Benoit Delahaye

Uli Fahrenberg

AND Kim Guldstrand Larsen

Axel Legay

Benoît Delahaye

Benoît Delahaye

Refinement and Difference for Probabilistic Automata

Keywords: 2012 ACM Subject Classification: Mathematics of computing-Markov processes; Theory of computation-Probabilistic computation Probabilistic automaton, difference, distance, specification theory

published or not. The documents may come

L'archive ouverte

Introduction

Probabilistic automata as promoted by Segala and Lynch [START_REF] Segala | Probabilistic simulations for probabilistic processes[END_REF] are a widely-used formalism for modeling systems with probabilistic behavior. These include randomized security and communication protocols, distributed systems, biological processes and many other applications. Probabilistic model checking [START_REF] Baier | Principles of Model Checking[END_REF][START_REF] Hinton | PRISM: A tool for automatic verification of probabilistic systems[END_REF][START_REF] Vardi | Automatic verification of probabilistic concurrent finite-state programs[END_REF] is then used to analyze and verify the behavior of such systems. Given the prevalence of applications of such systems, probabilistic model checking is a field of great interest. However, and similarly to the situation for non-probabilistic model checking, probabilistic model checking suffers from state space explosion, which hinders its applicability considerably.

One generally successful technique for combating state space explosion is the use of compositional techniques, where a (probabilistic) system is model checked by verifying its components one by one. This compositionality can be obtained by decomposition, that is, to check whether a given system satisfies a property, the system is automatically decomposed into components which are then verified. Several attempts at such automatic decomposition techniques have been made [START_REF] Jamieson | Learning assumptions for compositional verification[END_REF][START_REF] Kwiatkowska | Assume-guarantee verification for probabilistic systems[END_REF], but in general, this approach has not been very successful [START_REF] Jamieson | Breaking up is hard to do: An evaluation of automated assume-guarantee reasoning[END_REF].

As an alternative to the standard model checking approaches using logical specifications, e.g. LTL, MITL or PCTL [START_REF] Alur | The benefits of relaxing punctuality[END_REF][START_REF] Hansson | A logic for reasoning about time and reliability[END_REF][START_REF] Manna | The Temporal Logic of Reactive and Concurrent Systems[END_REF], automata-based specification theories have been proposed, such as Input/Output Automata [START_REF] Lynch | An introduction to Input/Output automata[END_REF], Interface Automata [START_REF] De Alfaro | Interface automata[END_REF], and Modal Specifications [START_REF] Bauer | General quantitative specification theories with modalities[END_REF][START_REF] Kim | Modal specifications[END_REF][START_REF] Raclet | Quotient de spécifications pour la réutilisation de composants[END_REF]. These support composition at specification level ; hence a model which naturally consists of a composition of several components can be verified by model checking each component on its own, against its own specification. The overall model will then automatically satisfy the composition of the component specifications. Remark that this solves the decomposition problem mentioned above: instead of trying to automatically decompose a system for verification, specification theories make it possible to verify the system without constructing it in the first place.

Moreover, specification theories naturally support stepwise refinement of specifications, i.e. iterative implementation of specifications, and quotient, i.e. the synthesis of missing component specifications given an overall specification and a partial implementation. Hence they allow both logical and compositional reasoning at the same time, which makes them well-suited for compositional verification.

For probabilistic systems, such automata-based specification theories have been first introduced in [START_REF] Jonsson | Specification and refinement of probabilistic processes[END_REF], in the form of Interval Markov Chains. The focus there is only on refinement however; to be able to consider also composition and conjunction, we have in [START_REF] Benoît Delahaye | Constraint Markov chains[END_REF] proposed Constraint Markov Chains (CMCs) as a natural generalization which uses general constraints instead of intervals for next-state probabilities.

In [START_REF] Delahaye | Abstract probabilistic automata[END_REF], we have extended this specification theory to probabilistic automata, which combine stochastic and non-deterministic behaviors. These Abstract Probabilistic Automata (APA) combine modal specifications and CMCs. Our specification theory using APA should be viewed as an alternative to classical PCTL [START_REF] Hansson | A logic for reasoning about time and reliability[END_REF], probabilistic I/O automata [START_REF] Lynch | Distributed Algorithms[END_REF] and stochastic extensions of CSP [START_REF] Hermanns | Process algebra for performance evaluation[END_REF]. Like these, its purpose is model checking of probabilistic properties, but unlike the alternatives, APA support compositionality at specification level.

In the context of refinement of specifications, it is important that informative debugging information is given in case refinement fails. More concretely, given APAs N 1 , N 2 for which N 1 does not refine N 2 , we would like to know why refinement fails, and if possible, where in the state spaces of N 1 and N 2 there is a problem. We hence need to be able to compare APAs at the semantic level, i.e. to capture the difference between their sets of implementations and to relate it to structural differences of the APAs. This is what we attempt in this paper: given two APAs N 1 and N 2 , to generate another APA N such that the set of implementations of N is the differences between the sets of implementations of N 1 and of N 2 .

As a second contribution, we introduce a notion of distance between APAs which measures how far away one APA is from refining a second one. This distance, adapted from our work in [START_REF] Bauer | General quantitative specification theories with modalities[END_REF][START_REF] Fahrenberg | The quantitative linear-time-branching-time spectrum[END_REF], is accumulating and discounted, so that differences between APAs accumulate along executions, but in a way so that differences further in the future are discounted, i.e. have less influence on the result than had they occurred earlier.

