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ABOUT THE BEHAVIOUR OF REGULAR NAVIER-STOKES SOLUTIONS NEAR
THE BLOW UP

EUGENIE POULON

ABSTRACT. In this paper, we present some results about blow up of regular solutions to the ho-
mogeneous incompressible Navier-Stokes system, in the case of data in the Sobolev space H*®(IR?),
1 3 . R . .. . .
where 5 <s < 3 Firstly, we will introduce the notion of minimal blow up Navier-Stokes solutions and

show that the set of such solutions is not only nonempty but also compact in a certain sense. Secondly,
we will state an uniform blow up rate for minimal Navier-Stokes solutions. The key tool is profile
theory as established by P. Gérard [17].

1. INTRODUCTION

We consider the Navier-Stokes system for incompressible fluids evolving in the whole space R?. De-
noting by u the velocity, a vector field in IR?, by p in IR the pressure function, the Cauchy problem for
the homogeneous incompressible Navier-Stokes system is given by

du+u-Vu—Au = —Vp
(1) divu = 0
U‘t:() = uQ.

Throughout this paper, we will adopt the useful notation NS(ug) to mean the maximal solution of the
Navier-Stokes system, associated with the initial data ug.

Definition 1.1. Let s in IR. The homogeneous Sobolev space H S(ﬂ:{?’) is the space of tempered
distributions u over IR, the Fourier transfom of which belongs to Llloc(lR?’) and satisfies

ol ([ teaepae) " <o

It is known that H*(IR?) is an Hilbert space if and only if s < 3. We will denote by ('|')H5(]R3)’ the

scalar product in H $(IR3). From now on, for the sake of simplicity, it will be an implicit understanding
that all computations will be done in the whole space R?.

Before stating the results we prove in this paper, we recall two fundamental properties of the incom-
pressible Navier-Stokes system. The first one is the conservation of the L? energy. Formally, let us
take the L? scalar product with the velocity u in the equation. We get

) 3 WO + Va0l = = [ (@ Fu®lut) = [ (o) o

Thanks to the divergence free condition, obvious integration by parts implies that, for any vector field a

(3) (u-Vala),, = 0= (Vpla) ..
This gives
0 Ll + Va3 = 0.

Key words and phrases. Navier-Stokes equations; blow up; profile decomposition.
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2 EUGENIE POULON

The second property of the system is the scaling invariance. Let us define the above operator:

n n 3 o def 1 t z—xo
Yo € RY, VA € RY, Vao € R®, u(t,x)_A—au(F : )

(5) A,zo
If =1, we note A%\’xo = A -

It is easy to see that if u is smooth solution of Navier-Stokes system on [0,7] x IR? with pressure p
associated with the initial data ug, then, for any positive A, the vector field and the pressure

def def
uy = Ayzou and py = Aiwop
is a solution of Navier-Stokes system on the interval [0, \>T] x R?, associated with the initial data
upn = Az Uo-

This leads to the definition of scaling invariant space, which is a key notion to investigate local and
global well-posedness issues for Navier-Stokes system.

Definition 1.2. A Banach space X is said to be scaling invariant, if its norm is invariant under the
scaling transformation defined by u +— u)

[luallx = [lullx

The first main result on incompressible Navier-Stokes system is due to J. Leray, who proved [25] in 1934
that given an initial data in the energy space L?, the associated NS-solutions, called weak solutions,
exist globally in time. The key ingredient of the proof is the L2-energy conservation (4). Moreover,
such solutions are unique in 2-D; but the uniqueness in 3-D is still an open problem. One way to
adress this question of unique solvability in 3-D is to demand smoother initial data. In this case, we
definitely get a unique solution, but the other side of coin is that the problem is only locally well-posed
(and becomes globally well-posed under a scaling invariant smallness assumption on the initial data).
J. Leray stated such a theorem of existence of solutions, which he called semi-regular solutions.

Theorem 1.1. Let an initial data uy be a divergence free vector field in L? such that Vug belongs to'LQ,
Then, there exists a positive time T, and a unique solution NS(ug) in C°([0,T], H') n L%([0,T], H?).
Moreover, a constant ¢y exists such that if ||uo||r2 ||Vuo||z2 < 1, then T' can be chosen equal to co.

The reader will have noticed that the quantity ||uol||z2 ||Vuo||z2 is scaling invariant under the oper-
ator Ay ,,. Actually, that is the starting point of many frameworks concerning the global existence
in time of solutions under a scaling invariant smallness assumption on the data. The celebrated
first one was introduced in 1964, by H. Fujita and T. Kato. These authors stated a similar result
as J. Leray, but they demanded less regularity on the data. Indeed, they proved that for any ini-
tial data in H %, there exists a positive time 7" and there exists a unique solution N.S(ug) belonging
to CO([0,T7, H%) N L2([0,T7, H%) Moreover, if HUOHH% is small enough, then the solution is global in
time. This theorem can be proved by a fixed-point argument and the key ingredient of the proof is that
the Sobolev space H > is invariant under the operator A ;. In other words, the Sobolev space o
has exactly the same scaling as Navier-Stokes equation. We refer the reader to [1], [13] or [24] for more
details of the proof. But in this paper, we are not interested in the particular kind of space. On the

3
57
which means that we are above the natural scaling of the equation. The first thing to do is to provide
an existence theorem of Navier-Stokes solutions with data in such Sobolev spaces H®. The Cauchy
problem is known to be locally well-posed; it can be proved by a fixed-point procedure in an adequate
function space (we refer the reader to the book [24], from page 146 to 148, of P-G. Lemarié-Rieusset).

. 1
contrary, we work with initial data belonging to homogeneous Sobolev spaces, H® with = < s <

We shall constantly be using the following simplified notations:

def

LE(H°) € Loo(j0,7), H®) and  L2Z(F++1) &

L%([0,T], H*TY).
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Let us define the relevant function space we shall be working with in the sequel:

def

def . .
Xs < LT (HS) N L2 (HSJrl)a equlpped with ||uH,2X'S H ||200 (H#) + HUHLQ (Hs+1)°

. 1 3
Theorem 1.2. Let ug be in H®, with 3 <s< 3 Then there exists a time T" and there exists a unique

solution N'S(ug) such that NS(ug) belongs to L (H®) N LA(HT).
Moreover, let Ty (up) be the maximal time of existence of such a solution. Then, there exists a positive
constant c such that

(6) Ty (uo) |luwoll%, = ¢, with og =

Remark 1.1. As a by-product of the proof of Picard’s Theorem, we get actually for free the following
property: if the the initial data is small enough (in the sense of there exists a positive constant cgy, such
that T' |[uo|%;, < co), then a unique Navier-Stokes solution associated with it exists (locally in time,

until the blow up time given by the relation (6)) and satisfies the following linear control

€o
ol INS(uo)(t, )l x5 < 2[luoll g+
HS

(7) VO<T<

Formula (6) invites us to consider the lower boundary, denoted by A2, of the lifespan of such a solution

o def . o ‘
Ao @ .nf{ (uo)|[uoll%, | uo € H® 5 Tu(ug) < oo}.

Obviously, AZ¢ exists and is a positive real number and we always have the formula

(8) T (uo)lluollfs, = AZ:.

Throughout this paper, we made the assumption of blow up, which is still an open problem. More
precisely, we claim the following hypothesis.

Hypothesis H: for any % <s< %, a divergence-free vector field ug exists in H® such that the lifespan
T (ug) is finite.

Let B, be the open ball in H* defined by B, = {ug € H*/ |lug| ;7. < p}. Let T\ > 0 be a fixed time.
We define a critical radius by the following formula

def A
ps(T) = i
TSs

Defined in this way and thanks to (8), we get an another definition of the critical radius
ps(T) =sup{ p >0 | [luollg: <p = Ti(uo) > To}.

Thanks to this definition, we define the notion of minimal blow up solution for the Navier-Stokes
system.

Definition 1.3. (minimal blow up solution)
We say that u = NS(ug) is a minimal blow up solution if ug satisfies the two following assumptions:

luoll s = ps(Ti) and  Ti(ug) = T

Therefore, u = NS(up) is a minimal blow up solution if and only if AZ* is reached: T (uo)|[uol|%;, = AZ*.

Question: If ps(T) is finite, do some minimal blow up solutions exist ?
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We will prove a stronger result: the set of initial data generating minimal blow up solutions, denoted
by M(T%), is not only a nonempty subset of H® (which, in particular, gives the positive answer to
the question) but also compact in a sense which is given in Theorem 1.3. We define the set M(7T) as

follows

def

M, (T,) % {uo € H* | Tu(ug) =T, and |uol|;. = ps(T*)}.

