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ABOUT THE BEHAVIOUR OF REGULAR NAVIER-STOKES SOLUTIONS NEAR
THE BLOW UP

EUGENIE POULON

ABSTRACT. In this paper, we present some results about blow up of regular solutions to the ho-
mogeneous incompressible Navier-Stokes system, in the case of data in the Sobolev space H*(RR?),
1 3 . R . .. . .
where 5 <s < 3 Firstly, we will introduce the notion of minimal blow up Navier-Stokes solutions and

show that the set of such solutions is not only nonempty but also compact in a certain sense. Secondly,
we will state an uniform blow up rate for minimal Navier-Stokes solutions. The key tool is profile
theory as established by P. Gérard [17].

1. INTRODUCTION

We consider the Navier-Stokes system for incompressible fluids evolving in the whole space IR, De-
noting by u the velocity, a vector field in IR?, by p in R the pressure function, the Cauchy problem for
the homogeneous incompressible Navier-Stokes system is given by

du+u-Vu—Au = —Vp
(1) divu = 0
U‘tzo = ugp.

Throughout this paper, we will adopt the useful notation NS(ug) to mean the maximal solution of the
Navier-Stokes system, associated with the initial data wg.

Definition 1.1. Let s in IR. The homogeneous Sobolev space HS(R3) is the space of tempered
distributions u over R®, the Fourier transform of which belongs to L}OC(Rg) and satisfies

ful ([ e e tag ) < o

It is known that H*(IR?) is an Hilbert space if and only if s < 3. We will denote by (.")HS(Ing the

scalar product in H*(IR®). From now on, for the sake of simplicity, it will be an implicit understanding
that all computations will be done in the whole space R3.

Before stating the results we prove in this paper, we recall two fundamental properties of the incom-
pressible Navier-Stokes system. The first one is the conservation of the L? energy. Formally, let us
take the L? scalar product with the velocity u in the equation. We get

1d
) 33O + 19uOIE = = [ Fuu®) = [ (Tp0lu()

Thanks to the divergence free condition, obvious integration by parts implies that, for any vector field a

(3) (u Va]a) ,=0= (Vp\a) 9
L L

This gives

(4) 3 7 @Iz + IVu@)llz: = 0.
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2 EUGENIE POULON

The second property of the system is the scaling invariance. Let us define the above operator:

n 4 3 o def 1 t v —xo
(5) Ya € R s Ve ]R,* s VCEO eR N )\7:50U(t,$) = )\7‘1“(?’7)

If =1, we note A}\M = A -

It is easy to see that if u is smooth solution of Navier-Stokes system on [0, 7] X R? with pressure p
associated with the initial data ug, then, for any positive A, the vector field and the pressure

def def , o
ux = Myzou and py = A3, p

is a solution of Navier-Stokes system on the interval [0, \>T] x R?, associated with the initial data

ugx = Az Uo-

This leads to the definition of scaling invariant space, which is a key notion to investigate local and
global well-posedness issues for Navier-Stokes system.

Definition 1.2. A Banach space X is said to be scaling invariant, if its norm is invariant under the
scaling transformation defined by u +— u)

[fuallx = [lullx

The first main result on incompressible Navier-Stokes system is due to J. Leray, who proved in [25]
in 1934 that given an initial data in the energy space L?, the associated NS-solutions, called weak
solutions, exist globally in time. The key ingredient of the proof is the L?-energy conservation (4).
Moreover, such solutions are unique in 2-D; but the uniqueness in 3-D is still an open problem. One
way to adress this question of unique solvability in 3-D is to demand smoother initial data. In this
case, we definitely get a unique solution, but the other side of coin is that the problem is only locally
well-posed (and becomes globally well-posed under a scaling invariant smallness assumption on the
initial data). J. Leray stated such a theorem of existence of solutions, which he called semi-regular
solutions.

Theorem 1.1. Let an initial data ug be a divergence free vector field in L? such that Vug belongs to.Lz.
Then, there exists a positive time T, and a unique solution N S(ug) in C°([0,T], H) n L%([0,T], H?).
Moreover, a constant c; exists such that if ||uol|| 2 ||Vuo|| 2 < ¢1, then T' can be chosen equal to co.

The reader will have noticed that the quantity ||uol||z2||Vuo||z2 is scaling invariant under the oper-
ator Ay z,. Actually, that is the starting point of many frameworks concerning the global existence
in time of solutions under a scaling invariant smallness assumption on the data. The celebrated
first one was introduced in 1964, by H. Fujita and T. Kato. These authors stated a similar result
as J. Leray, but they demanded less regularity on the data. Indeed, they proved that for any ini-
tial data in H%, there exists a positive time 7' and there exists a unique solution N S(ug) belonging
to C9([0, T, H%) N L2([0, 7], Hg) Moreover, if HUOHH% is small enough, then the solution is global in
time. This theorem can be proved by a fixed-point argument and the key ingredient of the proof is that
the Sobolev space H > is invariant under the operator Ay ,,. In other words, the Sobolev space b3
has exactly the same scaling as Navier-Stokes equation. We refer the reader to [1], [13] or [24] for more
details of the proof. But in this paper, we are not interested in the particular kind of space. On the

: 1
contrary, we work with initial data belonging to homogeneous Sobolev spaces, H® with 3 <s< o1

which means that we are above the natural scaling of the equation. The first thing to do is to provide
an existence theorem of Navier-Stokes solutions with data in such Sobolev spaces H®. The Cauchy
problem is known to be locally well-posed; it can be proved by a fixed-point procedure in an adequate
function space (we refer the reader to the book [24], from page 146 to 148, of P-G. Lemarié-Rieusset).
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We shall constantly be using the following simplified notations:

L%O(Hé) d:ef LOO([O,T],HS) and L%(HS-‘rl) déf L2([0,T],H5+1).

Let us define the relevant function space we shall be working with in the sequel:

def

s del 2
X7 =

. . . . def
LEF(H°) 0 TR, equipped with [lulky < ull2. oy + 025 o)

: 1 3
Theorem 1.2. Let ug be in H®, with 3 <s< ok Then there exists a time T and there exists a unique

solution NS(ug) such that NS(ug) belongs to L (H?®) N LA(H*1).
Moreover, let Ty (ug) be the maximal time of existence of such a solution. Then, there exists a positive
constant ¢ such that

. def 1
(6) Ti(uo) lluoll%, = ¢, with o =
3(s —3)

Remark 1.1. As a by-product of the proof of Picard’s Theorem, we get actually for free the following
property: if the initial data is small enough (in the sense of there exists a positive constant cy, such
that T' |[uol|%;, < co), then a unique Navier-Stokes solution associated with it exists (locally in time,
until the blow up time given by the relation (6)) and satisfies the following linear control

co
Taol%. INS (uo)(t, - )l x5 < 2 [|luoll g7 -

s

(7) YO<T<

Formula (6) invites us to consider the lower boundary, denoted by AZs, of the lifespan of such a solution

Ags 3t inf{ T (uo)[uoll%, | wo € H* ; Tu(uo) < oo}.

Obviously, AZs exists and is a positive real number and we always have the formula
(8) T(uo)l|uoll%, = AZ*

Throughout this paper, we made the assumption of blow up, which is still an open problem. More
precisely, we claim the following hypothesis.

Hypothesis H: for any % <s< %, a divergence-free vector field ug exists in H® such that the lifespan
T\ (uo) is finite.

Let B, be the open ball in H* defined by B, = {ug € H* / lluol| s < p}. Let Ty > 0 be a positive real
number. We define a critical radius by the following formula

def A
ps(T%) = i
TS

Defined in this way and thanks to (8), we get an another definition of the critical radius

ps(Ti) =sup{ p >0 | [luollgs <p = Ti(uo) > Ti}.

Thanks to this definition, we define the notion of minimal blow up solution for the Navier-Stokes
System.

Definition 1.3. (minimal blow up solution)
We say that u = NS(ugp) is a minimal blow up solution if ug satisfies the two following assumptions:

uoll s = ps(Ti) and  Ti(ug) = T.

Therefore, w = N.S(up) is a minimal blow up solution if and only if AZs is reached: T (uo)||uo||%, = Ag®.

Question: If ps(Ty) is finite, do some minimal blow up solutions exist ?
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We will prove a stronger result: the set of initial data generating minimal blow up solutions, denoted
by M(T%), is not only a nonempty subset of H® (which, in particular, gives the positive answer to
the question) but also compact in a sense which is given in Theorem 1.3. We define the set M(T) as

follows
def

M,(T,) L {uo € H* | Tu(up) =T, and [uol . = ps(T*)}.
Theorem 1.3. Assuming hypothesis H. For any finite time Ty, the set My(T) is non empty and
compact, up to translations. This means that for any sequence (ug n)nen of points in the set Mg(T%),
a sequence (T, )nen of points of (R3)YN and a function V' in M(T,,) exist such that, up to an extraction
lim ||uon(- +2n) = V|[g. = 0.

n—-+oo

The second result of this paper states that the blow up rate of a minimal blow up solution can be
uniformely controlled since we get a priori bound of these minimal blow up solutions.