Both difference and distances are important tools to compare APAs which are not in refinement. During an iterative development process, one usually wishes to successively replace specifications by more refined ones, but due to external circumstances such as, for example, cost of implementation, it may happen that a specification needs to be replaced by one which is not a refinement of the old one. This is especially important when models seen as a form of difference. Distances between probabilistic systems have been introduced in [START_REF] Luca De Alfaro | Game relations and metrics[END_REF][START_REF] Desharnais | Metrics for labelled Markov processes[END_REF][START_REF] Franck Van Breugel | An intrinsic characterization of approximate probabilistic bisimilarity[END_REF] and other works, and distances between modal specifications in [START_REF] Bauer | Quantitative refinement for weighted modal transition systems[END_REF][START_REF] Bauer | Weighted modal transition systems[END_REF][START_REF] Bauer | General quantitative specification theories with modalities[END_REF]; here, we combine these notions to introduce distances between APAs.

The originality of our present work is the ability to measure how far away one probabilistic specification is from being a refinement of another, using distances and our new difference operator. Both are important in assessing precisely how much one APA differs from another.

Acknowledgment. The authors wish to thank Joost-Pieter Katoen for interesting discussions and insightful comments on the subject of this work, and a number of anonymous referees for useful comments and improvements.

Background

Let Dist(S) denote the set of all discrete probability distributions over a finite set S and B 2 = {⊤, ⊥}. Definition 1. A probabilistic automaton (PA) [START_REF] Segala | Probabilistic simulations for probabilistic processes[END_REF] is a tuple (S, A, L, AP, V, s 0), where S is a finite set of states with the initial state s 0 ∈ S, A is a finite set of actions, L: S × A × Dist(S) → B 2 is a (two-valued) transition function, AP is a finite set of atomic propositions and V : S → 2 AP is a state-labeling function. Consider a state s, an action a, and a probability distribution µ. The value of L(s, a, µ) is set to ⊤ in case there exists a transition from s under action a to a distribution µ on successor states. In other cases, we have L(s, a, µ) = ⊥. We now introduce Abstract Probabilistic Automata (APA) [START_REF] Delahaye | Abstract probabilistic automata[END_REF], that is a specification theory for PAs. For a finite set S, we let C(S) denote the set of constraints over discrete probability distributions on S. Each element ϕ ∈ C(S) describes a set of distributions: Sat(ϕ) ⊆ Dist(S). Let B 3 = {⊤, ?, ⊥}. APAs are formally defined as follows.

Definition 2. An APA [START_REF] Delahaye | Abstract probabilistic automata[END_REF] is a tuple (S, A, L, AP, V, S 0), where S is a finite set of states, S 0 ⊆ S is a set of initial states, A is a finite set of actions, and AP is a finite set of atomic propositions. L : S × A × C(S) → B 3 is a three-valued distribution-constraint function, and V : S → 2 2 AP maps each state in S to a set of admissible labelings.

APAs play the role of specifications in our framework. An APA transition abstracts transitions of certain unknown PAs, called its implementations. Given a state s, an action a, and a constraint ϕ, the value of L(s, a, ϕ) gives the modality of the transition. More precisely, the value ⊤ means that transitions under a must exist in the PA to some distribution in Sat(ϕ); ? means that these transitions are allowed to exist; ⊥ means that such transitions must not exist. We will sometimes view L as a partial function, with the convention that a lack of value for a given argument is equivalent to the ⊥ value. The function V labels each state with a subset of the power set of AP , which models a disjunctive choice of possible combinations of atomic propositions.

We say that an APA N = (S, A, L, AP, V, S 0) is in Single Valuation Normal Form (SVNF) if the valuation function V assigns at most one valuation to all states, i.e. ∀s ∈ S, |V (s)| ≤ 1. From [START_REF] Delahaye | Abstract probabilistic automata[END_REF], we know that every APA can be turned into an APA in SVNF with the same set of implementations. An APA is deterministic [START_REF] Delahaye | Abstract probabilistic automata[END_REF] if [START_REF] Aliprantis | Infinite Dimensional Analysis: A Hitchhiker's Guide[END_REF] there is at most one outgoing transition for each action in all states, (2) two states with overlapping atomic propositions can never be reached with the same transition, and (3) there is only one initial state.

Note that every PA is an APA in SVNF where all constraints represent a single distribution. As a consequence, all the definitions we present for APAs in the following can be directly extended to PAs.

Let N = (S, A, L, AP, V, {s 0 }) be an APA in SVNF and let v ⊆ AP . Given a state s ∈ S and an action a ∈ A, we will use the notation succ s,a (v) to represent the set of potential a-successors of s that have v as their valuation. Formally, succ s,a (v

) = {s ′ ∈ S | V (s ′) = {v}, ∃ϕ ∈ C(S), µ ∈ Sat(ϕ) : L(s, a, ϕ) = ⊥, µ(s ′) > 0}.
When clear from the context, we may use succ s,a (s ′) instead of succ s,a (V (s ′)). Remark that when N is deterministic, we have |succ s,a (v)| ≤ 1 for all s, a, v.

Refinement and Distances between APAs

We recall the notion of refinement between APAs. Roughly speaking, refinement guarantees that if A 1 refines A 2 , then the set of implementations of A 1 is included in the one of A 2 . Definition 3. Let S and S ′ be non-empty sets and µ ∈ Dist(S), µ ′ ∈ Dist(S ′). We say that µ is simulated by µ ′ with respect to a relation R ⊆ S × S ′ and a correspondence function

δ : S → (S ′ → [0, 1]) [18] if (1) for all s ∈ S with µ(s) > 0, δ(s) is a distribution on S ′ , (2
) for all s ′ ∈ S ′ , s∈S µ(s) • δ(s)(s ′) = µ ′ (s ′), and (3)
whenever δ(s)(s ′) > 0, then (s, s ′) ∈ R.

We write µ ⋐ δ R µ ′ if µ is simulated by µ ′ with respect to R and δ, µ ⋐ R µ ′ if there exists δ with µ ⋐ δ R µ ′ , and µ ⋐ δ µ ′ for µ ⋐ δ S×S ′ µ ′ . Definition 4. Let N 1 = (S 1 , A, L 1 , AP, V 1 , S 1 0) and N 2 = (S 2 , A, L 2 , AP, V 2 , S 2 0) be APAs. A relation R ⊆ S 1 × S 2 is a refinement relation [18] if, for all (s 1 , s 2) ∈ R, we have V 1 (s 1) ⊆ V 2 (s 2) and (1) ∀a ∈ A, ∀ϕ 2 ∈ C(S 2), if L 2 (s 2 , a, ϕ 2) = ⊤, then ∃ϕ 1 ∈ C(S 1) : L 1 (s 1 , a, ϕ 1) = ⊤ and ∀µ 1 ∈ Sat(ϕ 1), ∃µ 2 ∈ Sat(ϕ 2) such that µ 1 ⋐ R µ 2 , (2) ∀a ∈ A, ∀ϕ 1 ∈ C(S 1), if L 1 (s 1 , a, ϕ 1) = ⊥, then ∃ϕ 2 ∈ C(S 2) such that L 2 (s 2 , a, ϕ 2) = ⊥ and ∀µ 1 ∈ Sat(ϕ 1), ∃µ 2 ∈ Sat(ϕ 2) such that µ 1 ⋐ R µ 2 .
We say that N 1 refines N 2 , denoted N 1 N 2 , if there exists a refinement relation such that ∀s 1 0 ∈ S 1 0 : ∃s 2 0 ∈ S 2 0 : (s 1 0 , s 2 0) ∈ R. Since any PA P is also an APA, we say that P satisfies N (or equivalently P implements N), denoted P |= N , if P N . In the following, a refinement relation between a PA and an APA is called a satisfaction relation. In [START_REF] Delahaye | Abstract probabilistic automata[END_REF], it is shown that for deterministic APAs N 1 , N 2 , we have

N 1 N 2 ⇐⇒ [[N 1]] ⊆ [[N 2]], where [[N i]] denotes the set of implementations of APA N i . Hence for deterministic APAs, the difference [[N 1]]\[[N 2]] is non-empty iff N 1 N 2 .
This equivalence breaks for non-deterministic APAs [START_REF] Delahaye | Abstract probabilistic automata[END_REF], whence we develop our theory only for deterministic APAs.

To show a convergence theorem about our difference construction in Sect. 4.3 below, we need a relaxed notion of refinement which takes into account that APAs are a quantitative formalism. Indeed, refinement as of Def. 4 is a purely qualitative relation; if both N 2 N 1 and N 3 N 1 , then there are no criteria to compare N 2 and N 3 with respect to N 1 , saying which one is the closest to N 1 . We provide such a relaxed notion by generalizing refinement to a discounted distance which provides precisely such criteria. In Sect. 4.3, we will show how those distances can be used to show that increasingly precise difference approximations between APAs converge to the real difference.

In order to simplify notation, the definitions presented below are dedicated to APAs in SVNF. They can however be easily extended to account for general APAs. The next definition shows how a distance between states is lifted to a distance between constraints. Definition 5. Let d : S 1 × S 2 → R + and ϕ 1 ∈ C(S 1), ϕ 2 ∈ C(S 2) be constraints in N 1 and N 2 . Define the distance D N 1 ,N 2 between ϕ 1 and ϕ 2 as follows:

D N 1 ,N 2 (ϕ 1 , ϕ 2 , d) = sup µ 1 ∈Sat(ϕ 1) inf µ 2 ∈Sat(ϕ 2) inf δ:µ 1 ⋐ δ µ 2 (s 1 ,s 2)∈S 1 ×S 2 µ 1 (s 1)δ(s 1)(s 2)d(s 1 , s 2)
Note the analogy of this definition to the one of the Hausdorff distance between (closed) subsets of a metric space: Any distribution µ 1 in Sat(ϕ 1) is sought matched with a distribution µ 2 in Sat(ϕ 2) which mimics it as closely as possible, where the quality of a match is measured by existence of a correspondence function δ which minimizes the distance between points reached from s 1 and s 2 weighted by their probability.

For the definition of d below, we say that states

s 1 ∈ S 1 , s 2 ∈ S 2 are not compatible if (1) V 1 (s 1) = V 2 (s 2), (2)
there exists a ∈ A and ϕ 1 ∈ C(S 1) such that L 1 (s 1 , a, ϕ 1) = ⊥ and for all ϕ 2 ∈ C(S 2), L 2 (s 2 , a, ϕ 2) = ⊥, or (3) there exists a ∈ A and ϕ 2 ∈ C(S 2) such that L 2 (s 2 , a, ϕ 2) = ⊤ and for all ϕ 1 ∈ C(S 1), L 1 (s 1 , a, ϕ 1) = ⊤. For compatible states, their distance is similar to the accumulating branching distance on modal transition systems as introduced in [START_REF] Bauer | General quantitative specification theories with modalities[END_REF][START_REF] Fahrenberg | The quantitative linear-time-branching-time spectrum[END_REF], adapted to our formalism. In the rest of the paper, the real constant 0 < λ < 1 represents a discount factor. Formally, d :

S 1 × S 2 → [0, 1]
is the least fixed point to the following system of equations:

d(s 1 , s 2) =          1 if s 1 is not compatible with s 2 max    max a,ϕ 1 :L 1 (s 1 ,a,ϕ 1) =⊥ min ϕ 2 :L 2 (s 2 ,a,ϕ 2) =⊥ λD N 1 ,N 2 (ϕ 1 , ϕ 2 , d) max a,ϕ 2 :L 2 (s 2 ,a,ϕ 2)=⊤ min ϕ 1 :L 1 (s 1 ,a,ϕ 1)=⊤ λD N 1 ,N 2 (ϕ 1 , ϕ 2 , d) otherwise (3.1)
Since the above system of linear equations defines a contraction, the existence and uniqueness of its least fixed point is ensured, cf. [START_REF] Kim | Metrics for weighted transition systems: Axiomatization and complexity[END_REF]. The intuition here is that d(s 1 , s 2) compares not only the probability constraints at s 1 and s 2 , but also (recursively) the constraints at all states reachable from s 1 and s 2 , weighted by their probability. Each step is discounted by λ, hence steps further in the future contribute less to the distance.

The above definition intuitively extends to PAs, which allows us to propose the two following notions of distance:

Definition 6. Let N 1 = (S 1 , A, L 1 , AP, V 1 , S 1 0) and N 2 = (S 2 , A, L 2 , AP, V 2 , S 2
0) be APAs in SVNF. The syntactic and thorough distances between N 1 and N 2 are defined as follows:

• syntactic distance:

d(N 1 , N 2) = max s 1 0 ∈S 1 0 min s 2 0 ∈S 2 0 d(s 1 0 , s 2 0) . • thorough distance: d t (N 1 , N 2) = sup P 1 ∈[[N 1]] inf P 2 ∈[[N 2]] d(P 1 , P 2) .
Note that the notion of thorough distance defined above intuitively extends to sets of PAs: given two sets of PAs S 1 , S 2 , we have

d t (S 1 , S 2) = sup P 1 ∈S 1 inf P 2 ∈S 2 d(P 1 , P 2) .
We also remark that N 1 N 2 implies d(N 1 , N 2) = 0. It can be shown, cf. [START_REF] Thrane | Quantitative analysis of weighted transition systems[END_REF], that both d and d t are asymmetric pseudometrics (or hemimetrics), i.e. satisfying d(N 1 , N 1) = 0 and d(N

1 , N 2) + d(N 2 , N 3) ≥ d(N 1 , N 3
) for all APAs N 1 , N 2 , N 3 (and similarly for d t). The fact that they are only pseudometrics, i.e. that d(N 1 , N 2) = 0 does not imply N 1 = N 2 , will play a role in our convergence arguments later.

The following proposition shows that the thorough distance is bounded above by the syntactic distance. Hence we can bound distances between (sets of) implementations by the syntactic distance between their specifications. Proposition 1. For all APAs N 1 and N 2 in SVNF, it holds that

d t (N 1 , N 2) ≤ d(N 1 , N 2).
Proof. For a distribution µ 1 and a constraint ϕ 2 , we denote by

RD(µ 1 , ϕ 2) := {δ : µ 1 ⋐ δ µ 2 | µ 2 ∈ Sat(ϕ 2)}
the set of all correspondence functions between µ 1 and distributions satisfying ϕ 2 .

If d(N 1 , N 2) = 1, we have nothing to prove. Otherwise, write

N i = (S i , A, L i , AP, V i , S i 0) for i = 1, 2, and let P 1 = (S ′ 1 , A, L ′ 1 , AP, V ′ 1 , S1 0) ∈ [[N 1]
] and η > 0; we need to expose

P 2 ∈ [[N 2]] for which d(P 1 , P 2) ≤ d(N 1 , N 2) + η. Note that by the triangle inequality, d(P 1 , N 2) ≤ d(P 1 , N 1) + d(N 1 , N 2) ≤ d(N 1 , N 2). Define P 2 = (S 2 , A, L ′ 2 , AP, V 2 , S 2 0), with L ′ 2 given as follows: For all s ′ 1 ∈ S ′ 1 , a ∈ A, µ 1 ∈ Dist(S ′ 1) for which L ′ 1 (s ′ 1 , a, µ 1) = ⊤ and for all s 2 ∈ S 2 , ε < 1 with ε := d(s ′ 1 , s 2) < 1: We must have ϕ 2 ∈ Dist(S 2) such that L 2 (s 2 , a, ϕ 2) = ⊥ and inf δ∈RD(µ 1 ,ϕ 2) (t ′ 1 ,t 2)∈S ′ 1 ×S 2 µ 1 (t ′ 1)δ(t ′ 1 , t 2)d(t ′ 1 , t 2) ≤ λ -1 ε , so there must exist a correspondence function δ ∈ RD(µ 1 , ϕ 2) for which (t ′ 1 ,t 2)∈S ′ 1 ×S 2 µ 1 (t ′ 1)δ(t ′ 1 , t 2)d(t ′ 1 , t 2) ≤ λ -1 ε + λ -1 η. We let µ 2 (s) = s ′ 1 ∈S 1 µ 1 (s ′ 1)δ(s ′ 1 , s) and set L ′ 2 (s 2 , a, µ 2) = ⊤ in P 2 . Similarly, for all s 2 ∈ S 2 , a ∈ A, ϕ 2 ∈ C(S 2) for which L 2 (s 2 , a, ϕ 2) = ⊤ and for all s ′ 1 ∈ S ′ 1 with ε := d(s ′ 1 , s 2) < 1: We must have µ 1 ∈ Dist(S ′ 1) for which L ′ 1 (s ′ 1 , a, µ 1) = ⊤ and inf δ∈RD(µ 1 ,ϕ 2) (t ′ 1 ,t 2)∈S ′ 1 ×S 2 µ 1 (t ′ 1)δ(t ′ 1 , t 2)d(t ′ 1 , t 2) ≤ λ -1 ε , so there is δ ∈ RD(µ 1 , ϕ 2) with (t ′ 1 ,t 2)∈S ′ 1 ×S 2 µ 1 (t ′ 1)δ(t ′ 1 , t 2)d(t ′ 1 , t 2) ≤ λ -1 ε + λ -1 η. Let again µ 2 (s) = s ′ 1 ∈S 1 µ 1 (s ′ 1)δ(s ′ 1 , s), and set L ′ 2 (s 2 , a, µ 2) = ⊤ in P 2 . It is easy to see that P 2 ∈ [[N 2]]: by construction of P 2 , the identity relation {(s 2 , s 2) | s 2 ∈ S 2 } provides a refinement P 2 N 2 . To show that d(P 1 , P 2) ≤ d(N 1 , N 2) + η, we define a function d ′ : S ′ 1 × S 2 → [0, 1] by d ′ (s ′ 1 , s 2) = d(s ′ 1 , s 2) + η and show that d ′ is a pre-fixed 1 2 {{α}} {{β}} a, ϕ1, ⊤ (µ(1) = 1) ∨ (µ(2) = 1) µ ∈ Sat(ϕ1) ⇐⇒ (a) APA N1 A B {{α}} {{γ}} a, ϕ2, ⊤ µ ∈ Sat(ϕ2) ⇐⇒ (µ(A) = 1) ∨ (µ(B) = 1) (b) APA N2 Figure 1. APAs N 1 and N 2 such that [[N 1]] \ [[N 2]
] cannot be represented using a finite-state APA.

point to (3.1). Indeed, for s ′ 1 and s 2 compatible, we have

d ′ (s ′ 1 , s 2) = d(s ′ 1 , s 2) + η = max      max a,µ 1 :L ′ 1 (s ′ 1 ,a,µ 1)=⊤ min ϕ 2 :L 2 (s 2 ,a,ϕ 2) =⊥ λD P 1 ,N 2 (µ 1 , ϕ 2 , d) + η max a,ϕ 2 :L 2 (s 2 ,a,ϕ 2)=⊤ min µ 1 :L ′ 1 (s ′ 1 ,a,µ 1)=⊤ λD P 1 ,N 2 (µ 1 , ϕ 2 , d) + η = max      max a,µ 1 :L ′ 1 (s ′ 1 ,a,µ 1)=⊤ min µ 2 :L ′ 2 (s 2 ,a,µ 2)=⊤ λD P 1 ,P 2 (µ 1 , µ 2 , d) + η max a,µ 2 :L ′ 2 (s 2 ,a,µ 2)=⊤ min µ 1 :L ′ 1 (s ′ 1 ,a,µ 1)=⊤ λD P 1 ,P 2 (µ 1 , µ 2 , d) + η ,
due to the construction of P 2 and the fact that the sup µ 1 ∈Sat(µ 1) is trivial in the formula for

D P 1 ,N 2 (µ 1 , ϕ 2 , d), ≥ max      max a,µ 1 :L ′ 1 (s ′ 1 ,a,µ 1)=⊤ min µ 2 :L ′ 2 (s 2 ,a,µ 2)=⊤ λD P 1 ,P 2 (µ 1 , µ 2 , d ′) max a,µ 2 :L ′ 2 (s 2 ,a,µ 2)=⊤ min µ 1 :L ′ 1 (s ′ 1 ,a,µ 1)=⊤ λD P 1 ,P 2 (µ 1 , µ 2 , d ′) ,
where the last inequality is a consequence of

λD P 1 ,P 2 (µ 1 , µ 2 , d ′) = λ t ′ 1 ,t 2 µ 1 (t ′ 1)δ(t ′ 1 , t 2)(d(t ′ 1 , t 2) + η) = λ t ′ 1 ,t 2 µ 1 (t ′ 1)δ(t ′ 1 , t 2)d(t ′ 1 , t 2) + λη.

Difference Operators for Deterministic APAs

The difference N 1 \ N 2 of two APAs N 1 , N 2 is meant to be a syntactic representation of all counterexamples, i.e. all PAs P for which

P ∈ [[N 1]] but P / ∈ [[N 2]
]. We first observe that such a set may not be representable by an APA. Consider the APAs N 1 and N 2 given in Figures 1a and1b, where α = β = γ. Note that both N 1 and N 2 are deterministic and in SVNF. Consider the difference of their sets of implementations. It is easy to see that this set contains all PAs that can finitely loop on valuation α and then move into a state with valuation β. Since there is no bound on the number of steps spent in the loop, there is no finite-state APA that can represent this set of implementations.

By the above example, there is no hope of finding a general construction that permits to represent the exact difference of two APAs as an APA. In the rest of this section, we thus propose to approximate it using APAs. We first introduce some notations and then propose constructions for over-approximating and under-approximating the exact difference. 4.1. Notation. Let N i = (S i , A, L i , AP, V i , {s i 0 }), i = 1, 2, be deterministic APAs in SVNF. Because N 1 and N 2 are deterministic, we know that the difference

[[N 1]] \ [[N 2]] is non- empty if and only if N 1 N 2 .
So let us assume that N 1 N 2 , and let R be a maximal refinement relation between N 1 and N 2 . Since N 1 N 2 , we know that (s 1 0 , s 2 0) ∈ R. Given (s 1 , s 2) ∈ S 1 × S 2 , we can distinguish between the following cases:

(1

) (s 1 , s 2) ∈ R, (2) V 1 (s 1) = V 2 (s 2), or (3) (s 1 , s 2) ∈ R and V 1 (s 1) = V 2 (s 2),
2 ∈ C(S 2) such that L 2 (s 2 , e, ϕ 2) = ⊤, ∃ϕ 1 ∈ C(S 1) : L 1 (s 1 , e, ϕ 1) = ⊤ and ∃µ ∈ Sat(ϕ 1) such that ∀µ ′ ∈ Sat(ϕ 2) : µ ⋐ R µ ′ . s2 s1 ϕ1 ϕ2 = e, ⊤ e, ⊤
Remark that because of the determinism and SVNF of APAs N 1 and N 2 , cases 1, 2 and 3 cannot happen at the same time. Moreover, although the cases in 3 can happen simultaneously, they cannot be "triggered" by the same action. In order to keep track of these "concurrent" situations, we define the following sets.

Given a pair of states (s 1 , s 2), let B a (s 1 , s 2) be the set of actions in A such that case 3.a above holds. If there is no such action, then B a (s 1 , s 2) = ∅. Similarly, we define

B b (s 1 , s 2), B c (s 1 , s 2), B d (s 1 , s 2)
, B e (s 1 , s 2) and B f (s 1 , s 2) to be the sets of actions such that case 3.b, c, d, e and 3.f holds, respectively. Given a set X ⊆ {a, b, c, d, e, f }, let B X (s 1 , s 2) = ∪ x∈X B x (s 1 , s 2). In addition, let B(s 1 , s 2) = B {a,b,c,d,e,f } (s 1 , s 2).

4.2.

Over-Approximating Difference. We now propose a construction \ * that overapproximates the difference between deterministic APAs in SVNF in the following sense: given two such APAs

N 1 = (S 1 , A, L 1 , AP, V 1 , {s 1 0 }) and N 2 = (S 2 , A, L 2 , AP, V 2 , {s 2 0 }) such that N 1 N 2 , we have [[N 1]] \ [[N 2]] ⊆ [[N 1 \ * N 2]]. We first observe that if V 1 (s 1 0) = V 2 (s 2 0), i.e. (s 1 0 , s 2 0) in case 2, then [[N 1]] ∩ [[N 2]] = ∅.
In such case, we define N 1 \ * N 2 as N 1 . Otherwise, we build on the reasons for which refinement fails between N 1 and N 2 . Note that the assumption that N 1 N 2 implies that the pair (s 1 0 , s 2 0) can never be in any refinement relation, hence in case 1. We first give an informal intuition of how the construction works and then define it formally.

In our construction, states in N 1 \ * N 2 will be elements of S 1 × (S 2 ∪ {⊥}) × (A ∪ {ε}). Our objective is to ensure that any implementation of our constructed APA will satisfy N 1 and not N 2 . In (s 1 , s 2 , e), states s 1 and s 2 keep track of executions of N 1 and N 2 . Action e is the action of N 1 that will be used to break satisfaction with respect to N 2 , i.e. the action that will be the cause for which any implementation of (s 1 , s 2 , e) cannot satisfy N 2 . Since satisfaction is defined recursively, the breaking is not necessarily immediate and can be postponed to successors. ⊥ is used to represent states that can only be reached after breaking the satisfaction relation to N 2 . In these states, we do not need to keep track of the corresponding execution in N 2 , thus only focus on satisfying N 1 . States of the form (s 1 , s 2 , ε) with s 2 = ⊥ are states where the satisfaction is broken by a distribution that does not match constraints in N 2 (cases 3.c and 3.f). In order to invalidate these constraints, we still need to keep track of the corresponding execution in N 2 , hence the use of ε instead of ⊥.

The transitions in our construction will match the different cases shown in the previous section, ensuring that in each state, either the relation is broken immediately or reported to at least one successor. Since there can be several ways of breaking the relation in state (s 1 0 , s 2 0), each corresponding to an action e ∈ B(s 1 0 , s 2 0), the APA N 1 \ * N 2 will have one initial state for each of them. Formally, if (s 1 0 , s 2 0) is in case 3, we define the over-approximation of the difference of N 1 and N 2 as follows.

Definition 7. Let N 1 \ * N 2 = (S, A, L, AP, V, S 0), where S = S 1 × (S 2 ∪ {⊥}) × (A ∪ {ε}), V (s 1 , s 2 , a) = V (s 1) for all s 2 and a, S 0 = {(s 1 0 , s 2 0 , f) | f ∈ B(s 1 0 , s 2
0)}, and L is defined by: • If s 2 = ⊥ or e = ε or (s 1 , s 2) in case 1 or 2, then for all a ∈ A and ϕ ∈ C(S 1) such that L 1 (s 1 , a, ϕ) = ⊥, let L((s 1 , s 2 , e), a, ϕ ⊥) = L 1 (s 1 , a, ϕ), with ϕ ⊥ defined below. For all other b ∈ A and ϕ ∈ C(S), let L((s 1 , s 2 , e), b, ϕ) = ⊥. • Else, we have (s 1 , s 2) in case 3 and B(s 1 , s 2) = ∅ by construction. The definition of L is given in Table 1, with the constraints ϕ ⊥ and ϕ B 12 defined hereafter.

Given ϕ ∈ C(S 1), ϕ ⊥ ∈ C(S) is defined as follows: µ ∈ Sat(ϕ ⊥) iff ∀s 1 ∈ S 1 , ∀s 2 = ⊥, ∀b = ε, µ(s 1 , s 2 , b) = 0 and the distribution (µ ↓ 1 : s 1 → µ(s 1 , ⊥, ε)) is in Sat(ϕ).
Given a state (s 1 , s 2 , e) ∈ S with s 2 = ⊥ and e = ε and two constraints

ϕ 1 ∈ C(S 1), ϕ 2 ∈ C(S 2) such that L 1 (s 1 , e, ϕ 1) = ⊥ and L 2 (s 2 , e, ϕ 2) = ⊥, the constraint ϕ B 12 ∈ C(S) is defined as follows: µ ∈ Sat(ϕ B 12) iff (1) for all (s ′ 1 , s ′ 2 , c) ∈ S, we have µ(s ′ 1 , s ′ 2 , c) > 0 ⇒ s ′ 2 = ⊥ if succ s 2 ,e (s ′ 1) = ∅ and s ′ 2 = succ s 2 ,e (s ′ 1) otherwise, and c ∈ B(s ′ 1 , s ′ 2) ∪ {ε}, (2) the distribution µ 1 : s ′ 1 → c∈A∪{ε},s ′ 2 ∈S 2 ∪{⊥} µ(s ′ 1 , s ′ 2 , c) satisfies ϕ 1 , and (3)
one of the following holds:

(a) there exists The following theorem shows that N 1 \ * N 2 is, as intended, an over-approximation of the difference of N 1 and N 2 in terms of sets of implementations.

(s ′ 1 , ⊥, c) such that µ(s ′ 1 , ⊥, c) > 0, (b) the distribution µ 2 : s ′ 2 → c∈A∪{ε},s ′ 1 ∈S 1 µ(s ′ 1 , s ′ 2 , c) does not satisfy ϕ 2 , or (c) there exists s ′ 1 ∈ S 1 , s ′ 2 ∈ S 2 and c = ε such that µ(s ′ 1 , s ′ 2 , c) > 0. Table 1. Definition of the transition function L in N 1 \ * N 2 . e ∈ N 1 , N 2 N 1 \ * N 2 Formal Definition of L B a (s 1 , s 2)
Theorem 2. For all deterministic APAs N 1 and N 2 in SVNF such that N 1 N 2 , we have

[[N 1]] \ [[N 2]] ⊆ [[N 1 \ * N 2]]. Proof. Let N 1 = (S 1 , A, L 1 , AP, V 1 , {s 1 0 }) and N 2 = (S 2 , A, L 2 , AP, V 2 , {s 2 0 }) be deterministic APAs in SVNF such that N 1 N 2 .
Let R be the maximal refinement relation between N 1 and N 2 . Let P = (S P , A, L P , AP, V P , s P 0) be a PA such that P |= N 1 and P |= N 2 . We prove that P |= N 1 \ * N 2 . Let R 1 ⊆ S P × S 1 be the relation witnessing P |= N 1 and let R 2 be the maximal satisfaction relation in S P × S 2 . By construction, (s

P 0 , s 2) / ∈ R 2 . If V 1 (s 1 0) = V 2 (s 2 0), then by construction N 1 \ * N 2 = N 1 and thus P |= N 1 \ * N 2 .
Else, we have (s 1 0 , s 2 0) in case 3, thus N 1 \ * N 2 = (S, A, L, AP, V, S 0) is defined as in Section 4.2. By construction, we also have (s P 0 , s 2 0) in case 3, thus there must exist f ∈ B(s P 0 , s 2 0). Remark that by construction, we must have B(s P 0 , s 2 0) ⊆ B(s 1 0 , s 2 0). We will prove that We now prove that R \ is a satisfaction relation. Let (p, (s 1 , s 2 , e)) ∈ R \ . If s 2 = ⊥ or e = ε, then since p R 1 s 1 , R \ satisfies the axioms of a satisfaction relation by construction. Else we have s 2 ∈ S 2 and e = ε, thus, by definition of R \ , we know that (p, s 2) is in case 3.

P |= N 1 \ * N 2 . Define the following relation R \ ⊆ S P × S: p R \ (s 1 , s 2 , e) ⇐⇒    (p R 1
• By construction, we have

V P (p) ∈ V 1 (s 1) = V ((s 1 , s 2 , e)).
• Let a ∈ A and µ P ∈ Dist(S P) such that L P (p, a, µ P) = ⊤. There are several cases.

-If a = e, then since p R 1 s 1 , there exists ϕ 1 ∈ C(S 1) such that L 1 (s 1 , a, ϕ 1) = ⊥ and there exists µ 1 ∈ Sat(ϕ 1) such that µ P ⋐ R \ µ 1 . By construction, we have L((s 1 , s 2 , e), a, ϕ ⊥ 1) = ⊥ and there obviously exists µ ∈ Sat(ϕ ⊥ 1) such that µ P ⋐ R \ µ.

-If a = e ∈ B a (p, s 2), then, as above, there exists a constraint ϕ ∈ C(S) such that L((s 1 , s 2 , e), a, ϕ) = ⊥ and there exists µ ∈ Sat(ϕ) such that

µ P ⋐ R \ µ. Remark that B a (s 1 , s 2) ⊆ B a (p, s 2) ⊆ B a (s 1 , s 2) ∪ B b (s 1 , s 2). -Else, we necessarily have a = e ∈ B c (p, s 2) ∪ B f (p, s 2). Remark that, by construction, B c (p, s 2) ⊆ B c (s 1 , s 2) and B f (p, s 2) ⊆ B f (s 1 , s 2). Since p R 1 s 1 , there exists ϕ 1 ∈ C(S 1
) such that L 1 (s 1 , e, ϕ 1) = ⊥ and there exists µ 1 ∈ Sat(ϕ 1) and a correspondence function δ 1 :

S P → (S 1 → [0, 1]) such that µ P ⋐ δ 1 R 1 µ 1 . Moreover, by construction of N 1 \ * N 2 , we know that the constraint ϕ B 12 such that µ ∈ Sat(ϕ B 12) iff. (1) for all (s ′ 1 , s ′ 2 , c) ∈ S, we have µ(s ′ 1 , s ′ 2 , c) > 0 ⇒ s ′ 2 = ⊥ if succ s 2 ,e (s ′ 1) = ∅ and s ′ 2 = succ s 2 ,e (s ′ 1) otherwise, and c ∈ B(s ′ 1 , s ′ 2) ∪ {ε}, (2) the distribution µ 1 : s ′ 1 → c∈A∪{ε},s ′ 2 ∈S 2 ∪{⊥} µ(s ′ 1 , s ′ 2 , c) satisfies ϕ 1 , and (3) either (b) the distribution µ 2 : s ′ 2 → c∈A∪{ε},s ′ 1 ∈S 1 µ(s ′ 1 , s ′ 2 , c) does not satisfy ϕ 2 , or (c) there exists s ′ 1 ∈ S 1 , s ′ 2 ∈ S 2 and c = ε such that µ(s ′ 1 , s ′ 2 , c) > 0 is such that L((s 1 , s 2 , e), e, ϕ B
12) = ⊤. We now prove that there exists µ ∈ Sat(ϕ B 12) such that µ P ⋐ R \ µ. Consider the function δ \ : S P → (S → [0, 1]) defined as follows: Let p ′ ∈ S P such that µ P (p ′) > 0 and let s ′ 1 = succ s 1 ,e (p ′), which exists by

R 1 . * If succ s 2 ,e (p ′) = ∅, then δ \ (p ′)(s ′ 1 , ⊥, ε) = 1. * Else, let s ′ 2 = succ s 2 ,e (p ′). Then, • if (p ′ , s ′ 2) ∈ R 2 , then δ \ (p ′)(s ′ 1 , s ′ 2 , ε) = 1. • Else, (p ′ , s ′ 2) is in case 3 and B(p ′ , s ′ 2) = ∅. In this case, let c ∈ B(p ′ , s ′ 2) and define δ \ (p ′ , (s ′ 1 , s ′ 2 , c)) = 1. For all other c ′ ∈ B(p ′ , s ′ 2), define δ \ (p ′ , (s ′ 1 , s ′ 2 , c)) = 0. Remark that for all p ′ ∈ S P such that µ P (p ′) > 0, there exists a unique s ′ ∈ S ′ such that δ \ (p ′)(s ′) = 1. Thus δ \ is a correspondence function. We now prove that µ = µ P δ \ ∈ Sat(ϕ B 12). (1) Let (s ′ 1 , s ′ 2 , c) ∈ S such that µ(s ′ 1 , s ′ 2 , c) > 0. By construction, there exists p ′ ∈ S P such that µ P (p ′) > 0 and δ \ (p ′)(s ′ 1 , s ′ 2 , c) > 0. Moreover, c ∈ B(s ′ 1 , s ′ 2) ∪ {ε}, and s ′ 2 = ⊥ if succ s 2 ,e (s ′ 1) = ∅ and s ′ 2 = succ s 2 ,e (s ′ 1) otherwise. (2) Consider the distribution µ ′ 1 : s ′ 1 → c∈A∪{ε},s ′ 2 ∈S 2 ∪{⊥} µ(s ′ 1 , s ′ 2 , c
). By determinism (See Lemma 28 in [START_REF] Benoît Delahaye | Constraint Markov chains[END_REF]), we have that δ

1 (p ′)(s ′ 1) = 1 ⇐⇒ s ′ 1 = (succ) s 1 ,e (p ′
). As a consequence, we have that µ ′ 1 = µ 1 ∈ Sat(ϕ 1).

(3) Assume that for all p ′ ∈ S P such that µ P (p ′) > 0, we have succ s 2 ,e (p ′) = ∅ (the other case being trivial). Consider the distribution µ 2 :

s ′ 2 → c∈A∪{ε},s ′ 1 ∈S 1 µ(s ′ 1 , s ′ 2 , c) and let δ 2 : S P → (S 2 → [0, 1]) be such that δ 2 (p ′)(s ′ 2) = 1 ⇐⇒ s ′ 2 = succ s 2 ,e (p ′). By construction, δ 2 is a correspon- dence function and µ 2 = µ P δ 2 . Since e ∈ B c (p, s 2) ∪ B f (p, s 2), we have that µ P ