-NLS with critical nonlinearity, Internatinal

Mathematical Research Notices, 5, 1998, 253-283.
[7] H. Brézis and J.-M. Coron: Convergence of solutions of H-Systems or how to blow bubbles, Archive for Rational

Mechanics and Analysis, 89, 1985, pages 21-86.
[8] J.-Y. Chemin: Remarques sur l’existence globale pour le système de Navier-Stokes incompressible, SIAM, Journal

on Mathematical Analysis, 23, 1992, pages 20-28.
[9] J.-Y. Chemin: Théorèmes d’unicité pour le système de Navier-Stokes tridimensionnel, Journal d’Analyse Mathéma-

tique, 77, 1999, pages 27-50.
[10] J.-Y. Chemin and I. Gallagher: Large, global solutions to the Navier-Stokes equations, slowly varying in one

direction, Transactions of the American Mathematical Society, 362, 2010, pages 2859-2873.
[11] J.-Y. Chemin, I. Gallagher: Wellposedness and stability results for the Navier-Stokes equations in IR3, Ann. I. H.

Poincaré - AN, 26, 2009, pages 599-624.
[12] J.-Y. Chemin and N. Lerner: Flot de champs de vecteurs non lipschitziens et équations de Navier-Stokes, Journal

of Differential Equations, 121, 1995, pages 314-328.
[13] H. Fujita, T. Kato: On the Navier-Stokes initial value problem I, Archive for Rational Mechanics and Analysis, 16,

1964, pages 269-315.
[14] I. Gallagher: Profile decomposition for solutions of the Navier-Stokes equations, Bull. Soc. Math. France, 129 (2),

2001, pages 285-316.
[15] I. Gallagher, D. Iftimie and F. Planchon: Asymptotics and stability for global solutions to the Navier-Stokes

equations, Annales de l’Institut Fourier, 53, 2003, pages 1387-1424.
[16] I. Gallagher, G. Koch, F. Planchon: A profile decomposition approach to the L

∞

t (L3
x) Navier-Stokes regularity

criterion, to appear, Mathematische Annalen, 2011.
[17] P. Gérard: Description du défaut de compacité de l’injection de Sobolev, ESAIM Contrôle Optimal et Calcul des

Variations, vol. 3, Mai 1998, pages 213-233.
[18] S. Jaffard, Analysis of the lack of compactness in the critical Sobolev embeddings, Journal of Functional Analysis,

161, 1999, pages 384-396.
[19] C. Kenig, G. Koch: An alternative approach to the Navier-Stokes equations in critical spaces, Ann. I. H. Poincaré

- AN, 2010.
[20] C. E. Kenig, F. Merle: Global well-posedness, scattering and blow-up for the energy critical focusing non-linear

wave equation, Acta Mathematica, 201, 2008, pages 147-212.
[21] C. E. Kenig and F. Merle: Global well-posedness, scattering and blow-up for the energy critical focusing non-linear

Schrödinger equations in the radial case, Inventiones Mathematicae, 166, 2006, pages 645-675.
[22] S. Keraani: On the defect of compactness for the Strichartz estimates of the Schrödinger equation, Journal of

Differential equations, 175, 2001, pages 353-392.
[23] G. Koch: Profile decompositions for critical Lebesgue and Besov space embeddings, Indiana University, Mathemat-

ical Journal, 59, 2010, pages 1801-1830.
[24] P.G. Lemarié-Rieusset: Recent Developments in the Navier-Stokes Problem, Chapman & Hall/CRC Res. Notes

Math., vol. 431, Chapman & Hall/CRC, Boca Raton, FL, 2002, pages 148-151.
[25] J. Leray, Essai sur le mouvement d’un liquide visqueux emplissant l’espace, Acta Matematica, 63, 1933, pages

193-248



28 EUGÉNIE POULON

[26] P.-L. Lions, The concentration-compactness principle in the calculus of variations. The limit case I, Revista. Matem-

atica Iberoamericana 1 (1), 1985, pages 145-201.
[27] P.-L. Lions, The concentration-compactness principle in the calculus of variations. The limit case II, Revista. Matem-

atica Iberoamericana 1 (2), 1985, pages 45-121.
[28] F. Merle and L. Vega, Compactness at blow-up time for L2 solutions of the critical nonlinear Schrödinger equation

in 2D, International Mathematical Research Notices, 1998, pages 399-425.
[29] W. Rusin, V. S̆verák: Minimal initial data for potential Navier-Stokes singularities, Journal of Functional Analysis,

260, 2011, pages 879-891.
[30] L. Tartar, H-measures, a new approach for studying homogenisation, oscillations and concentration effects in partial

differential equations, Proceedings of the Royal Society of Edinburgh, 115, 1990, pages 193-230.

(Eugénie Poulon) Laboratoire Jacques-Louis Lions - UMR 7598, Université Pierre et Marie Curie,
Boîte courrier 187, 4 place Jussieu, 75252 Paris Cedex 05, France

E-mail address: poulon@ann.jussieu.fr