Theorem 1.4. (Control of minimal blow up solutions)

Assuming H, there exists a nondecreasing function Fy : [0, A% [— R with lirlgj Fy(r) = +o0
r—A:®
such that for any divergence free vector field ug in H®, generating minimal blow up solution (it

means T, (u0)||u0H;’;s = A?*), we have the following control on the minimal blow up solution N.S(ug)

1
VT < Ti(uo), [NS(uo)lxs < lluollgs Fs(T7s [Juoll z)-

1
Remark 1.2. Let us point out that the quantity T'7s ||ug|| ;. is scaling invariant; which is obviously
necessary.

The two previous theorems are the analogue of results, proved in the case of the Sobolev space 3. We
shall not recall all the statements existing in the literature concerning the regularity of Navier-Stokes
solutions in critical spaces, such as H 2. We refer for instance the reader to [13] and to the article of
C. Kenig et G. Koch [19], where the authors prove that NS-solutions which remain bounded in the
space H 2 do not become singular in finite time. Concerning Theorem 1.3, we were largely inspired by
the article of W. Rusin and V. Sverdk [29], in which the authors set up the key concept of minimal
blow-up for data in Sobolev space H 2, Firstly, they defined a critical radius p 1

pr=sup{p>0 ; |uol, 3 <p = Ti(uo) = +oo}.

1
2

Then, they introduced a subset M of H %, which describes the set of minimal-norm singularities (we
speak about minimal norm in the sense of HUOHH 3 is equal to the critical radius py)
2

M:{UOGH% ; T*(U())<+OO and HUOHH% :p%}.

Thanks to these definitions, W. Rusin and V. Sversk proved that if there exist elements in the space H 2
which develop singularities in finite time (we assume that blow-up occurs), then some of these elements
are of minimal F3-norm (and thus, the set M is nonempty) and compact up to translations and
dilations. It means that for any sequence (ugn)nen of points in the set M, a sequence (A, 2 )neN
and a function ¢ in M exist such that, up to an extraction, we have

TLEEI}OO HUO,n - AA’NJZTLSOHH% = 0

Let us point out that I. Gallagher, G. Koch and F. Planchon generalize in [16] the result of W. Rusin
and V. Sverdk to critical Lebesgue and Besov spaces, such as L3.

Concerning Theorem 1.4, our main source of inspiration is a result established by I. Gallagher in [14].
Given an initial data g in the open ball B,, . Then, by definition of p1, N.S(ug) is a global solution and
3 2



ABOUT THE BEHAVIOUR OF REGULAR NAVIER-STOKES SOLUTIONS NEAR THE BLOW UP 5

thus belongs to the space L*(R,, H'), thanks to the important paper [15] of I. Gallagher, D. Iftimie

and F. Planchon. In this way, the blow up in the Egr, = L*(Rq, H%) NL*(R,, H%)—norm does not

occur. Even better: I. Gallagher proved in [14] the a priori control of the Navier-Stokes solution with

data in the open ball B, in the sense of there exists a nondecreasing function F' defined from [0, p1 |
3 2

to R™ such that for any divergence free vector field ug in the open ball B,, , we have
2

INS (uo)ll pw, < F(lluoll ;1)-

Notation. We shall denote by C a constant which does not depend on the various parameters
appearing in this paper, and which may change from line to line. We shall also denote sometimes = < y
to mean there exists an absolute constant C' > 0 such that z < C'y.

The paper is organized in the following way:

In section 2, we recall the fundamental tool of this paper : profile decomposition of a bounded sequence
in H5. Then, we give the proof of the compactness of minimal blow up solutions set (Theorem 1.3)
and control of of such solutions (Theorem 1.4). These two results are based on the crucial Theorem 2.2
about the lifespan of a Navier-Stokes solution associated with a bounded sequence of H*.

Section 3 is devoted to the proof of Theorem 2.2, thanks to a regularization process. Firstly, we will
see that it is an immediate consequence of Lemma 3.1, which gives the structure of a Navier-Stokes
solution associated with a bounded sequence of data in H*. Secondly, we will provide some helpful
tools in order to prove Lemma 3.1.

In section 4, we prove Lemma 3.1, the result on which all others are based on. This section is the
most technical part of the paper. It relies on classical product and paraproduct estimates, which are
collected in Appendix A and B.

Acknowledgements. 1 am very grateful to 1. Gallagher for fruitful discussions around the question
of non-scale invariant spaces and to P. Gérard for many helpful comments.

2. PROFILES THEORY, COMPACTNESS RESULT AND APPLICATION

This section is devoted to the proof of Theorems 1.3 and 1.4. Following I. Gallagher [14], W. Rusin
and V. Sverédk [29], C. Kenig and G. Koch [19] and I. Gallagher, G. Koch, F. Planchon [16], we shall
use profile decomposition theory. The original motivation of this theory was the desciption of the

default of compactness in Sobolev embeddings (see for instance the pionneering works of P.-L. Lions
in [26], [27] and H. Brezis, J.-M. Coron in [7]. Here, we will use the theorem of P. Gérard [17], which

gives, up to extractions, the structure of a bounded sequence of H? , with s between 0 and 3 More

precisely, the default of compactness in the critical Sobolev embedding H?® c L” is descibed in terms
of a sum of rescaled and translated orthogonal profiles, up to a small term in LP. That was generalized

i d
to other Sobolev spaces H*P(IR?) with 0 < s < — by S. Jaffard in [18], to Besov spaces by G. Koch

in 23] and to general critical embeddings by H. gahouri, A. Cohen and G. Koch in [2]|. Let us notice
the recent work [5] of H. Bahouri, M. Majdoud and N. Masmoudi concerning the lack of compactness
of the Sobolev embedding of H'(IR?) in the critical Orlicz space £(IR?). Then profile decomposition
techniques have been applied in many works of evolution problems such as the high frequency study
of finite energy solutions to quintic wave equations on IR?, by H. Bahouri and P. Gérard [4]. C. Kenig
and F. Merle investigated in [20] the blow up property for the energy critical focusing non linear wave
equation. Profile techniques turned out to be also a relevant tool in the study of Schrédinger equations.
Notice this kind of decomposition was stated and developped, independently from [17], by F. Merle
and L. Vega [28] for L?-solutions of the critical non linear Schrdinger in 2D, in the continuation of the
work of J. Bourgain [6]. Then, S. Keraani revisited in [22] the work of H. Bahouri and P. Gérard [4]
in the context of energy critical non linear Schrédinger equations. C. Kenig and F. Merle investigated
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in [21] the global well-posedness, scattering and blow up matter for such solutions in the focusing and
radial case.

Remark 2.1. Using notation (5), we can prove easily that the L (as well as H*®)-norm is conserved

under the transformation u — Ap u. It means HA ull = ||ul.

)\:Eo >\330

Theorem 2.1. Let (upn)new be a bounded sequence in Hs. Then, up to an extraction:
- There exists a sequence of vectors fields, called profiles (V) e in H®.
- There exists a sequence of scales and cores (An j, Tn j)n jenN, such that, up to an extraction

(z) + ;) (x)  with hm limsup |4 |r» =0, and p=

n]:xnj —+00 pn—+too 3—2s

Mk

VJ 0 uo, n
7=0

Where (Anj, Tnj)nenN,jen+ are sequences of (IR7 x R3N with the following orthogonality property:
for every integers (j, k) such that j # k, we have

Ang A Tpi—
either lim (ﬂ + nk) =+00 or A j=A,r and lim [ng = Tnpl _ +00.
oo nd )\nd P ’ n—+oo >\’l’l,]
Moreover, for any J in IN, we have the following orthogonality property
J
(9) luonllFre = DIV % + 105115, + (1),  when n — +oo.

J=0

A first application of this, is Theorem 2.2 about the lifespan of a NS-solution associated with bounded
data in H?®. The proof of it will be given in section 3.

Theorem 2.2. Let (ug) be a bounded sequence of initial data in H* such that its profiles decompo-
sition is given by

T3
o, ( ZAiwwn; (z) + ) (x)  with hm limsup ||¢ || » = 0.

=0 n—-+00

Let us define Jy as the subset of indices j in IN, such that the profile V7 is non-zero and such that the
associated scale )\, ; is identically equal to 1.