Theorem 1.3. Assuming hypothesis H. For any T, the set M(T}) is non empty and compact, up
to translations. This means that for any sequence (ugy)nev of points in the set My(T}), a sequence
(1) nen of points of (IR*)N and a function V' in M(T.) exist such that, up to an extraction
I - — V]|, = 0.
n_lf_'r_loo |[uon (- + 2n) 1F%

The second result of this paper states that the blow up rate of a minimal blow up solution can be
uniformely controlled since we get a priori bound of these minimal blow up solutions.

Theorem 1.4. (Control of minimal blow up solutions)

Assuming H, there exists a nondecreasing function Fy : [0,AZ*[— IR" with lim Fy(r) = +oc0
r—AZS

such that for any divergence free vector field ug in Hs, generating minimal blow up solution (it
means T} (uo)|[uol|%;, = AZ*), we have the following control on the minimal blow up solution NS(uq)

1
VT < Ti(uo), [NS(uo)llxz < lluoll s Fs(T7s [Juol| g)-

The two previous theorems are the analogue of results, proved in the case of the Sobolev space H 2. We
shall not recall all the statements existing in the literature concerning the regularity of Navier-Stokes

solutions in critical spaces, such as H 3. We refer for instance the reader to [13] and to the article of
C. Kenig et G. Koch [19], where the authors prove that NS-solutions which remain bounded in the

space H > do not become singular in finite time. Concerning Theorem 1.3, we were largely inspired by
the article of W. Rusin and V. Sverdk [29], in which the authors set up the key concept of minimal

blow-up for data in Sobolev space H 2] Firstly, they defined a critical radius p1
2

pr=sup{p>0 : Juoll,, <p = Ti(u) = +oc).

1
2

Then, they introduced a subset M of H %, which describes the set of minimal-norm singularities (we
speak about minimal norm in the sense of HuoHH 3 is equal to the critical radius p1)
2

M= {u € i ;i Ti(up) < 400 and HUOHH% = p%}

Thanks to these definitions, W. Rusin and V. Sverak proved that if there exist elements in the space H 3
which develop singularities in finite time (we assume that blow-up occurs), then some of these elements

are of minimal F2-norm (and thus, the set M is nonempty) and compact up to translations and
dilations. It means that for any sequence (upn)nen of points in the set M, a sequence (A, )neN
and a function ¢ in M exist such that, up to an extraction, we have

Jim luon = Ax, e, @l gy = 0.

Let us point out that I. Gallagher, G. Koch and F. Planchon generalize in [16] the result of W. Rusin
and V. Sverdk to critical Lebesgue and Besov spaces, such as L3.

Concerning Theorem 1.4, our main source of inspiration is a result established by I. Gallagher in [14].

Given an initial data ug in the open ball B, . Then, by definition of p1, N.S(uo) is a global solution and
. g 2

thus belongs to the space L*(IR,, H'), thanks to the important paper [15] of I. Gallagher, D. Iftimie

and F. Planchon. In this way, the blow up in the Fr, = L*(IR, H%) N LRy, H%)—norm does not
occur. Even better: I. Gallagher proved in [14] the a priori control of the Navier-Stokes solution with



ABOUT THE BEHAVIOUR OF REGULAR NAVIER-STOKES SOLUTIONS NEAR THE BLOW UP 5

data in the open ball B, in the sense of there exists a nondecreasing function F' defined from [0, p1 |
3 2

to R such that for any divergence free vector field g in the open ball B, , we have
2

INS(uo)l| g, < F(lluoll ;1)

Notation. We shall denote by C' a constant which does not depend on the various parameters
appearing in this paper, and which may change from line to line. We shall also denote sometimes z < y
to mean there exists an absolute constant C' > 0 such that x < C'y.

The paper is organized in the following way:

In section 2, we recall the fundamental tool of this paper : profile decomposition of a bounded sequence
in H*. Then, we give the proof of the compactness of minimal blow up solutions set (Theorem 1.3)
and control of of such solutions (Theorem 1.4). These two results are based on the crucial Theorem
2.2 about the lifespan of a Navier-Stokes solution associated with a bounded sequence of H*.

Section 3 is devoted to the proof of Theorem 2.2, thanks to a regularization process. Firstly, we will
see that it is an immediate consequence of Lemma 3.1, which gives the structure of a Navier-Stokes
solution associated with a bounded sequence of data in H*. Secondly, we will provide some helpful
tools in order to prove Lemma 3.1.

In section 4, we prove Lemma 3.1, the result on which all others are based on. This section is the
most technical part of the paper. It relies on classical product and paraproduct estimates, which are
collected in Appendix A and B.

Acknowledgements. I am very grateful to [. Gallagher for fruitful discussions around the question
of non-scale invariant spaces and to P. Gérard for many helpful comments.

2. PROFILES THEORY, COMPACTNESS RESULT AND APPLICATION

This section is devoted to the proof of Theorems 1.3 and 1.4. Following I. Gallagher [14], W. Rusin
and V. Sverék [29], C. Kenig and G. Koch [19] and I. Gallagher, G. Koch, F. Planchon [16], we shall
use profile decomposition theory. The original motivation of this theory was the desciption of the

default of compactness in Sobolev embeddings (see for instance the pionneering works of P.-L. Lions
in [26], [27] and H. Brezis, J.-M. Coron in [7|. Here, we will use the theorem of P. Gérard [17], which

gives, up to extractions, the structure of a bounded sequence of H®, with s between 0 and 3 More

precisely, the default of compactness in the critical Sobolev embedding H* C L is descibed in terms
of a sum of rescaled and translated orthogonal profiles, up to a small term in LP. That was generalized

. d
to other Sobolev spaces H*P(IR?) with 0 < s < — by S. Jaffard in [18], to Besov spaces by G. Koch
p

in [23] and to general critical embeddings by H. Bahouri, A. Cohen and G. Koch in [2]. Let us notice
the recent work [5] of H. Bahouri, M. Majdoud and N. Masmoudi concerning the lack of compactness
of the Sobolev embedding of H'(IR?) in the critical Orlicz space £(R?). Then profile decomposition
techniques have been applied in many works of evolution problems such as the high frequency study
of finite energy solutions to quintic wave equations on IR, by H. Bahouri and P. Gérard [4]. C. Kenig
and F. Merle investigated in [20] the blow up property for the energy critical focusing non linear wave
equation. Profile techniques turned out to be also a relevant tool in the study of Schrédinger equations.
Notice this kind of decomposition was stated and developped, independently from [17], by F. Merle
and L. Vega [28] for L?-solutions of the critical non linear Schrédinger in 2D, in the continuation of the
work of J. Bourgain [6]. Then, S. Keraani revisited in [22]| the work of H. Bahouri and P. Gérard [4]
in the context of energy critical non linear Schréodinger equations. C. Kenig and F. Merle investigated
in [21] the global well-posedness, scattering and blow up matter for such solutions in the focusing and
radial case.
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Remark 2.1. Using notation (5), we can prove easily that the L? (as well as H®)-norm is conserved
3 3
under the transformation w — A} u. It means [|[A]  u = [Ju].
»L0 »Z0
Theorem 2.1. Let (ugn)nenN be a bounded sequence in H?. Then, up to an extraction:
- There exists a sequence vectors fields, called profiles (V) jen in H®.

- There exists a sequence of scales and cores (A j, Tn j)n jeN, such that, up to an extraction

J. 3 .
VI 20, uon(e) =Y AL . V(@) +un(e)  with ;lim_limsup il =0, and p=g—-
=0

Where, (A j, Tn j)neN, jen are sequences of (IRY x R*)N with the following orthogonality property:
for every integers (j, k) such that j # k, we have

. . >\n,j )\n,k . ‘xn,j - xn,k’
e1therngr}rloo<m + m) =400 or A,;= A, and nEIqILloo T = +00
Moreover, for any J € IN, we have the following orthogonality property
J .
(9) luomllzys = DIV + 1% +o(1), when n— oo,

=0

A first application of this, is Theorem 2.2 about the lifespan of a NS-solution associated with bounded
data in H®. The proof of it will be given in section 3.

Theorem 2.2. Let (ug,) be a bounded sequence of initial data in H?* such that its profiles decompo-
sition is given by

Jos .
uo () = ZOAL,J-,M,J-V] (2) + a(e) with  lim lim sup [ ]l» = 0.
P

Then,

. . > . ] )
EI_I)I_’I_I;E T (ugp) = jlél}'l T.(V7)

where Jy is the subset of J, such that for any j in Jp, for any n in IN , we have A, ; = 1.

This result gives us an important information: whenever a sequence of initial data which satisfies
profiles hypothesis (it means a bounded sequence in H %), we get an information on the lifespan of
the NS-solution associated with such a sequence of initial data: it mainly depends on the lifespan
of profiles with a constant scale (up to a regularization process). Note that the orthogonality prop-
erty on scales and cores in Theorem 2.1 implies either the scales are different (in the sense that

. Anji A
lim (ﬂ + LJC) = +00) or the scales are the same (\,; = A, ), equal to a constant, and the
notoor Ak Any ’ ’
Tpi— T
cores go away from one another, in the sense that lim M = +00. In the last case where
n—+o0o >\n,j

scales are equal to a constant, we shall assume that it is one, up to rescaling profiles by a fixed constant.
Theorem 2.2 has a key role in the proof of the compactness Theorem 1.3: the set M(T}), recalled
below, is non empty and compact, up to translations.

M(T,) == {uo € H* | Tu(up) =T, and [ugl . = pS(T*)}.
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2.1. Proof of the compactness Theorem 1.3.

Proof. By definition of AZ¢, we consider a minimizing sequence (ug ., )n>0 such that

Jim T (ug.0) .o, = AZ°

Up to a rescaling process, we can assume that the minimizing sequence (ug)n>0 satisfies

(10) im  |uonlgs = ps(Ty) and  Ti(ugy) = Ts.

n—-+o0o

Indeed, consider the sequence (vgp)n>0 defined as

v0,n(T) o <%§n)>% uo,”((%f,n)) : x)

The reader notices that the Navier-Stokes solution associated with such a sequence (v ) has a lifespan
T, (uo,n)
T
definition of ps(7%). As defined, (uon)n>0 is a sequence of points of the set My(T%); it is a bounded

sequence in H* and thus we can apply Theorem 2.1. Taking limit when n — +o00 in (9), we get

equal to Ty. As |lvon| %, = < ) [[to.nl|%,, it seems clear now we can assume (10), by vertue of

J
p2(T) = > IV,
§=0

Let us assume that there are two profiles at least. Then we should have
Vi€ {0, T} VI, < p2(T).
By definiton of ps(T%), it means all profiles V7 generate solutions whose lifespan satisfies
(11) T.(V7) > T, Vje{0,---,J}
In particular, for any j in J;, we have T, (V?) > T, and thus T := inf T, (V7) > T,.

JjeJ1
By hypothesis on (ug,)nen and thanks to Theorem 2.2, we get a contradiction, since we have

liminf T, (ug,) = To = T > T
n—-+o00

It means there exists an integer jo such that the profile, V70 has a lifespan which satisfies T < T,.
In particular, by definition of ps(T), it implies that ||V]0||§_.Is > p%(T,). And, thanks to the orthogonal

property of the H*-norm (9), we deduce the equality
V1%, = p3(Te).

Now, we have just to check that T, = T7°. We have already proved a first inequality: TV < T,.
The other way is given by (8): we have always the following relation: T£°\|Vj0\|‘;.{58 > A7%s. Thanks to

Os

A A ,
the result [|[V7°% = pg*(T) = jf , we get the second inequality: 77° > T,. Thus, the set M (1)

*
is non empty and thus, there exists some minimal Navier-Stokes solutions. The compactness of the
set M (T%) is a consequence of the above work. Thanks to (9) and [|[V7°| ;. = ps(7T%), we infer that

¥j#jo, VI=0 and lim [y, =0.
n—-+o0o
The above assumption implies in particular that for any j # jo, Ti(V?) = 400 and thus, applying
Theorem 2.2, we should have T, = 400, which is absurd. As a result, there exists a unique integer jg
in Jp, such that

ugn () = V(2 = 2 jo) + 5 (2).
The property ngrfoo 44 ]/, = 0 implies ngrfoo w0, (- +2jo.n) — VI o = 0. O
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2.2. Proof of Theorem 1.4.

Proof. Let us consider the following set, for any T' < T (u)

NS - ]
A 4 {% ug in H* such that T, (ug)||uo| s = Ac}-
0ll frs

Theorem 1.3 claims that the set A2 is nonempty. The aim is to prove that sup N7 is finite for any T
If not, a sequence (upn)n>0 in H® exists, such that, for any 7' < Ty (uo,y), we have

(12) T. (uon)lluonlf, = A2 and  lim [ NS(uo )l = oc.

By hypothesis, the sequence (u,)n>0 belongs to the set M4(Ty). Therefore, there exist a sequence of
cores (xp)nenN and a function V' in M (T} ) such that, up to an extraction:

(13) im ||ugn(- +2n) = V]|gs = 0.

n—-+o00

We can prove easily that, for any 7' < T, (V):
(14) NS(ugn(-+ xn)) = NS(V) + R, with ll)r_’l_l |IRnllx, =0

Indeed, we define
def
RO,n = uO,n(' + xn) -V
Because of (13), the sequence (Ro)n>0 converges to 0 in H*-norm, for n large enough. Moreover, the
error term R, satifies the following perturbed Navier-Stokes system

O Ry + Ry VRy — AR, + Ry - VNS(V)+ NS(V)- VR, = —Vp
(15) div R, = 0
Rn|t:0 - RO,n-

Applying Theorem 6.1, we infer that, for any 7' < T (V') and for n large enough
INS(uon(- +2n))llx7 < o0

This is at odds with the assumption, since:

(16) INS(uon (- + ) llxz = [INS (uon)llxz-

3. PROOF OF THEOREM 2.2 AND TOOL BOX FOR LEMMA 3.1

All the previous results are based on Theorem 2.2. In this section, we prove this theorem, which relies
on Lemma 3.1. This last one gives the structure of the Navier-Stokes solution associated with an initial
data which has a profile decomposition. In others words, we wonder if, given the profile decomposition
of a sequence of data, we get a similar decomposition on the Navier-Stokes solution itself. Lemma 3.1
gives a positive answer.

Let us recall to the reader that this question has already been studied by I. Gallagher in [14] in the case
of initial data in the Sobolev space H 2 and the same author with G. Koch, F. Planchon [16] in others
critical spaces (e.g scaled invariant under the Navier-Stokes transformation). In our case, the difficulty
is that the homogeneous Sobolev space H*® is not a scale invariant space under the natural scaling of
the Navier-Stokes equation. To overcome this issue, the method consists in cutting off frequencies of
profiles [4] (such profiles will have the useful property to belong to any H*, for any s). In particular,
profiles scaled by 0 (resp. co) will tend to 0 in some Sobolev spaces (more precisely in H*! with s; < s),
(resp. H*® with so > s) and therefore, will not perturb the profile decomposition of the NS-solution.
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3.1. Regularization process and statement. Firstly, let us introduce some notations. Let (4o )n>0
be a bounded sequence of initial data in H®. Thanks to Theorem 2.1, (ug)n>0 can be written as
follows, up to an extraction

3

J
uOn Z n],g;n] )+¢J( )

7=0

Let n > 0 be the parameter of rough cutting off frequencies. We define by u,(z) and uec,(x) the
elements which Fourier transform is given by

(17) uy(§) = a(g)l{%g\g\gn} and (€)= u(§) (1 - 1{%<|g|<n})-

After rough cutting off frequencies with respect to the notations (17), we get

J 3

o (@ Z Vil (@) (@) with ) () Z o VA (@) (@),

=0 =0

From the above decomposition, we sort profiles supported in the annulus 1 (L<lel<n} according to their
n X X

scale (thanks to the orthogonality property of scales and cores, given by Theorem 2.1). We get the
following profile decomposition

3
(18) uom(z) = Y Vi(x xn,j)+ZA§n’j7mm + > Ax () + ) (x)

JE€N J€Jo J€Jo

where for any j € J1 C J, \,; = 1, for any j € Jy C J, lir_’I_l An,j =0 and for any j €
n—-+00
Joo C J, hm )\n] +00

n—

Under these notations, we claim we have the following structure lemma of the Navier-Stokes solutions,
which proof will be provided in section 4.

Lemma 3.1. (Profile decomposition of the Navier-Stokes solution)
Let (upn)n>0 be a bounded sequence of initial data in H® which profile decomposition is given by

S s
uOn ZAinJ,an )+wn( )

J=0

Then, lim>iglf Ti(ugp) = T d—ef mf T.(V7) and for any t < T.(ug), we have
nz

NS(uon)(t, ) = > NS(VI)(t, 2 — xn,)
JjeN

PN L Vi@ + YD AL L Vi) (@) + B ()

AnjrTn,j An,jsTn,j
Jj€Jo J€Jso

(19)

where the remaining term R , satisfies lim  lim  lim R ollxs. = 0.
’ J——+00 n—+00 n—+00 ’ T

Proof of Theorem 2.2. Clearly, Theorem 2.2 is an immediate consequence of Lemma 3.1. Assume

we prove Lemma 3.1; in particular, we get the “profile” decomposition of the Navier-Stokes solution

and thus the lifespan of sequence N S(uo,,) depends on the lifespan of profiles, scaled by 1 (up to the

regularization procedure). As a result, Ts(ug ) > jig; T*(an ). Then, because the map ug — Ty (ug) is
1
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)

. , 1
a lower semi-continous function in H* (cf Proposition 6.2 in Annex B), we infer T%.(V}/) > Ti.(V7) — —
n

for any n > 1. As a result,
» 1
T, > inf T,(V7) — —-
(w0) > inf T(V7) -
This ends up the proof of Theorem 2.2.

3.2. Tool box. In this subsection, we recall some basic facts about homogeneous Besov spaces and
we prove some properties we need to the proof of Lemma 3.1. We refer the reader to [1], from page 63,
for a detailed presentation of the theory and analysis of homogeneous Besov spaces.

Definition 3.1. Let s be in R, (p,r) in [1,+00]? and v in S'. A tempered distribution u is an element
of the Besov space B, , if u satifies

1
def ; A r
lulg, = (D2 IAgullz )" < oo,
JEL
where Aj is a frequencies localization operator (called Littlewood-Paley operator), defined by

Aju(e) € F 1 (o2 ENale)),

with ¢ € D([3,2]), such that Z ©(279t) =1, for any t > 0.
JEZL
Remark 3.1. We have the embedding H® C 3572. These spaces coincide if s < %

The first thing we have to notice is the following: given a bounded sequence of data in H* (thus we get
a profile decomposition of this sequence), Theorem 2.1 implies that the term 1 (), (which is bounded
in H?), satisfies:

lim limsup |4 ||r» = 0.
J—=+00 n—+4o0

In fact, thanks to an interpolation argument, we can prove that the remaining term 1/1,{ tends to 0 in
certain Besov spaces. That is the point in the following proposition.

Proposition 3.2. For any 0 < 6 < 1, let pg be a positive real number given by the interpolation
relation

Then, under the same hypothesis of Theorem 2.1, we have:
lim lims | s-0) = O-
lim Tim sup [ B0
Proof. Interpolation inequality in the Lebesgue spaces and multiplication by the factor 2750-9) give
is(1—=0) || A o)y AL S| A o) 1-6
25O Aylllee < IAG0Ie (221450700 2)
Applying Hélder’s inequality in the above expression, we get
J J 0 J1-0
9 gy < N2y 1"
Because p is greater than 2, LP is continuously included in Bg,p. Remark 3.1 leads to
(20) [ | g0y < o Nl 1157
Bpy.pg H

By vertue of Theorem 2.1, we get the result. O
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Let us come back to the profile decomposition of the sequence (ug)n>0. After rough cutting off
frequencies and sorting profiles according to their scale, we had got previously

3
uon(z) = Y Vi(w - zny) +Z Lo Vi@ + DAL L V(@) + (@)

je1 j€Jo je€Jx

J. 3
with T;Z)nn ZAi\)nJ,an cn )"—wn( )
7=0

1-0)

Firstly, we check the remaining term 1/1;{7” is still small in B;e(),pe
is the point of the proposition below.

-norm, in the following sense. That

1 1-0
Proposition 3.3. Let 0 < 6§ < 1. Under the interpolation relation — = — + —5 e have
Pe

"D

lim  lim 1 (- =0
Jirilwnjrilm ;Igbup‘|¢n 77” (1 9)

Proof. Let 0 < § < 1. By definition of 1/);{,,7 and thanks to (a + b)* < 2 (a® + b?), we have

2
s(l 9) + ”¢JH 1 9))

J 112 j
(21) 17 00 < 2 (HZAPW V@),

The embedding H® C B;glpee) and orthogonality of scales/cores imply

J o, 5
J 2 < P J J2
gz <[22 A8 Vo, + T e
(22) "
3 . 9
S (DI, o, V@3 +0(0) + [, when 1=+
3

By scaling invariance of the norm H® under the transformation u — Ay u, we get

n,jsTn,j

14 a1 < (

2
@) 5 + o)+ Iy, when n— +oo.
PY-Po

tends to 0 for n large enough, by Lebesgue Theorem. Therefore,
o0

For any j > 0, the term ‘ x)HZS

x)st = 0. As a result, we take

applying Lebesgue Theorem once again, we infer that lim
n—>+oo

in first the limit of H¢ ||2 <1-0) when n — +oo. Then, we take limit for  — +oo and at the last,
0P

for J — 4o00. Thanks to ProposMon 3.2, Proposition 3.3 is proved. ]

As it was already mentionned previously, the point of such rough cutting off in frequencies is that
profiles which are supported in the annulus 1 (L<lel<n) belong to the Sobolev spaces H?, for any s > 0.
,’7\ X

In particular, we can look at such profiles in the Sobolev spaces such as H*' with s; < s and H*2
with sg > s. That is the point in the following proposition: according to the size of the scale (either
small j € Jy or large j € Ju), profiles, trapped in the annulus, behave theirselves as “remaining terms”,
seen from the point of view of solving Navier-Stokes.
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Proposition 3.4.

3 .
‘ . o . s j _
For anyn >0, s1 <s, and j € Jy, e.g ngrfoo Anj =0, then ngrfw ‘A)\n’j’%’j‘/',7 (.%')HHSI 0.
3 )
. . o . s j B
For any n >0, s3> s, and j € Jw, €.g nEIJIrloo An,j = +00, then nETmHAAnMn,jV" (QJ)HHS2 =0.

Proof. Let s; < s. Let j € Jy and n > 0. Definition of H*'-norm and a variable change yield
3

3 2
3 Y o 251
HA)\n,jv$n7JVn (x)HHﬂ(]R?’) B /IR3 d
= [ P
R

Let us introduce the factor |£|. The hypothesis of the ring implies that

1T 2
>\n,j3(1 p)Vn]()‘n,jé)‘ dg

(23)

3

3 , 2
42, A

_ 2(s—s1) 2s |1/J 2
)\nyj \/]R?’ ’5‘ ‘VW (5)’ ’5‘2(3731) d§

< (0 A2V,

As A, ; tends to 0; this proves the first part of the proposition. The second part relies on similar
arguments and thus the proof is omitted. O

(24)

4. PROOF OF LEMMA 3.1

Given a bounded sequence (ug,,) in H* which profile decomposition is given by Theorem 2.1, we search
sequences associated solutions N.S(ug ), under the form of
NS(ugn) = Uty + R,‘im, where

a d f ] o0
(25) UptP = Z NS(VI)(t, - —zny) + €2 <U2,n +Upy + wg,n)’
JjE€J1

3 3
. 0 def P 7 oo def P J
with U9, S Y AL VI oand U S N CAL VL

jEJ() jeJoo

Plugging this decomposition into the Navier-Stokes equation leads to the following perturbed equation
on the error term Rr{m

OR), + R, VR —AR] +R;), VU +USY VR = —F] —Vp;
(26) div Ry, — 0
J —
Ry o = 0.

n7777

4
where the forcing term Fﬁ] , 1s given by F,;] n= Z F7 with
(=1

Fll=" S NS(Vi(t,- —wn;)) VNS(VE(L, —2,8)),
0<g,k<J1;5#k

B = 2 (U U+ 00,) 9 (€208, 4 U35 +00,)),

27 Rl = o202, + U, 40, ) V(3 NS - —)).
JjeN
it = (3 NSVt —w0g)- V(2 (U8, + U5, + v, ))-

jeJ1

Let us admit for a while the two following propositions
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Proposition 4.1. With notations (25), the sequence UphY is bounded in the space X5, uniformly in J
and 7,
def

(Ul x5 <00, VT < T = inf T, (VY).
je1
Proposition 4.2.
Jgrfoongrfmlﬁiup\\ wll 7z o1y = 0-

Completion of the proof of Lemma 3.1. Let €9 > 0. Let Ty be the time defined by
def ~
To = sup{0 < T < T | ||R; (¢ )Ilzoo (o) S €0}
Therefore, for any T' < Ty < T Theorem 6.1 implies

(28) 1B l3es. S 11172 oy eXP< NN e IURER 1, +T||Uapp\liioEHs )

Combining Propositions 4.1 and 4.2, Lemma 3.1 is proved. Therefore, to complete the proof, we shall
prove the two above propositions.

Proof of Proposition 4.1. By definition of U35} and vertue of (a + b)2 <2 (a2 + b2), we have

(29) |U2RP 1% < <HZNS (t, —n)| A (Ul + U +wn,n)H )

2

Xr

Let us focus for a moment on the heat term e <U0 +Upop +¥n 77) It is well-known that an H*-

energy estimate on the heat equation implies that ||e’ uH Yo S (| || %7+» for any u solution associated
T

The profile decomposition getting after the regularlzation process in (18) yields, up to triangular and
Young’s inequalites

e (U8, + Vs, + v ) s < [[won = D2 Vi =2y) H
Jjed1

with data ug in H*. As a result, we get

tA(UO +U°°+¢M>H H +U°°+¢m,

. 2
< 2ol + 2| Y2 Vi€~
je1

Let us admit for a while the following statement
(30) Vn > 0, HZ an — T j H ZHVJHHS +0o(1), when n — +oo.

je1 je1

Thanks to the orthogonality relation (9), the term Z HVnJH?{s satisfies Z HVn]HiF < Huomuzs +o(1),

jeJ JjeN
for n large enough. As a result, there exists a constant C' such that

(31) Vi > 0, Hem <US’17 + U, + )H C (|| uo, "HHS +0(1)), when n— +oo.
Now, let us come back to (29). Thanks to the previous estimate (31), we infer that

a j 2 2
Vn >0, HUn%pH%(% <C <H Z NS(V)(t,- —xw»)HX% + ||wo,n| s + o(l)), when n — +oo.
je1
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We admit for a while the following statement, for any 7" < T € int T.(V7) and 1 > 0.

je1
: 2 :
(32 | v ey, < Z INS(VE 3, +0(1), when 7 — +oo.
Jj€N T j€J1
Therefore, we have for any 7' < T 1n§ T.(V7)
J€J1
Vi >0, HUappHXS < <Z HNS(V#)H?X% + HuQnH?{S + o(l))7 when n — +oo.

Jje€N

As NS (Vn] ) solves NS-equation with initial data an belonging to H*® and since the time 7T is far away
from the blow up time, we infer that each term in the right-hand side is bounded, uniformly in J and 7.
Now let us prove (30). Clearly we have, thanks to the translations invariance of the H*-norm

IS Vit —a, = 2l —wn )2 Y (V=2 Vi =),

NS (G, k)EJy X Iy
J#k
9 ) X
=Y VilE 2 Y (A C =) AV C—ean)
JjeJ1 (J,k)ET] X Jq
J#k

where A = v/—A. The orthogonality of cores (e.g. lim |z, j — 2, 1| = +00) implies in particular that
n—o0

the term A°® Vnk(x + (@n,j — Tn)) weakly converges to 0 in L? and thus (notice that A® V,{(x) belongs
to L2, by hypothesis)
V>0, Y(j,k)eJxJ, lim A VI (@) AV (@ + (2 — Tnp)) do = 0,
n—oo IR,S

which ends up the proof of statement (30). Concerning statement (32), the proof is similar. Let € > 0.
As for any T < T — ¢, NS(VJ) belongs to the space XT = CT(HS) N LA(H*™Y). In particular, the
map t € [0, —¢] — N S(V] )(t,-) belongs to H®. Previous computations hold and, by vertue of
translation invariance of the H*-norm, we get for any ¢t < T and n > 0,

|52 w8t —ans)||,,. = SINSTE 2

( ) jeJ1 JjeS1
33 ,
2 Y (As NS(VI)(t,- = 5), A* NS(VF)(t, - —xn,k))p
(G, k)EJy X Jp
jk
Then, for any t in [0, — €], we get
2 7‘7k
|30 803t =)y € S INSOD ey +2 3 TS
je1 JEJ1 (4,k)€J1 xJ1

7k
where Fg:{;’k is defined by
reak G (ASNS(VI(t, - —ans), A NS(VE)E, -~ 1)
en p n ) n,j /s n ) n,k 12

(34) te[0,T—¢]

= sup A NS(VI)(t,-)A® NS(V V(- H(@n; — T ) de.
te[0,T—¢] R?
Because the map ¢ : t € [0,T —¢] — A® NS(V,{)(t, ) A° NS(Vnk)(t, +(2p; — Tpr)) € L' in continu-

ous on the compact [0,T — €] (as product of continuous functions), ([0, T — €]) is precompact in the
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Lebesgue space L' and thus can be covered by a finite open ball with an arbitrarily radius o > 0.
Let a be a positive radius. There exists an integer N, such that for any ¢ € [0,T — €|, 1(t) belongs

to U B . Thus, for any ¢ belonging to the compact [0, T - g], there exists a time ¢; such that

(35) [z < o+ [lo(t) |-

By vertue of the simple fact /f < / |f|, we infer that

L2t <a+ [l

IRS

Now, in order to conclude, we notice that Lebesgue theorem combining with the orthogonality property
of cores imply that the right-hand-side tends to 0, when n tends to +oo (since we can choose «
arbitrarily small) and thus, we get

NSNSVt ) A NSV (b, + (g = 2 )| do

¥n>0, V(G.k) €S x i, lim  sup  (ASNS(VI)(t- —a;), A° NS(Vnk)(t,-—xn,k))LQ —0.

"7 0, T—¢]

Therefore, we have proved for any T < T and n > 0,

E NS(an)(t,-—an e g HNS t")Hiw gy +o(1), when n — +oo.
L2 (H?) 7 (H?)
JjeN1 JEN

Concerning the L2(H*!)-norm, we write estimate (33) in H**'-norm. Then, the L2 (H**!)-norm of
crossed terms tends to 0, thanks to Lebesgue theorem and orthogonality of cores. Details are left to
the reader. Finally, we get (32)

. 2 . 5

H STNSV - —mn,j)HXS < SNSRIy +0(1), when 1 — +oo.

jeg T je

In order to complete the proof of Proposition 4.1, we have to prove that the term Z HNS(Vn])(t, : )HXS
T

Jje€N

is bounded, uniformly in J; (and thus in J) and 7. This will result from Remark 1.1 and the orthog-

onality of H*-norm (9) in profile theorem. Indeed, by vertue of profile decomposition of the bounded

sequence (ug,)n>0 in the Sobolev space H*®, we know that Z ||Vn]H2

Jje€N

is bounded. It means that

s

Ve >0, 3J7 C Ji, with |Jf[<oo ¥V je I\Jf, ([Vi]g <e

By vertue of Remark 1.1, we infer that for any j belonglng to Ji \ Ji, the Navier-Stokes solu-

tions NS(V]) associated with such profiles VJ satisfy HNS VJ HXS <2 HVJHHS Therefore, we
infer that
DoINSWE Iy < DINSTDEIE, +4 > IV
jEN je jEN\J
(36) < DOINSEHE I, + 4D IV
jEJf JjeJ1
< D INSEHE s + Alim sup o, .

jed;
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As we are not so close to the blow up time (since 7' < jn} T.(V7)), the term Z HNS(an)(t, : )Hi(s is
J€J1 4 T
JjeJy
bounded, uniformly in J; (since J; is finite and depends only on the sequence of profiles V7). Thus,
the proof of Proposition 4.1 is complete.

Proof of Proposition 4.2. We recall a basic property due to divergence free condition: for any vector
field u, smooth enough and divergence-free,

(37) u- Vo =div(u ® v)-

The property (37) provides us another expression of the exterior force term F,‘{ "
(38) Eyly = Loy + Ly + Iy

where

k= div<<2 S NSVt —way) + €D (U,?ﬂ7 U+ w;{m» ® eth (U,?m + U;?n)).
jeS1

(39) L2 =div((2 Z; NSVt =wng) + e (UL, + U5 +0l,) ) @ e2u,).
JEJ1

I;L]:??; = Frtzj,’% = Z NS(Vn] (t7 : _xn,j))' VNS(Vnk(ta : _xn,k))-
0<y,k<J1;j#k

Concerning 17{7’717, we apply (47) of Proposition 5.5, for any § > 0, such that s + 4 < 2,

Lleg 1 = s
VAl 2 gizery < CTAED) (TF UL, goms + TENUE N jovs )

<2 S0 NS —wng) + e (U8, + U, + i) |

XS
VISEA T

1 1 = o
<O (TFUS, s + THIUZ, s

A
(2102 s + e (0, + U + ), )
T
From (31), we infer that
1o, 1 =4 )
15 oy < CTED (TZNU s + THIU o)
X (10237 1z + luoallz= +o(1)) ;- when n = +oo.

Propositions 3.4 and 4.1 implies that I;l]j,l] tends to 0 when n tends to infinity

Ve >0, Ini(e, J,n), Yn = ni(e, J,n), I;L]:}? L) <e.
Concerning I{{jg, we apply the estimate (46) of Proposition 5.5
J,2 1eg 1 J
||In,n||L2T(H5—1) < CTQ(S 2) ||¢n,n||B;((91’509)
(41) <2 D NSO —ang) + 2 (UR, + U+ )|
T

jed1
1 1
Lis=Ly 1]
<OTHD 9l (U2l + ol e (1), when n = +oc.
Thanks to Proposition 3.3, we infer

Ve >0, 3J(e), VJ = J(e), 3i(J), 3ia(J), ¥y = i(J), Yn = 1ia(J), L5l 2 ey < &
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Concerning I;L];?], the argument relies on the approximation Lemma 5.6 applied with with o = § + %,
which proof is given in Appendix A. For the sake of simplicity, we note:

= NS(V{) and &F = NS(V}F).

Remark 4.1. As &7 and @F belong to the space L5 (H*)N L2.(H**'), an interpolation argument implies
they belong to the space L%(H§+%). Indeed, we have

(s+ L(3—s)
lull ;5 va < lullF 2 Hlull
Then, by integrating in time, we deduce that
_1 2(s+3
[l g, < T Il Tl %

Thanks to the divergence-free condition, we have [|@7.V@* =¥’ ® @kH?{S and thus

||Hs 1

T
1999812, oy = [ 19 0 2,

T T T
<Au@t@9wm&+éu@®@h@ma+én@®¢ws

3 3
As g + 1 < 3 a product rule in Sobolev spaces implies
(42) [uvllge < C(s) lull 4543 10l 5543

Therefore, we infer that :

T T
k k k k
199041 oy S 10T = B2 1M1 g+ [ 1922, g0 = 012 g

4
T .
+An@®ﬁws

Finally, Cauchy-Schwarz inequality and approximation Lemma 5.6 yield

k k k
197 VD175 oy S *[12 HL4(H +4 +€2H¢]H2 @i+ + 192 @ 2175 41

To conclude, we have to prove that ||® @ &2 tends to 0, for & small enough. This will come

L3.(H?)
from the orthogonality of cores. By definition, iz (resp. @F) is an approximation of & (resp. &F).
Because of translations by cores, we define &7 "(t,x— 1wy, ;) (resp. P "(t,x—wy,)) as an approximation
of ®I(t,x — xp, ) (vesp. P*(t,x — m,)). As L™ and " are compactly supported and concentrated
around z, ; and z,, , the divergence of cores ( . grf |y, ; — @ k| = +00) implies they are supported

on disjointed compacts. Therefore, the term || @ &F||2 converges to 0, for n large enough.

L3 (H")
In other words, we have

Ve >0, 3ile), Y > ae), | NSVt - w0 ) INS(VE(L- ~an )

2= 4]

Therefore, we infer that, Ve > 0, 3n(e), Vn > n(e),

J,3 _ j ) k
w) | = X NSO~ ) INS ()|
r 0<j,k< 1357k

€
,n . _ ~
L2.(Hs—1)

This concludes the proof of Proposition 4.2.
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5. APPENDIX A. PRODUCT AND PARAPRODUCT ESTIMATES

In this section, we give some typical product estimates, in which splitting frequency allows for a much
finer control of the product. The main tool is the homogeneous paradifferential calculus. For a de-
tailed presentation of it, we refer the reader to [1], page 85. We recall two fundamental statements
(see for instance Theorem 2.47 and 2.52 in [1]) about continuity of the homogeneous paraproduct op-
erator T, and the remainder operator R. We shall constantly be using these two theorems in the sequel.

Theorem 5.1. There exists a constant C' such that for any real number s and any (p,r) in [1,00]?,

: oo ol
we have for any (u,v) in L x By .,

ITwvll sy, < O flullzos oll s, |

Moreover, for any (s,t) in IRx] — 00,0[, (p,71,79) in [1,00]3, and (u,v) in Béoﬂ X B;,m’ we have

Cl—HS—HI ' 1 dof . 1 1
[Tl gotr < —— HU||E';§XM1 HUHB;” with x = mm{l, o + E}

Theorem 5.2. A constant C exists which satisfies the following properties.
Let (s1,52) be in IR? and (py,pa,r1,79) in [1,00]%. Let us assume that

1 def 1 1 1 def 1 1

+ — <1 and + —< 1.
p b1 P2 r T2
If s1 + sg is positive, then we have for any (u,v) in B;ih X B;;rz’
O +|s1+s2]
1R )l gorroe < ———ullgr |, 0l -

A lot of results of continuity may be deduced from the two above Theorems. For instance, we can
state the Lemma below.

Lemma 5.3. (Product rule in H*)

. 3 3
Let u and v be two functions in H® with —3 <5< 3 then

[uoll s < CCs) (llullgs ([0l 5 + llull o3 10llgs ) and  JJuvll e < CGs)llull s (o]l e
H?2 H?2 L°NH?2

Proof. We have to estimate a product in Sobolev space thus, we shall use the paradifferential calculus.
In particular, thanks to the Bony’s paraproduct decomposition, we get

uv =Tyv + R(u,v) + Tyu.
The term R(v,u) can be estimated in H*-norm easily, thanks to Theorem 5.2,

IR0l e < Clle ol

sy B . .
Therefore, thanks to embeddings BTIQ — B3, < B3, and Remark 3.1, we infer that
(44) 1B (u, )| s < Cllullgs o]l 5+
Concerning T,u and Ty, v, we use once again estimates of Theorem 5.1, which gives

ITvll s < C(s) ”uHB;;i H”HBQ%Q'

Because s — % is negative, Bernstein’s inequality and the classical embedding ¢%(Z) C £*°(Z) give

. cs—3 Ss—3
B3y = BOQ2 — Boo, -
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Therefore, we deduce that
[Tl e < Cs) Jull s NIl
Permuting the roles of u and v and using (44) gives the first part of the result. The second part of
Lemma 5.3 is easy. By vertue of Theorem 5.1, we have
[Tl e < C(s) [Jullzee 0]l s and [ Toull g < C(s) 0]l e ull 3
Moreover, it seems clear that, due to Theorem 5.2
1R, 0 org < Cllvllge llull 3

1,1
This leads to the proof of ||uv|| ;. < C(s) HuHmeH% ]| s -
Remark 5.1. Let us point out an interpolation inequality' by definition of s we have

(45) lull 3 < Clully, QHUHHSH

Therefore, combining this with Lemma 5.3, we get the result following which will be a frequent use
later

3
Corollary 5.4. Let u and v be in H? W1th <s < , then

s—=

5—s s—5 5—s
mmm<cm@wmmmfmgﬂ+mu|muﬂmmg

1 1-6
Proposition 5.5. Let 0 < 6 < 1. Under the interpolation relation — = — + —
pPo P
tA ) Lis—1
(46) lu® €10l ey < € TH D full ol gy
1 3 (o1
(47) For any g <a<y ,lu @ € TOHLQ (s SC T2 Hu||Xs 7ol o -

Proof. Let us start by proving the ﬁrst inequality. Bony’s paraproduct decomposition implies
u®ePry = Toap,u+ R(e®rg,u) 4+ Ty (ePro).

The first two terms can be estimated in H*-norm easily. Thanks to Theorem 5.1, we have

A
| Terary (@)l gro—py , < Cllef 7°0HBCS>O_;OHUH Bl
1 1 6 1-90
Let us recall that — is defined by — = — + ——, for any 6 in |0, 1].
Po po p 2

A classical result due to Bernstein’s inequality gives the following embedding B;go_oe) — BG %
Therefore we infer that

A
I Tees g (Wl 2 ey S €’ roll o saion vl 2 48

On the one hand, thanks to the hypothesis % < 5 <

%, we recover the Navier-Stokes solution u
—S

Hs+1 ?

S——

in X%-norm by an interpolation argument. As [jul| HuH we get

1 Sl

T
_ _1 _
. I gy = [ T Rl 2 S el T8 Tl

ST lul%s,
On the other hand, the simple embedding ¢P¢(Z) C ¢°°(Z) implies

e’ 7“oHLoo(Bsu 0y < lIroll g0 < liroll oo
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Finally, we have proved the proposition for the first two terms
tA 1og_1
1R(e" 0, w)ll 2 ey + Tty ()l 2. o) S T2 ol oo Il xs.

The last term T, (e! ro) is more delicate. Note that, here, as we work locally in time, low frequencies do
not play a major role, unlike high frequencies. As a result, we have to handle low and high frequencies
separately. It is natural to split them according to their size: either the frequencies are low (in the
sense that /727 < C) or the frequenties are high (in the sense that V727 > C).

Firstly, let us observe that

A A iS| A A
T o)l ey = 1Tl r0l 13 55,y = (P IATU 20 3.0
We split, according to low and high frequencies
1T o)l ey < (2 IATue2r0) 12 (12 Ly 7iccr )
- A
+ <2JSHAjTu(€t TO)HL%(L2)1{\/T21>C})
A classical result in Littlewood Paley theory gives the following estimates

AT, ( Z Sjr_1u Aji(e®ry).
lj=3'I<4

2(z)

Therefore, Holder’s inequality yields

. . 1 1 1
1A Tu(e®ro)llzz < D I1Sy—1ullpa | Ay (e"ro)|[pre  with 5= t—.
j—7'l<4 bo-— 4o

In particular, Bernstein’s inequality implies

j'=2
HSj/,luHngg Z “Aj//u“ng

i —

J — 00

gl 1 ) . i_ . .
< 2 WAl = Y W TP A e,

Applying Young’s inequality, we infer there exists a sequence (c;(t));cz belonging to the sphere
of £%(Z), such that

. (2 —s)
18y -rullzne < Cep(t) 250 ut) gy
As qp > 2, (*(Z) is included in £%(Z), which implies that
- —s)
ISy-1ullzsn < Ceplt) 250 Ju(®)l gy,

Therefore, we have

A A '(—25+6s) i (1-6) || A A
AT r0)le s D ep®2 7 ue)] 5, | 29O Ay e Bro) oo
li—j"<4

As j and j' are equivalent, we can write

- 2 _95405) S(1-0) 11 A
(50) 1A Tu(e 2 ro)llze S (0270 > fu(@)ll g | 27O A (e Aro) -
On the other hand, we have (see for instance Lemma 2.4 of [1])

. _ 24! .
(51) 1A (e r0)llzro S €7 [|Aj70] Ly
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As e_t22j/ < 1, integration in time yields
. 1
HAjl(etATQ)HLz%e(Lpe) < T'Po HAJ‘/TOHLPQ.

~

Above result combining with Hélder’s inequality in time imply

TNt e ey s )l a0 T8 2500 | Ao o

2 AT ro)llg 1 S 200
Therefore, as far as the low frequencies are concerned (v7'27 < C), we have

( —s+0s)
< 2 ) )
T 40 iy s )

]SHA Ty (e 7nO)HLQ 2,(L?) {\/_21<C}
R .
x Teo 275070 || Aro|| oo .
Applying Holder’s inequality for the £2(Z)-norm, we have
Lo A 12—
<2j5HAjTu(et TO)HL%(L2)1{\/TQJ<C})52 <T 2'pe s

(z)
% (lesllzge) 1y g 70l 00

+0s)+-L
" ) oo o)

ra6 (
1
Clearly, we have (ch ()] Lqe)gqe(z) < T'9 . Besides, we have
1 1 1 1 0 1-06
——<i—s+03>—i———i——:——(i—s—i—ﬁs—l):——<3 —i—u—s—i—es—l)
2 \po Do o 2 \pe 2\p 2
1 /36 3(1— ) 1 1
= —— —_ — — _1 = — - -
2<2 0s+ 5 s+0s > 2(3 2>

As a result, we infer that

<2j8“AjTu(etAr0)HL%(LQ)l{\/T21<C})ZQ(Z)

This completes the proof in the case of low frequencies. For the high frequencies, we need to use the
smoothing effect of the heat flow. Thanks to (51), we infer

1,1
< T Jult) g oy ol g0

_924!

—=)
(52) HA (6 To)HLpg (LPo) < 92 py HA /TQHLPQ

~

We write an estimate for 2/°|| AT, (" TO)HLQT(LQ) (vT2icy We come back to (50), we integrate in
time, applying Hoélder’s inequality

s A A (- —s+6s)
- 2 AT r0) 1z 2y S PP )l e g1 s
53

j((1-0) s+

2/ (0 50) YA (200) o g0
High frequencies hypothesis implies

<17 S+95>rru<t>

27| A T (2 r0) 12 (1) Ly sy ose ey les 0 o

1— Gs—l—
2 DA (€2 r0) 20 (10

Thanks to (52), we infer

< 772600y 1)

PNATue o)l 12 1) Ly arscy S assqare lleg ()2

(54)
x 21(=9)9) || Aiarg | oo

Once again, we apply Holder’s inequality for the £2(Z)-norm and we have

. . _1
<2]S“AjTu(etAT0)HL%«(LQ)l{\/TZJ)C})ZQ(Z) ,S T 2(

+05)+-
—s 5) a9 Hu( )HL‘X’(HS HTOHLPQ(B (1— 9)5)
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1,1 1 1 1
Then, the simple computation —— <— — s+ 03) 4+ — == <s — —> implies
2 \pg @ 2 2

(s—

N[

- 1
(QJHAjTu(etATO)||L2T(L2)1{\/T2j20})€2(z) ST 2) [Ju(t )HLOO(Hs HTOH o(1-6)-

This ends up the proof for the case of high frequencies and therefore the first 1nequahty of the propo-
sition is proved.

Now, let us prove the second inequality. The proof of which is very close to the previous one. We gives
only outlines. Thanks to Bony’s decomposition, we have

u®ePryg=T.a, u+R(e 70, 1) 4+ Ty (e ro).

The first two terms can be estimated in H®-norm easily, thanks to mapping of paraproduct in the
Besov spaces (cf Theorem 5.1)

A
| Teearull g5 < Clleroll oogllull oz
’ Boo,oo B2,2

On the one hand, Bernstein’s Lemma and obvious embedding ¢2(Z) C £°°(Z) ensure that

: a3 a3
B3y — B:Oj — B2 and thus ||e®rol ., 3 <

2
00,00

S ”emTO”Ba :

On the other hand, as s < s + 5 —a < s+ 1, u belongs to B2 9 . Interpolation argument yields

lull yorg-o < Cllull gorg-o < s  u IIHSH
22

By integration in time and thanks to Holder’s inequality, we have

T
Jul? < w15 (a5 dt
) 0

_1 _
ST HU\%;(}S I \‘22225“

L2 Hs+§ «@

Finally, we get
Llig—1
g ey < T2l

Therefore, we deduce an estimate of the term ||T,ea,, (u)]| 2 2 (17°) and ||R(e*?r, u)||L§(HS)'
Tossrgtlzg ey < THED ullxg ol

A Llig—1
1R(e" 0, w)ll 2 ey < T2 Jlullxg 7ol ra-
Now, in order to estimate the last term ||}, (e!®r)|| 12 (#r+)» We shall need splitting, according low and

high frequencies (e.g VT 2/ < 1 or /T 27 > 1). That is exactly the same computations as in the proof
of the first inequality of the proposition

. A : N
1A Tu(ePro)lle S D ISy—rullie|Aj (o), 5.

li—i'|<4
Thanks to the property ||Sj_1ulzr < [Jul|r» and the equivalence between j and j/, we get
1A Tu(e o)l 2 < llullze A (o) 3
By vertue of Sobolev embedding and integration in time

e | o
2 AT 10)lp 2y < 2 Nl ge ey 18521003 13-
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Concerning low frequencies (e.g vT 2/ < 1), we combine (51) with the rough boundary =2 < 1 and
we get

27 HAjTu(etAV"O)HL%(m) 1{\/T2j<c} S 27¢ Hu”Lgsv(Hs) HAJ’(TO)HLQT(L%)

< 27 HuHLg?(HS) 9—dlats—3) gjlat+s—3) 1A (ro) 3

iz uty

_i(y—3 : _3 1 .
< 2790 ull o ey 2D T A (1) 5.
Hypothesis of low frequencies implies

(55) <2js ”AjTu(etATO)HL%(LQ) 1{\/T2J<C}) < T2l

e@z) "~

N

_1
2 [l oo 7o) Iroll ove-g-
32

As far as high frequencies are concerned (e.g v/T'27 > 1), (51) combining with the integration of the

—t227

term e on [0,T7], gives

I, |
2% AT (o)l 12 (12 Ly © 2% Null e ey 27145 (r0) | s

j(s— —j(a+s—32 j(ats—3 A
S 20T e ey 277HTR 2R A (o)

—i(a—1L . 3 .
< 27O ull o ey ZEOHD A (o)
Hypothesis of high frequencies gives
; A tA Llig—1
(56) (P IATU o)1) L vrainey) gy S T2 Iellpine Iroll -3
3.2

. . _3
Combining (55) and (56) with the fact that BY', is embedded in Bg—;s 2 we get finally

1

1,_
(57) 1)l 3 ey S THOD o ey ol

This completes the proof of the second inequality of the proposition. Now, let us state an approximation

lemma. O

Lemma 5.6. Let 0 < 0 < 3 and ¢ > 0. Let a be an element of L4(H?). Then, there exists a
constant C' > 0, there exists a family of compactly supported functions, a., which satisfies for any
positive T

(58) lim fla — ac| s 5oy =0 and
(59) ”%”L‘lT(HG) < CHa”L‘lT(HG)'

Proof. Let us introduce the approximation function a. defined by

a. = x(e")a,

where y is the usual fonction of D(IR?) with value 1 near 0.
Let us start by proving (59). Due to product rule in Sobolev spaces recalled in Lemma 5.3, we have
laell o < C@) (e g llall o
(60) <C@) I, 3 lall o
< C(o) llall go

Now we prove (58). In order to apply Lebesgue Theorem, we have to prove there exists a positive
constant C, such that

(61) tim flaz — all o =0 and [loz — afl g, < C.
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Let us notice that ||a. — a| ;- is bounded, thanks to (60). Concerning the proof of lin(l) lac —all zo =0,
E—

one way is to approach the function a by an truncated element A. which Fourier transform is defined
by A:(§) = 6(5)1{e<\§\<1}' In this way, by vertue of Lebesgue Theorem, it seems clear that

2 lim ||A: — al| 7o = 0.
(62) lim [|A: —allg. =0
Therefore, we have

lac = allgo = [I[(1 = x(e-)) all g
< =x(e-) (@ = A llgo + (1= x(e-)) Acll o

By vertue of Lemma 5.3, we have

lac = all o < I =x(e My o = Acllgo + 10 = x()) Acl o
< (14 I3 ) o= el + 1= X(& ) Acll o

Now, we have just to prove that lir% |(1 —x(e-)) Acll 7o = 0. This comes from an interpolation argu-
E—

3
ment. Forany0<a<%anda<s<§,

I = x(e)) Acll g < L= x(e-) Acllz * 11— x(e-)) Acll,

1_2 a
<= x(e ) Acllya ™ (14 Il 53, ) 14<ll.

To conclude, we have just to notice that the term |[(1 — x(g-)) AsHEg tends to O for ¢ small enough,
by vertue of Lebesgue Theorem. The other term is obviously bounded, since A, belongs to any Sobolev
spaces, for any € > 0, thanks to truncature process. O

6. APPENDIX B.

In this appendix, we prove a general Theorem about an estimate in the X7j-space of a solution of a
perturbed Navier-Stokes system. The method is standard: the first step consists in establishing an H*-
energy estimate. Then, some computations on scalar-product terms lead to an inequality on which we
can apply Gronwall’s lemma. In particular, we apply this Theorem to prove that the map ug — Ty (ug)
is a lower semi-continous function on H*.

Theorem 6.1. Let q be an element belonging to the space X3, defined by for any T < f(q) =T

def

lalBey 012 ey + Nl sy

Let r be a solution of the following perturbed Navier-Stokes system

Or+rNr—Ar+r-Vg+qVr = —f—-Vp
div r = 0
Tlt=0 = ro.

Let g > 0. Let Ty be the time defined by
def ~
Ty 2 sup{0 < 7 < 7(q) | ()1 7 < 20}

Then, for any t < Ty, we have

Iy < (ol + 17125 gemry) o0 (577 T+ T F iy + Fllal gy )
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Proof. A H* scalar-product, time integration and triangular inequality yield
def
I Wl +2 [ )
) t
(63) < 7ol +2/ {((T-VT) |T’)Hs dt’ —|—2/ ‘((q-Vr)|r)Hs
0 0

t t
+2/ ‘((T'VCIHT)HS dt' +2/ {(f|r)Hs

0 0
We assess each term in the right-hand side; the divergence-free condition implies

|((7" -Vr) ]r)HS

dt’

dt’.

< -Vl go 7l o

< Alr@rllgs Irllgse

Thanks to Corollary 5.4, we infer that

‘((r -Vr) |T)HS

s+1
C(s)lIrll . lIr IIHSH

/

bP 1 1
Then, integrating in time and applying Young’s inequality ( b — + o with — + — = 1) yield
p p D

/wm:mgﬂ’

25 1 t ,
/ )25 a +— .

/Ot(((T'VT)\T)H

(64)

and /0 |((q -Vr) |T’)Hs

divergence-free condition, it is exactly the same estimate and we get

[((r-Va)|7) g

t
Now we have to estimate / |((T -Vq) |T)Hs . Actually, thanks to the
0

\ ||T VQHHS 1 HT||H5+1
< lr@dallgs 17l e

Once again, Corollary 5.4 gives

/Ot|((7“'VQ)|7“)Hs

t 1 3
s—5 S—s
dt' < C(s) / 171l s lall o gl %o Il grosadt’

/meWMﬁHMM

Young’s inequality implies

/uvvmmm
0

it < Cts) [ Il ol o

/mw1w2a+—/wmw

Same arguments give an estimate of exterior force term

[1617)

(65)

t
w</HMWAM@HM

<o [ 1t + 5 [ Iripaa

(66)
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Combining Inequalities (63), (64), (65) and (66), we get

t
6
wwsumh+c/wmﬂww/—W@ww
(67) 0 12

+00) [ I (I + Il Bl + 5 )
Let us introduce the time Ty defined by

def -~
Ty = sup{0 < T < T [ [|r(t)} o o) < €0}

Therefore, for any t < Ty, we have

def
Irl% 9 2, + /Hr\@w

t
Sl + [ U s+ [ 1 (57 + bl a2 + 1T )
Thanks to Gronwall’s lemma, we infer that for any 7' < Ty < <T

Iy < (ol + 17125 omry) o0 (577 T+ T H g + Fllal gy ):
This concludes the proof Theorem 6.1. O

Proposition below is well-known and can be seen as a consequence of Theorem 6.1. We perturb a
data by a small term and we are interesting in the consequence on the lifespan of the Navier-Stokes
solution associated with such a perturbed data. The lifespan of perturbed Navier-Stokes solution can
not decrease too much, compared to the lifespan of the non-perturbed one. More precisely, we have
the following proposition.

Proposition 6.2. The map ug — Ti(ug) is a lower semi-continous function on H*
e.g. Ve>0,3a >0, Yoy in H® such that |Jvo|| s < @, then Ti(ug + vo) = Ti(ug) — €.
Moreover, (under notations of Theorem 6.1), a constant C > 0 ezists such that for any T < Ty (ug) —
NS (ug +vo) — NS(uo)|; < C HUOH?'
(68) P s—1 =1
x exp (5 T+ T3 [NS(uo)lky + T INS(o)|Zo )
L (H*)

Proof. Let ug and vg two elements in H®. We operate a small perturbation of the data ug by vg (the
aim is to quantify this smallness condition) and we want to prove that the lifespan of the perturbed
Navier-Stokes solution N S(ug + vg) can not be much less than the lifespan of N.S(ug). The process is
standard. We introduce an error term R defined by

R(t,xz) = NS(up + vo) — NS(up).

Classical computations imply that R is solution of the following perturbed Navier-Stokes system

AR+ R-VR— AR+ R-VNS(ug) + NS(up) - VR = —Vp
(69) div R = 0
R|t:0 = (N

Let eg > 0. Let us introduce the time Ty defined by

Ty = sup{O <T < T(up) | ||R()|? Lee (1) 50}

Thanks to Theorem 6.1, we infer that for any T' < Tp

4
(1) IRI% < Clloolly, e (57 T+ T3 [NS(uo) g + T INSGuo) |70 )
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The above expression gives the smallness condition on [|vg|| ;.. Indeed, suppose that vy satifies

2 4
2 2s—1 -1 2 2s—1
(71) C HUOHHS exp <502 L83 ”NS(UQ)HX% + T||NS(up)| z%o(le)) < gg.
Therefore, the error term R, keeps on living until the time Ty (ug) — €, for any £ > 0. This concludes
the proof of the proposition. O
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