If 71 =0, then lig}rnf T (uopn) = +o0.
If then liminf T.(ug,) > inf T.(V7).
Ji# 0, then liminf T.(uo,) ot (V7)

Remark 2.2. Let us point out some facts. Firstly, if T, (V) = 400 for any j, then limJirnf T (ug,n) = +00.
n—-+0oo
Secondly, in the case where [J; is non empty, the quantity jn} T.(V7) exists and obviously, if |7;] is
JeN
finite, we get immediately that 4in§ T.(V7) = mf}l T, (V7). In the case where | 71] is infinite, we get the
J€I1 j€T

same conclusion. Indeed, by vertue of (9), the serie Z % Hip
j=0
in the summation integers belonging to J1), and thus ,ligrn V7|l ;75 = 0. Thanks to Inequality (6), we
j—+oo

is summable (a fortiori if we consider

deduce that lim T,(V7) = 400 and thus
J—+o0o

inf 7.(V7) >0 and  inf T.(V’) = min T.(V7).
JjEN JjEN JET
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This result gives us an important information: whenever a sequence of initial data which satisfies
profiles hypothesis (it means a bounded sequence in H ®), we get an information on the lifespan of
the NS-solution associated with such a sequence of initial data: it mainly depends on the lifespan of
profiles with a constant scale. Note that the orthogonality property on scales and cores in Theorem 2.1
implies either the scales are different (in the sense that lim ( Tl Ak
n—+00 )\n,k An7j
the same (A, j = An k), equal to a constant, and the cores go away from one another, in the sense that
lim |xn,j — T,k
n—-+0oo )\nd-
it is one, up to rescaling profiles by a fixed constant.
Theorem 2.2 has a key role in the proof of the compactness Theorem 1.3: the set M(T}), recalled
below, is non empty and compact, up to translations.

M(T,) == {ug €H* | Tu(up) =T, and [uol g = ps(T*)}.

) = +00) or the scales are

= +o00. In the last case where scales are equal to a constant, we shall assume that

2.1. Proof of the compactness Theorem 1.3.

Proof. By definition of A%, we consider a minimizing sequence (ug,)n>0 such that
Os

ngrfoo Ti(uon) lluonllF. = AZ:-

Up to a rescaling process, we can assume that the minimizing sequence (ug)n>0 satisfies

(10) Im  |uopl g = ps(Ty) and  Ti(uop) = Ts.

n—-+4o0o

Indeed, consider the sequence (vg)n>0 defined as

1 1
von(z) (T* (;3@) 2 UO’n«T* (;f,n)> 2 x)

The reader notices that the Navier-Stokes solution associated with such a sequence (vg ) has a lifespan
T* (UO,n)
T
definition of ps(7%). As defined, (upn)n>0 is a sequence of points of the set My(T%); it is a bounded

sequence in H* and thus we can apply Theorem 2.1. Taking limit when n — 400 in (9), we get

equal to Ty. As ||von|%, = ( ) lluon]| %, , it seems clear now we can assume (10), by vertue of

J
VIZ0, pAT) =D |V,
=0

Let us assume that there are two non-zero profiles at least. Then we should have

Vi e {0, I} V3. < p3(T%).
By definiton of p4(7%), it means all profiles V7 generate solutions whose lifespan satisfies
(11) T.(VI) > T,, ¥Vj € {0,---,J}

As Ty (up ) = Ty < oo for any n, Theorem 2.2 implies that J; # (): there exists at least one profile

with constant scale. Moreover, thanks to Remark 2.2, we have jn} T.(V7) = m? T.(V7). Combining
JeN JeN

this with Relation (11) implies that

7% it 7,(v9) > 1o
JjeN

By hypothesis on (4o n)new and thanks to Theorem 2.2, we get a contradiction, since we have

liminf T (ugp) = To = T > T
n—-+o00
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It means there exists an integer jo such that the profile, V7o has a lifespan which satisfies T’ 90 L T,
In particular, by definition of ps(7%), it implies that ||V70||§-{S > p2(T,). And, thanks to the orthogonal

property of the H*-norm (9), we deduce the equality
V%, = p3(Te).

Now, we have just to check that T, = T; 90 We have already proved a first inequality: T 90 < T
The other way is given by (8): we have always the following relation: T7° V7 1%, = AZs. Thanks to

Os

: A .
the result [|[V7°%, = pd*(Ty) = TC , we get the second inequality: 77° > T,. Thus, the set M(T})
*

is non empty and thus, there exists some minimal Navier-Stokes solutions. The compactness of the
set M,(T%) is a consequence of the above work. Thanks to (9) and [[V?°|| ;. = ps(T), we infer that

Vj#jo, V/=0 and lim [j¢]|%, =0.
n—-+00

The above assumption implies in particular that jo € J;. Indeed, if jo ¢ Jp, then 73 = () and thus we
should have T, = 400, which is absurd. As a result, there exists a unique integer jo € J1, such that

o () = Vo (x — 2nj,) + w,{(x)

The property nll)rfoo Hwéﬂzs = 0 implies nEToo [0, (- +Tjon) — VI s = 0. O

2.2. Proof of Theorem 1.4.

1

Proof. Let us consider a critical element u = N.S(ug) : T¥° (uo)||uo|| 7. = Ae. By vertue of a rescaling,
1

we can asume that [|uol| ;. = 1 and thus T (ug) = A.. Let us introduce the following set

s dof {”NS(U0>HXT ug in H® such that |[ugl|ys =1 and T < Ags}.

Theorem 1.3 claims that the set N7 is nonempty. The aim is to prove that sup N7 is finite for any 7'
If not, a sequence (ugn)n>0 in H® exists, such that for any 7' < Ty (ug,), we have
(12) [uonllys =1, Ti(uon) = AZ® and  Tim [[NS(uon)|xs = oo

n——+00

By hypothesis, the sequence (ug n)n>0 belongs to the set M(Ty). Therefore, there exist a sequence of
cores (Tp)new and a function V' in M (Ty) such that, up to an extraction:

(13) i [Juo( +2n) = V| 7. =0,
We can prove easily that, for any 7' < T,(V):
(14) NS(uon(-+zn)) = NS(V) + R, with Er}g |Rnllx, =0
Indeed, we define
def
RO,n = UO,n(' + xn) - V.

Because of (13), the sequence (Ro.,)n>0 converges to 0 in H*-norm, for n large enough. Moreover, the
error term R, satifies the following perturbed Navier-Stokes system

O Ry + Ry - VR, — ARy + Ry - VNS(V) + NS(V) - VR, = —Vp
(15) div R, = 0
Rn\t:O = RO,n-

Applying forthcoming Theorem 6.1, we infer that, for any 7' < T (V') and for n large enough
INS(uon(- +2n))x7 < [NS(V)l[x7 4 0(1).

As ||NS(uon(- + xn))llxp = [|NS(uon)| x,, we take the limit when n — 400 in the above inequality
and thus we get a contradiction with the assumption. O
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3. PROOF OF THEOREM 2.2 AND TOOL BOX FOR LEMMA 3.1

All the previous results are based on Theorem 2.2. In this section, we prove this theorem, which relies
on Lemma 3.1. This last one gives the structure of the Navier-Stokes solution associated with an initial
data which has a profile decomposition. In others words, we wonder if, given the profile decomposition
of a sequence of data, we get a similar decomposition on the Navier-Stokes solution itself. Lemma 3.1
gives a positive answer.

Let us recall to the reader that this question has already been studied by I. Gallagher in [14] in the case
of initial data in the Sobolev space H? and the same author with G. Koch, F. Planchon [16] in others
critical spaces (e.g scaled invariant under the Navier-Stokes transformation). In our case, the difficulty
is that the homogeneous Sobolev space H? is not a scale invariant space under the natural scaling of
the Navier-Stokes equation. To overcome this issue, the method consists in cutting off frequencies of
profiles [4] (such profiles will have the useful property to belong to any H*, for any s). In particular,
profiles scaled by 0 (resp. 0o) will tend to 0 in some Sobolev spaces (more precisely in H! with s; < s),
(resp. H*®? with so > s) and therefore, will not perturb the profile decomposition of the NS-solution.

3.1. Key Lemma and application. Let (uo,)n>0 be a bounded sequence of initial data in Hs.
Thanks to Theorem 2.1, (ugn)n>0 can be written as follows, up to an extraction

UOn Z n],ﬂﬁng )+¢J( )

=0

By vertue of orthogonality of scales and cores given by Theorem 2.1, we sort profiles according to their
scales

(16) ton(@) = Y Ve )+ 3 AL L V@) (@)

JET JETT
Jsd i<J

where for any j € Ji, forany n € N, A\, ; =1
We claim we have the following structure lemma of the Navier-Stokes solutions, which proof will be
provided in section 4. This lemma highlights the specific role of profiles with constant-scales.
Lemma 3.1. (Profile decomposition of the Navier-Stokes solution)
Let (uon)n>0 be a bounded sequence of initial data in H® which profile decomposition is given by

J 3

o () =Y A} VIi(x)+ ().

An,jsTn,j
Jj=0

Then, u is a Navier-Stokes solution associated with the bounded sequence ug, (e.g u = NS(uoy)) if

and only if the error term R;) defined by R def NS(ugn) — UXPY is a solution of the below perturbed
Navier-Stokes equation

&R + R].VR] — AR} + R] - VU™ 4 UP*' YR] = —FJ - Vp!
(17) div R;{ = 0
R%\t:o = 0.

where F! is a forcing term which will be explicitely detailed in (26) and

) 3 .

Uz, 2) E ST NSV (ta = ) + (DAL L V@) + 0l (@),
j§51 jejlc
Jj<d Jj<d
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Moreover, the lifespan 7;) of the error term R; satisifies

Ve>0,3J>03Iny;=>0Yn>ny, 7)> inf T.(V7) —e.
J€J1

Proof of Theorem 2.2. Clearly, Theorem 2.2 is an immediate consequence of Lemma 3.1. Assume

Lemma 3.1 is proved. On the one hand, if there is no non zero profile with constant scale (e.g J1 = 0),

the “profile decomposition” of the solution in Lemma 3.1 implies that limJirnf T (ug,n) = +00. On the
n—-+0oo

other hand, if J; # 0, the lifespan of sequence NS(uy,,) is given by the lifespan of profiles, scaled by
the constant 1 and T (uoz) > jn} T, (V7). This ends up the proof of Theorem 2.2.
e

3.2. Tool box. In this subsection, we recall some basic facts about homogeneous Besov spaces and
we prove some properties we need to the proof of Lemma 3.1. We refer the reader to [1], from page 63,
for a detailed presentation of the theory and analysis of homogeneous Besov spaces.

Definition 3.1. Let s be in R, (p,r) in [1,+00]? and u in §'. A tempered distribution u is an element
of the Besov space B, if u satifies

1

def ; : T
lull s, % (327 1Asullfe)" < oo,
' jEZL

where Aj is a frequencies localization operator (called Littlewood-Paley operator), defined by

A def _ —ile
Aju(§) = FH (e (27 IEha9).
with ¢ € D([3,2]), such that Z ©(277t) = 1, for any t > 0.
JEZ
Remark 3.1. We have the embedding H*® C B§2 These spaces coincide if s < 3.

The first thing we have to notice is the following: given a bounded sequence of data in H? (thus we get
a profile decomposition of this sequence), Theorem 2.1 implies that the term ¢ (), (which is bounded
in H*), satisfies:
lim limsup |97 ||z = 0.
J—=+00 n—too
In fact, thanks to an interpolation argument, we can prove that the remaining term w;{ tends to 0 in
certain Besov spaces. That is the point in the following proposition.

Proposition 3.2. For any 0 < 6 < 1, let pg be a positive real number given by the interpolation
relation

1 0 1-0

Py P 2
Then, under the same hypothesis of Theorem 2.1, we have:

lim L I\l wsa—0) = O
Sl Tim sup [ B0

Proof. Interpolation inequality in the Lebesgue spaces and multiplication by the factor 2750-9) give
is(1=0) || A .1\ J A J0 IS\ A oy 1-6
25001 Agil oo <AL (2P I1AG0711L2) -
Applying Hélder’s inequality in the above expression, we get
J J|0 J)1-0
qu/}n ||B;é{;99) < ||wn HBgm qu/)n| BS,Q‘
Because p is greater than 2, L? is continuously included in ng. Remark 3.1 leads to

J J 0 J1-60
(18) 1 oo < Nl 1% e 10
PgPo
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By vertue of Theorem 2.1, we get the result. O

Let us come back to the profile decomposition of the sequence (ug n)n>0 and introduce some notations.
Let n > 0 be the parameter of rough cutting off frequencies. We define by u,(z) and ue,(z) the
elements which Fourier transform is given by

(19) (&) = WE) L1 ey and (&) = WO (1 = Lz gjgany)-

From the profiles decomposition (16), we infer, thanks to the orthogonality property of scales, that
among profiles V7 such that j belongs to €71, there are profiles with small scales (j € Jp) and large
scales (j € Jx)- These profiles are cut (according to the parameter ), with respect to notations (19)
and we get

3

U(] TL Z V] x - .Tn] + Z An, ,39Tn,j J:) + Z Ain,j,mn,j‘/nj(x) + w;l]m(x)
JE.{} JG.? j§~<7z>]o
< < J<
(20) J J

J def 3 J
where wnﬁl(x) = Z A§\Jn jvanV] ( ) + r(/]n (l'),
JETE=ToUT o0
JisJ
with for any j € Jp, lim A, ; =0 and for any j € Js, lim A, ; = +oo.
n—+400 n—-4o0o
Firstly, we check the remaining term w;{m is still small in B;{g}];e)—norm, in the following sense. That
is the point of the proposition below.
.. . . .1 6 1-—60
Proposition 3.3. Let 0 < 0 < 1. Under the interpolation relation — = — + 5 we have
pg P

li li li . =0.
J—1>Too 77—1>r—|1—1c>o ;IESUP Hwnn” <1 9>

Proof. Let 0 < 6 < 1. By definition of 1,&‘] and thanks to (a + b)? < a® + b2, we have

w tagen SIS AL 0

jejl
i<J

2

J|2
) + . (1—6) -
B;‘(gl,;:) 2% “Bpé%p60>

The embedding H* B;glp 99) and the orthogonality of scales and cores imply

2
00 % | 3 INCAC) 19 -

H

jegg

is<J
(22) 3 ' - .

J
S (Z HAinyj,l’n,j ‘/Cn(x)HHs Hs + O(]‘)) + ||¢n HB;él.;:)‘
jegs '
J<J
. 3

By scaling invariance of the norm H*® under the transformation u — A S, We get

9l (Z!

For any j > 0, the term ‘

2
(@) s + o ))"‘WnH (-0 when n — +o0.

tends to 0 for n large enough by Lebesgue Theorem. Therefore,

@)%

)sz = 0. As a result, we take

applying Lebesgue Theorem once again, we infer that hm
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in first the upper limit of HwnnH £1-0) when n — +o00. Then, we take the limit for n — 400 and at
the last, for J — 4+00. Thanks to Prop081t10n 3.2, Proposition 3.3 is proved. U

As it was already mentionned previously, the point of such rough cutting off in frequencies is that
profiles which are supported in the annulus 1{l<|§|<n}’ belong to the Sobolev spaces H?, for any s > 0.
77\ X

In particular, we can look at such profiles in the Sobolev spaces such as H*!' with s; < s and H*
with s9 > s. That is the point in the following proposition: according to the size of the scale (either
small j in Jy or large j in Ju), profiles, trapped in the annulus, behave theirselves as “remaining
terms”, seen from the point of view of solving Navier-Stokes.

Proposition 3.4.

. . L p ] _
For anyn >0, s; <s, and j € Jo, €.8 ngrf Anj =0, then hm HA Mg s V] (aU)HHS1 =0.
. . R P .] _
For anyn >0, s3> s, and j € T, €.8 ngr}rl Anj = +00, then hm ‘A Nosions Vi (x)HHsz =0.

Proof. Let s; < s. Let j € Jo and n > 0. Definition of H*'-norm and a variable change yield
’ J 2 281 3(1-1)7,J 2
HAAW@MVW (x>HH51(1RS = s €17 Ans ™ Vi (A”’jS)‘ de

— )\ (s 51)/ ’£|281 |V1,7](§)‘2d£
RS
Let us introduce the factor |£|. The hypothesis of the ring implies that
3 . 2 - 1
P j _ 2(s—s1) 2s 7 2
|88, e V@], = Ang?e /}R P IV O gy
< (0 M)V IV

He1
As A\, ; tends to 0; this proves the first part of the proposition. The second part relies on similar
arguments and thus the proof is omitted. 0

(23)

(24)

4. PROOF OF LEMMA 3.1

Given a bounded sequence (ug ) in H* which profile decomposition is given by Theorem 2.1, we search
sequences associated solutions NS(ug ), under the form of

NS(up,) = U 4RI where
def : 3 .
Uzt ST NSVt =) + €2 (DAL L, V(@) + (@)
IS FISNVES
isd i<J

(25)

Note that if J; = 0, the the approximation term ngp"] is reduced to the linear part
3
J A » j J
Uzt = A (AL L V@) + (),
jege
Ji<J
Plugging this decomposition into the Navier-Stokes equation leads to the following perturbed equation
on the error term R;
OR] + R].VR] — AR] + R} - VU’ + UPP VR] = —FJ] - Vp]
(26) div R/ = 0
J —
Rn\t:O - 0.
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where the forcing term F is given by FJ Z F,;] £ with

FMll= % NS(Vj)(t,-—:cmj)-VNS(Vk)(t,'—xn,k),

0<g,k<T155#k
3

Fl? = etA(Z Ai,jwn,jvj(x) + djr{(x)) ’ v<etA(Z A/En,jvxn,j V(@) + ¢;{(x))>,

JETY €T}
i< isd
(27) >
F’;ng = etA (Z A)\pn,j71'n,jv ( ) + wn ) (Z NS V] _xn’j>)7
jeTf i€
i<t i<t
. 3 .
FJL]A = (Z NS(VI)(t,- —$n,j)) ‘ v(etA<Z Aﬁ\)n,jvxn,j VI (z) + w;{(x)))
jed JETY
Ji<J J<J

Let us admit for a while the two following propositions.

Proposition 4.1. With notations (37), the sequence UZP*” is bounded in the space X2, uniformly

in J and n,

HUnapp7J”X5 < oo, VT < T d_ef 1nf T (V])

JjeET

Once again, we use the convention that 1n§ T.(V7) = 400 if Jy is empty. Let us admit for a while
J€I1

the following proposition.

Proposition 4.2.

Jhm lim sup || E; =0.

500 n—soo HLQ Hs 1

Completion of the proof of Lemma 3.1. Let €9 > 0. Let Ty be the time defined by

def ~
Ty = sup{O <T<T||Rt )HZCX> () 80}.

Therefore, for any T' < Ty < T Theorem 6.1 1mphes
08) IR S IE I sy oo (7 T4 T3 U39 Ry + T U )

Combining Propositions 4.1 and 4.2, Lemma 3.1 is proved. Therefore, to complete the proof, we shall
prove the two above propositions.

Proof of Proposition 4.1. By definition of U2PP and vertue of (a+ b)2 <2 (a2 + b2), we have

2 3 . 2
(20) Uz, < (HZ NS(VI)( —:cn,j)HXS + HetA(Z AL V(@) +¢;§(w))‘xs>-
JjeT] T JeTf .
J<J Jj<J

3 )
Let us focus for a moment on the heat term em<z A/{'n]_ o jVJ (x) + 1/);{(3:)) It is well-known that

JETT
i<J

an H®-energy estimate on the heat equation implies that HetAuHXS < HuoHés, for any w solution

. T
associated with data ug in H®. As a result, we get
3 2
tA
H@ <ZA§\7n,77$n,7V +1/}n )HXS HZ n}vl'nj )+wn( )HHS

JE€TY JETY
I<d J<J
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Therefore, profile decomposition yields, up to triangular and Young’s inequalites

HetA(Z A:i’j’xnij () + ¥ (2) )HXS Hu()n -3 v —xn,j)HiIs

J€TT S
i<J Jj<J
9 , 2
<2 [luoalye + 2|30 VI~
FIS
JisJ
Let us admit for a while the following statement
(30) Vn > 0, HZ VI(-—y H ZHVJHHS +0(1), when n — +oo.
J€T1 jeT
Jj<d J<d

Thanks to the orthogonality relation (9), the term Z HVJHZS satisfies Z HVJH; < HUO"HZs + o(1),

JE€ET1 jed
J<J Jj<J
for n large enough. As a result,
3 ) 2 9
B) >0, [¢2(D0AL L V@ +ul@)] | S lluonFe o), when n— oo
JETT T
i<d

Now, let us come back to (29). Thanks to the previous estimate (31), we infer that

: 2 9
Vi >0, HUspp’JH%(; < HZ NS(VI)(t,- _xn’j)HX°' + HUO’HHHS +0o(1), when n — +oc.
T

JjeT
Jj<J

We admit for a while the following statement, for any 7' < 7L i T, (V7) and 5 > 0.

jeT
(32) HZ NS(VI)(t, —an,;) H <D INSO(E )|, + (1), when n — foc.
j€eT JjeT
Ji<J J<J

Therefore, we have for any 7' < T m} T.(V7)
JeEN

V>0, (U (Z INSE) |2+ luomlle + 0(1)), when 71— +oo.

JET]
Ji<J

As NS(V,{) solves NS-equation with initial data an belonging to H*® and since the time T is far away
from the blow up time, we infer that each term in the right-hand side is bounded, uniformly in J and 7.
Now let us prove (30). Clearly we have, thanks to the translations invariance of the H®-norm

IS Vo, = SV -mlfye +2 X (v [V o),

VISISY IS (J,k)eT) x T

Jisd i<J j#k
=Y VG +2 > (IPIVIC—aag) [ IDIVEC=201))
jeT (4,k)eT1 XTI
J<d J#k

where |D| = v/—A. The orthogonality of cores (e.g. lim |z, ; — %y x| = +00) implies in particular
n—o0
that the term |D|* V*(x + (2, — ) weakly converges to 0 in L? and thus (notice that |D|® an(x)
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belongs to L?, by hypothesis)
Vn >0, V(j,k) e xJT, li_>m /3 |DI* VI(2) |DI* VF(x + (2 — Tp)) da = 0,
n—oo R

which ends up the proof of statement (30). Concerning statement (32), the proof is similar. Let £ > 0.
Asfor any T < T — ¢, NS(V]) belongs to the space XT = CT(HS) N LA(H*™). In particular, the

map ¢t € [0,T — 5] — NS(VJ)( -) belongs to H*. Previous computations hold and, by vertue of
translation invariance of the H5-norm, we get for any t < T and n >0,

(33)
|3 w8 . = SINSV I
J€ET1 jeT
J<J i<J
+2 Y (IDF NSOt —aag) |IDI NSVE)(E - —20p)) -
(jwk)ééJ]lCXJl
J

Then, for any t in [0,7 — €], we get

HZNS(VJ')(t,-—an HLoo %) S ZHNS (Vo) HLOO sy T2 Z Lok,
j€T1 JE€ET (G, k)ETL X T1
Jj<dJ i<J £k

where Fg:{;k is defined by

S,J def s ] S
rsik € sup (DI NS(VI)(t,- —any) | D] NS(vk)(t,-—xn,k)) 2
(34) te[0,7—¢] L
= sup / IDI* NS(VI)(t,-) DI NS(VF)(t, - +(xn; — Tnp)) da.
te[0,T—e] /IR

The map ¢ : t € [0,T —¢] — |D|* NS(VI)(t,- \D]sNS(Vk)(t - +(xpn; — xpk)) is continuous on the
compact [0, — &, with value in L'(IR®). Thus, ¢ ([0, T — &]) is precompact in the Lebesgue space L* (IR?)
and thus can be covered by a finite open ball with an arbitrarily radius a > 0. Let o be a positive

radius. There exists an integer N, such that for any t € [0,7 — €], 1(t) belongs to U B(v(t), a).
=1
Thus, for any t belonging to the compact [0, T — €], there exists a time ¢; such that

(35) [P sy < @+ 9@ L1 w3 -

By vertue of the simple fact /f < / |f|, we infer that

LE5F < a+ 19t 1wy

—a [ [IDFNSOA)t,) DI NSVt — )| da
R

Now, in order to conclude, we notice that Lebesgue theorem combining with the orthogonality property
of cores imply that the right-hand-side tends to 0, when n tends to +oo (since we can choose «
arbitrarily small) and thus, we get

>0, V(K e x T, lim swp (DI NSVt —2ny) | DI NSVE)(E - —ang)) | =0,
te[0,T—¢]
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Therefore, we have proved for any T < T and n >0,

HZNS(V]‘)(t,-—a:W H ZHNS (VI)( HLOO () +o0(1), when n— +oo.
J€ET1 jeT
i<J Jisd

Concerning the L2 (H**!)-norm, we write estimate (33) in H**'-norm. Then, the L2 (H**!)-norm of
crossed terms tends to 0, thanks to Lebesgue theorem and orthogonality of cores. Details are left to
the reader. Finally, we get (32)

“ZNS(Vj)(t,'—J:n7J H ZHNS (VI)( HXg +o0o(1), when n — +oc.
i€y €T
ng ]<J
In order to complete the proof of Proposition 4.1, we have to prove that the term Z HNS V] HXS
j€T
Ji<J

is bounded, uniformly in J; (and thus in J) and n. This will result from Remark 1.1 and the orthog-
onality of H*-norm (9) in profile theorem. Indeed, by vertue of profile decomposition of the bounded
sequence (g, )n>0 in the Sobolev space H®, we know that Z V7%
JjeTy
Ji<J
Ve >0, 3J]" C Ji, with |J| <oo V je Ti\J{, [V ]gs <€

By vertue of Remark 1.1, we infer that for any j belonging to Ji\ Jif, the Navier-Stokes solu-

is bounded. It means that

S

tions N.S(V7) associated with such profiles V7 satisfy HNS (VI)( HXS <2 HVjHHs' Therefore, we
infer that
SIINSWA 5 < DINSEOE +4 D0 IV
J'€~71 ]6.71 ]EJI\JI*
Jj<d i<J
< YISV, + 43 IV,
<36) jeTf Jj€T1
j<J Jj<d
< DIINSV)(E )y + Alimsup fuonll.
n—+o00
]6.71
JisJ
As we are not so close to the blow up time (since 7' < jienél T.(V7)), the term ; HNS (VI)( HX*
JIeJq
Ji<J

bounded, uniformly in J; (since J;* is finite and depends only on the sequence of profiles V7). Thus,
the proof of Proposition 4.1 is complete.

Proof of Proposition 4.2. In order to prove the smallness result on the forcing term, we shall need to
use the regularization process mentionned in the tool box of the previous section. Let us recall that
we get an approximation of the Navier-Stokes solution associated with such a data, under the form of

NS(upy,) = UPP? 4RI where

UappJ( defZNSVJ)( —xn7j)+em<z/\%. ,Vj(-)+¢;{('))7

An,jrTn,j
S JETT
J<J §<J

(37)

As already mentionned in (20), profiles are sorted with respect of the size of scales. Moreover, we cut
off frequencies of profiles with small and big scales and therefore, decomposition (37) can be rewritten
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as follows
J def j tA (770 J
(38) Uzpp (¢, ) S NS(VI)(t, - —any) + e (Un,n +US, + %n(-)),
JETL
Ji<d
. o def 3 P def . i
Wlth Un777 - ZA)\pn,jyxn,jVﬁj ’ U'g?n - Z Ain,jyrn,jvj
]'E{}) ]€~<7:>]o
(39) e n L
1€} J J
and wnﬂl - Z A§7L,j7xn7j‘/c77 + Z Ai\)'rl,j»xn,j‘/cn + wn
i€Jo Jj€ITx0
J<J J<J

Let us point out that the main point is that, by vertue of Proposition 3.4, the terms U,(i77 and Uy, are

. 0 .
small in the sense that, for any § > 0, for any n > 0, Un yllf7s—s = 0 and nll)r}rloo [Upenllgs+s = 0.

lim ||
n—-+oo
We recall a basic property due to divergence free condition: for any vector field u, smooth enough and
divergence-free,

(40) u- Vo =div(u ® v)-

The property (40) provides us another expression of the exterior force term F;Z
J J, J, J,

(41) Fl =L+ L2+ 1P,

where

Il =div((2 D NSVt —ang) + €2 (UL, + U5, + () ) @ e (UD, + U5, )).

JjE€T1
Jj<d
(12) T2 =div((2 Y NSOVt —ang) + € (UL, + U, + v, (@) @ e2u,).
<
P=F'= Y NSVt —an;) VNSVH)(t, —2n).

0<y,k<T135#k

Concerning I;l]j,l,, we apply (50) of Proposition 5.5, for any § > 0, such that s + 46 < 3,

1,1 =) s
‘|Ir{:717||L%(Hs_1) <CT2l2) (T : HUS,nHHS—(‘ + TQHUT?,OWHHSM)
<2 D2 NSV —ang) + €2 (U8, + U + i) |
T

JETL

(43) i<J

1 1 ) )

<CTHD (TF U Nl jos + THIT N jovs )
- <2 ”USpp,JHX% + HetA (Ug,n +Upy + %D;{,n> HX> '
T
From (31), we infer that
leo_ 1 =4 [
VAl 3 ey < CTECD (TFUD, llgos + THIURS gors )
X (||Uspp"]\|x; + ol s + o(l)) , when n — +oo.

Propositions 3.4 and 4.1 implies that I;L]j% tends to 0 when n tends to infinity

IJ,I

Ve >0, 37”[1(57J,77>7 vn>ﬁ1(€>J777)7 n,n

. <e.
L2.(Frs=1)
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Concerning I,if’%, we apply the estimate (49) of Proposition 5.5

leg 1
|| 77”L2(Hg 1) CTQ(S Q)er{nu '5(1*9)

2 3" NSV, —any) + 2 (U, + U, + 0y ‘
(44) H ];1 7 ( ) X3
_]<J
< CTz0 ||¢m7|| 20-0) (HUapp’JHXs + |lwon |l s +o(1 )), when n — +o00.

Thanks to Proposition 3.3, we infer
Ve >0, 3J(e), VJ = J(e), (), Inia(J),¥n = 7(J), ¥n > 1ia(J), HI,{:%HL%(Hs,l) <e

Concerning I{{j%, the argument relies on the approximation Lemma 5.6 applied with with o = § + %,
which proof is given in Appendix A. For the sake of simplicity, we note:

®) = NS(VJ) and &% = NS(VF).

Remark 4.1. As @7 and " belong to the space L (HS) HL%(HSH), an interpolation argument implies
they belong to the space L%(H%+%). Indeed, we have

3(s+3)
lull geg < llullfy 2 llu ||Hs+1
Then, by integrating in time, we deduce that
4 -1 3-2
Il g, < T Il T2
Thanks to the divergence-free condition, we have ||#/. Vo |2 Froo1 = = ||#7 @ &F||% . and thus

T
199912y .y = [ 19 @01,

T T T
</H@L@Q®W&+/\@@@“@M%+/Hﬁ®ﬁws
0 0 0

3 3
As 3 + 1 < 3 a product rule in Sobolev spaces implies

(45) luvllgs < Cs) lull 59 0l ;548

Therefore, we infer that :

T T
19 901 sy S [0 = B2 g 1012 g+ [ 1B, 10 = 212

T B
+AH@®@WS

Finally, Cauchy-Schwarz inequality and approximation Lemma 5.6 yield

& v+ SEWHI, sy TP, g IRl B

||L2 Hs 1) H%+%) H.s

To conclude, we have to prove that H(PJ ® ok tends to 0, for € small enough. This will come

L2.(H*)
from the orthogonality of cores. By definition, @j (resp. @F) is an approximation of & (resp. &F).
Because of translations by cores, we define &2 (¢, z — Zn,j) (resp. P "(t,x—xy)) as an approximation

of &I (t,x — 2, ;) (resp. ®F(t,x — 2, 1)). As ®L" and B are compactly supported and concentrated
around z, ; and x, i, the divergence of cores ( lirf |y, j — Tp k| = +00) implies they are supported
n—-+0o0o
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on disjointed compacts. Therefore, the term ¢! ® @’;Hiz (i7+) COMVerges to 0, for n large enough.
T

°)
In other words, we have

Ve > 0, 3n(e), ¥n > fie), HNS(W (t,- —an)) VNS(VF)(2, —xn,k)]

: <
L3 ||
Therefore, we infer that, Ve > 0, 3n(e), Vn = n(e),

I NSVt —20)) INSVAE -~ |, o <
(46) & L3 (1) Ogj’k;#k ! Pl
(J.k)eT?

This concludes the proof of Proposition 4.2.

5. APPENDIX A. PRODUCT AND PARAPRODUCT ESTIMATES

In this section, we give some typical product estimates, in which splitting frequency allows for a much
finer control of the product. The main tool is the homogeneous paradifferential calculus. For a de-
tailed presentation of it, we refer the reader to [1], page 85. We recall two fundamental statements
(see for instance Theorem 2.47 and 2.52 in [1]) about continuity of the homogeneous paraproduct op-
erator T', and the remainder operator R. We shall constantly be using these two theorems in the sequel.

Theorem 5.1. There exists a constant C' such that for any real number s and any (p,r) in [1,00]?,

we have for any (u,v) in L x By .,

I7w0llg;, < T lullie 10l 5,

13, and (u,v) in Bt_, x B, we have

Moreover, for any (s,t) in Rx| — 00,0[, (p,r1,72) in [1,00 o1 o

Cl—‘r s+t 1 def 1 1
oy < — . . ; € i = 4 = L.
HTuUHBp,tf ST ||UHBgoyr1 HU”B;)TQ with .~ min L, " + =
Theorem 5.2. A constant C exists which satisfies the following properties.
Let (s1,89) be in R? and (p1, pa,71,79) in [1,00]%. Let us assume that
1 1 1 1 1 1
et <1 and ¥ S <
p b1 P2 T L2
If s1 + so is positive, then we have for any (u,v) in B;}“ X B;;m,
C1+ls1+s2|

lul

| R (u, U)Hg;}j% < TS 48y p1.r1

lvll 52,
A lot of results of continuity may be deduced from the two above Theorems. For instance, we can

state the Lemma below.

Lemma 5.3. (Product rule in H*)

. 3
Let v and v be two functions in H® with —5 <s< oL then

el e < CCs) (Nullge 0] 53+l 3 ol ) and uvllge < Cls) lll, - ol

Proof. We have to estimate a product in Sobolev space thus, we shall use the paradifferential calculus.
In particular, thanks to the Bony’s paraproduct decomposition, we get

uv =Tyv + R(u,v) + Tyu.
The term R(v,u) can be estimated in H*-norm easily, thanks to Theorem 5.2,

I8 005 < Cllul g ol



20 EUGENIE POULON

! . .
Therefore, thanks to embeddings ijQ — B3, < B3, and Remark 3.1, we infer that

(47) 1R (. < Clull ol 5.
Concerning T,u and T,v, we use once again estimates of Theorem 5.1, which gives
1Tl e < Cs) [Jull o5 vl 5 -
00,00 2,2
Because s — % is negative, Bernstein’s inequality and the classical embedding ¢?(Z) C (*°(Z) give

. 53 g3
B3y — B3 = Boo -
Therefore, we deduce that
[Tuvll s < CC) ull s [101] -
Permuting the roles of w and v and using (47) gives the first part of the result. The second part of
Lemma 5.3 is easy. By vertue of Theorem 5.1, we have

[Tuvll s < Cs) [Jullzee [0l s and | Toull o < C() 0]l s lull 5+
Moreover, it seems clear that, due to Theorem 5.2

IR0 < Clvl 5
This leads to the proof of ||uv|| ;. < C(s) HUHLOOOH% V]l -
Remark 5.1. Let us point out an interpolation inequality: by definition of s we have
3
5—s

1
o1
(48) lull 3 < Cllull 52 [l foss -

Therefore, combining this with Lemma 5.3, we get the result following which will be a frequent use

later on.

. 1 3
Corollary 5.4. Let u and v be in H® with 5 <s< > then

ol e < CCs) (ol g ol ol 2+l el 3 ol )

1 6 1-6
Proposition 5.5. Let 0 < 6 < 1. Under the interpolation relation — = — + 5
by D
tA 1(s-1
(49) lu ® e 7roll 2 ey < C T2 2)HU||X;HT0HB;(S{;;>-
1 3 tA La-1)
(50) For any 5 <a<g, lu ® e rOHL%(HS) < C T2 2||u xs [Iol| -

Proof. Let us start by proving the first inequality. Bony’s paraproduct decomposition implies

u®ePrg =T 1Ay, U+ R(e B, u) + T(ePro).

e

The first two terms can be estimated in H*-norm easily. Thanks to Theorem 5.1, we have

tA
oo (), < Cletrol g
1 1 0 1-90
Let us recall that — is defined by — = — + —— for any 6 in |0, 1].
Do Py P 2

A classical result due to Bernstein’s inequality gives the following embedding B;(g}o_oe) — B 2.
Therefore we infer that

A
HTetATo(u)HL%(HS) S/ Het TOHL%O(B;(SI’;OQ))HUHL%(H%)
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On the one hand, thanks to the hypothesis % < 5 < %, we recover the Navier-Stokes solution u

we get

_1
in X7-norm by an interpolation argument. As ||u|| \uH 2 ||u||HSj17

1 S|

T
_ 2s—11,,18=25 gy < 2s—1 s—1 3—2s
- el 3, = /0 el Ml e < a3y T Nl ey

ST Jullk,
On the other hand, the simple embedding ¢7¢(Z) C ¢°°(Z) implies
¢! TOHLOO(B a0y < llroll goo—o < liroll go0-0-
Finally, we have proved the proposition for the first two terms
IR r0,0)l g ey + [Tty (0l g iy S THOH Mol ool

The last term T, (e! ro) is more delicate. Note that, here, as we work locally in time, low frequencies do
not play a major role, unlike high frequencies. As a result, we have to handle low and high frequencies
separately. It is natural to split them according to their size: either the frequencies are low (in the
sense that v/7T2/ < C) or the frequenties are high (in the sense that v/T27 > C).

Firstly, let us observe that

1T o)l 3 irey = ITule!®r0) 2 .,y = (szHAjTu(emm)nL% (LQ))

We split, according to low and high frequencies

e2(z)

T 10l 3 ey < (2 IATA2r0) 09 L (v T50)

(52)
j tA
+ (QJSHAjTu(e TO)“L%(Lz)l{ﬁy}C})p(Z)'
A classical result in Littlewood Paley theory gives the following estimates
A To(etrg) Z S]r,lu A (e Aro).
li—J'1<4
Therefore, Holder’s inequality yields
. ) 1 1 1
1A Tu(e?ro)lle < D I1Sy-1ullpa | Aj (¢ ro)lles with ;= -t
& Do o
l7—5"1<4
In particular, Bernstein’s inequality implies
§'=2
”Sj/,l’LLHLqe < Z HA]'//UHLQQ
j”:foo
§'=2 §'=2
35" (35501 (o
< S e Al = S 2 GV A
j”—foo j”—foo

Applying Young’s inequality, we infer there exists for any ¢, a sequence (c;(t))jez belonging to the
sphere of £%(Z), such that

R (2 —s)
HSj/_luHLQG < chl(t) 2] Pe ° ||u(t)HB§7q9
As qg > 2, £2(Z) is included in £%(Z), which implies that

18 _1ullzae < Cep(t) 2 5o~ Jju(t g
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Therefore, we have

. 2+9 g .
1A Tue o)l S 30 ep®2 50 )l 5, 25O Ap (e r0) oo,
li—j"|<4

As j and j’ are equivalent, we can write
- —25+0 S(1-0) || A
(53) JATu (e ro)lze S es )25 ut) | 55 2900 As(ero) | oo
On the other hand, we have (see for instance Lemma 2.4 of [1])
. 102 -/ .
(54) 1A (e ro)llzre S €™ |Aj7o0] Lo
As e < 1, integration in time yields
. A 1
HAjl(et TO)HL;Q(LPG) S TPG ”Aj/T’OHLPQ.
Above result combining with Hdélder’s inequality in time imply

. . (3 _s+0 1 . o .
2| Ay Tu(e o)l zz) S 2770 I ul®)ll e o e Bl oo T8 275070 | Agro]| oo

Therefore, as far as the low frequencies are concerned (vT27 < C), we have
1

(—s+05)
2]SHA T (6 TO)HL2 (L?) {f2J<C} < T 2'py 546 s) H

1 . .
x Tro 295070 | Ao | 1o

Ol e (i) €5 (O] 20

Applying Hélder’s inequality for the £2(Z)-norm, we have

o tA —3(5y—st0s)+ 5,
(23 HA]Tu(e TO)HL%(LQ)l{\/TQjéC})EQ(Z) < T 2 pg Po ||’u,( )HL%O(HS)
% (el ) g 70l 000
1
Clearly, we have (ch(t)HLng)m - < T'9 . Besides, we have
1 1 1 1 1-—
—= <35+95> +—+—=—2 <3s+¢981> = —= (30+3(0)s+951>
2 \po Do o 2 \pe 2\p 2
1 (30 3(1—0) 1 1

As a result, we infer that

(FNATue o)z 1 (vFch)

This completes the proof in the case of low frequencies. For the high frequencies, we need to use the
smoothing effect of the heat flow. Thanks to (54), we infer

leo 1
<7361 Hu(t)HL;O(HS)HTOHBZS,IZ;’)'

_o,4!

. —=<4] .
(55) ”Aj/(etArO)”L;G(LpQ) <270 ||Ajro||pee-

We write an estimate for 2jsHAjTu(etAro)HLzT(Lz)l{ﬁszC}. We come back to (53), we integrate in
time, applying Holder’s inequality

s A (L —s4+0s
56 2| A (e o)l 2,22y S 270 ()l oo ey lles ()] a0
ol (1-0s+2) 1A 70) [ 20 110 -
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High frequencies hypothesis implies

—%(i—s—&—Hs)

2% A Tu(er0) | 12) Loy S T sl o ey 5 ()

i(1—6)s+-2 A
2](( ) pe) ||Aj(6tAT0)||L§9(Lp9)'

Thanks to (55), we infer

—s+0's)

(57) 2J8”A (e’ TO)HLQ (L2) {f23>c} ST 20 Hu(t)HLgs(Hs)||Cj(t)HLqT9
« 93((1=0)s) HAerHLpe_

Once again, we apply Holder’s inequality for the ¢?(Z)-norm and we have

s A -1 —s+05s)+
(P VATl g o) yrossey) gy ST 257 0 Ol Il g -0

1,1 11 1
Then, the simple computation —— (— -5+ 93) + — == (s — 7> implies
2 \pg qe T2 2

N

L _1
(2]||AjTu(etAr0>||L2T(L2)1{\/T2j20}>£2(z) ST (=) ||u(t)HL%O(Hs)HTOHB;él’;e@)-

23

This ends up the proof for the case of high frequencies and therefore the first inequality of the propo-

sition is proved.

Now, let us prove the second inequality, which proof is very close to the previous one. We gives only

outlines. Thanks to Bony’s decomposition, we have

U®€tAT'Q—TtA U+R(6 0, U )+T(€ T())

The first two terms can be estimated in H%-norm easily, thanks to mapping of paraproduct in the

Besov spaces (cf Theorem 5.1)

[ Tetaryull g, < Clleroll g lull osg o
2,2 B 2

oooo 22

On the one hand, Bernstein’s Lemma and obvious embedding ¢?(Z) C ¢°°(Z) ensure that

2
00,00

, a3 g3
B, — B, 7 — Boo@  and thus HetATOHBW3 S lleroll g -

On the other hand, as s < s + 5 —a < s+ 1, u belongs to 32 20 Interpolation argument yields

lull o3 < Clull <l E lull
2

2,2

Hs+2—a Hs+1

By integration in time and thanks to Holder’s inequality, we have
T
2 2a—1 3-2
2, gy < Tt e 52 a

STl el 2500

Finally, we get

1 1
] <7272 Ju xs.

L2 HS*T"‘)
Therefore, we deduce an estimate of the term || T,:a,, (u)HLz (1) and ||R(e'®ro, U)HL%(HS)'

[ Teraryull p2 7+ < <7272 [lul|x; [Iroll -

A L1
1R(e" 0, w)ll 2 7y < T2 %) JlullxglIroll ra-
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Now, in order to estimate the last term ||T},(e*®70)]| L2.(frs), We shall need splitting, according low and

high frequencies (e.g VT2 <1or VT2 > 1). That is exactly the same computations as in the proof
of the first inequality of the proposition

1A Tu(ero)llzz S D 1S—1ulliell Ay (e"ro)
l7—3"1<4

I

Thanks to the property ||S;_1ulzr < |lulzr and the equivalence between j and j’, we get
1A T (e ro)ll 2 S llullze | Aj(e2ro)l s
By vertue of Sobolev embedding and integration in time

. A
2% | Ay Tu(e®r0) 1212y < 2% ull e gy 185(€" 7“0)||L2 8-

Concerning low frequencies (e.g vT'29 < 1), we combine (54) with the rough boundary e~2” < 1 and
we get
is || A A 1 ;
27185 T o)z o) Liymaicey S 27 Il e ey ”AJ(TO)HL%(L%)
< ois . 9—ilats=3) gjla+s—3) |IA .
<2 el 27D PO A )l )
< 9=l

_3 1 _3 1 A
8 ull e iy 2D T A ()] 5.

Hypothesis of low frequencies implies

(58) (2js HA]‘Tu(etATO)HL%(H) 1{\/T2j<0}>€2( 2) ST (o HUHLOO 9) ol . o3
3 2

[NIES

As far as high frequencies are concerned (e.g VT2 > 1), (54) combining with the integration of the

— 1227

term e on [0,T7], gives

2 | AT ro) |12, 12) Lyaisey S 2% [l Loe (79 2771 A (ro) |

L}
< 2i(s=1) HUHLoo . g-ilats—3)

i) 272D ||A ()|

S 279078 Jul e 0 27720 A (o) 3

3
Ls

L3
Hypothesis of high frequencies gives

- 1
(59) (275 HAjTu(etArO)HHT(B) 1{\/:?2]'20})[2@) ST 2) ||U||Loo (F9) Iroll . pota-§
3 2

. cats 3
Combining (58) and (59) with the fact that BS, is embedded in Bg—gs 2 we get finally

Lig_1
(60) 17 r0) L3 ey S T2 e vy ol o

This completes the proof of the second inequality of the proposition. Now, let us state an approximation
lemma. ]

Lemma 5.6. Let 0 < 0 < 3 and ¢ > 0. Let a be an element of L4(H?). Then, there exists a

constant C' > 0, there exists a family of compactly supported functions, a., which satisfies for any
positive T

(61) ;1_% la — CLEHL%(HU) =0 and

(62) lacllLs gy < Cllalla oy
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Proof. Let us introduce the approximation function a. defined by
a: = x(e")a,

where x is the usual fonction of D(IR®) with value 1 near 0.
Let us start by proving (62). Due to product rule in Sobolev spaces recalled in Lemma 5.3, we have

lacll g < C@) Ix(e . lall
C(@) Il . 3 llal -
C(0) llall -

Now we prove (61). In order to apply Lebesgue Theorem, we have to prove there exists a positive
constant C, such that

(63) <
<

4 li —all o = d —all 5., < C.
(64) EIL%HCLE alge =0 and [lac —al[g. <C

Let us notice that ||a. — a| ;- is bounded, thanks to (63). Concerning the proof of lirr(l) lae — all o =0,
E—r
one way is to approach the function a by an truncated element A, which Fourier transform is defined
by A, (&) = a(§)1{n<|§|<l}. In this way, by vertue of Lebesgue Theorem, it seems clear that
~X \n

(65) lim |4, — af 4, = 0.

Therefore, we have

By vertue of Lemma 5.3, we have

lae = all go < N1 =x(e)ll 53, o llo = Anll o + 11 = x(£-)) Anll g

< (1 I3 ) e = Agllgo + 100 = x(e ) Agll o

Now, we have just to prove that liH(l) (1 —x(e-)) Ayl go = 0. This comes from an interpolation argu-
e—

3
ment. Forany0<0<%anda<s<§,

1= x(e ) Anllgro < (1= x(e-)) Ayl I1(1 - X(E'))AWHEIS

1-2 z

<= xE) Al (14 Iy, ) 140l
To conclude, we have just to notice that the term ||(1 — x(e-)) AnHngg tends to O for € small enough,
by vertue of Lebesgue Theorem. The other term is obviously bounded, since A, belongs to any Sobolev
spaces, for any € > 0, thanks to truncature process. O

6. APPENDIX B.

In this appendix, we prove a general Theorem about an estimate in the X7-space of a solution of a
perturbed Navier-Stokes system. The method is standard: the first step consists in establishing an H-
energy estimate. Then, some computations on scalar-product terms lead to an inequality on which we
can apply Gronwall’s lemma. In particular, we apply this Theorem to prove that the map ug — Ty (ug)
is a lower semi-continous function on H*.

Theorem 6.1. Let ¢ be an element belonging to the space X3., defined by for any T' < f(q) =T

def 2

”q,g(% = ||qHL%O(Hs) + HQH%/%(H&H)
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Let r be a solution of the following perturbed Navier-Stokes system

Or+r.Vr—Ar+r-Vq+qVr = —f—-Vp
div r = 0
Tt=0 = To-

Let eg > 0. Let Ty be the time defined by
def ~
To = sup{0 < T < T(q) | ||r(t)H2%o(Hs) <eo}

Then, for any t < Ty, we have

Iy < (ol + 17125 gemsy) e (577 T+ T F iy + Fllal Tty )-

Proof. A H* scalar-product, time integration and triangular inequality yield
def
Iy 1l +2 [ et
(66) \roH23+2/\ V) |7 dt’+2/\ q-Vr)|r) .

+2/\ -Vq) | Hgdt+2/‘f| ie| dt’

We assess each term in the right-hand side; the divergence-free condition implies

|((r -Vr) |7’)Hs

dt’

< lr- Vel s 17l o
< r@rllgs Il

Thanks to Corollary 5.4, we infer that

‘((T -Vr) ]T)HS

s+1
< C(s) Irll .2 M IIH&H

/

bP 1 1
Then, integrating in time and applying Young’s inequality ( b< — + , with — 4+ — = 1) yield
p 2 p p

/wmﬂwwl’

21
/WI i+ L HMM

/Ot}((r-Vrﬂr)H

(67)

dt’. Actually, thanks to the

dt’ and /0 ‘((q -Vr) |7“)H5

divergence-free condition, it is exactly the same estimate and we get

‘((7“ : VQ)‘T)HS

¢
Now we have to estimate / [((r-Va)|7) g
0

< - Vall o 7l o

< llr@all s I7ll o

Once again, Corollary 5.4 gives

/uwvmwm
0

< /Hmmmwmwmmww

/wawﬂwwl
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Young’s inequality implies
2 3—2
< /mwiww1wugw

t
/0 [((r-Va)|7) .| dt
+C(s /mw1w%ﬁ+/wmw

Same arguments give an estimate of exterior force term

t t
IR P e A P T P

<O [ Wyt + 5 [ it

Combining Inequalities (66), (67), (68) and (69), we get

t
6
Irl%, < HMK+0/HMWAMJA R

(68)

(69)

(70)

(s /Wﬂ%\H%I+MWSWw§ﬁ+MW“)f-
Let us introduce the time Ty defined by
def ~
To :esup{0<T<T| ||r ()HZOCHS €0}

Therefore, for any t < Tp, we have

def
Il % I, + /Hmwmﬂ

t
< roll%, + /Wmmlw+ﬁuﬂ% e+ el el + alE ).
Thanks to Gronwall’s lemma, we infer that for any T < Ty < <T

2 23 1 -5 2s—1
Iy < (ol + 17125 gemry) o0 (577 T+ T H iy + Fllal Tty ):
This concludes the proof Theorem 6.1. O

Proposition below is well-known and can be seen as a consequence of Theorem 6.1. We perturb a
data by a small term and we are interesting in the consequence on the lifespan of the Navier-Stokes
solution associated with such a perturbed data. The lifespan of perturbed Navier-Stokes solution can
not decrease too much, compared to the lifespan of the non-perturbed one. More precisely, we have
the following proposition.

Proposition 6.2. The map uy — Ti(ug) is a lower semi-continous function on H?
e.g. Ve>0,3a >0, Yoy in H® such that ||vo|| s < o, then Ti(ug + vo) = Ti(ug) — e.
Moreover, (under notations of Theorem 6.1), a constant C' > 0 exists such that for any T < Ty (ug) —¢€

IN'S(ug +vo) = NS(uo)|%s < Cllvoll7.
(71)

2 1 4
x exp (57 T+ T4 |INS(uo)|%; + T INS(uo)l|Eryy,) )-

p (e INS o) I3, + T INS (o) 7
Proof. Let ug and vy two elements in Hs. We operate a small perturbation of the data ug by vy (the
aim is to quantify this smallness condition) and we want to prove that the lifespan of the perturbed
Navier-Stokes solution N.S(ug + vg) can not be much less than the lifespan of N.S(ug). The process is
standard. We introduce an error term R defined by

R(t,x) = NS(ug + vo) — NS(up).
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Classical computations imply that R is solution of the following perturbed Navier-Stokes system

(72)

Let

OR+R-VR— AR+ R-VNS(up) + NS(ug)- VR = —Vp
div R = 0
R|t:0 == V9.

€o > 0. Let us introduce the time Ty defined by
Ty = sup{O < T < Ty(up) | ||R(t)H2%O(HS) < 50}.

Thanks to Theorem 6.1, we infer that for any T' < Ty

(73)
The
(74)

The
the

[1]
2]
(3]
[4]
[5]
[6]
[7]
(8]
[9]
[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]

18]

2 1 4
IBI; < C ol exp (377 T+ 7% [N S(uo) ey + T INS (o)l Zoy ).
T
above expression gives the smallness condition on |lvgl| 7. Indeed, suppose that vy satifies
2 4
2 251 -1 2 551
Cllool%. exp (57 T+ 1% [NS(uo)ly +TINS(o)ll .y ) < 0.
refore, the error term R, keeps on living until the time T} (up) — €, for any € > 0. This concludes
proof of the proposition. O
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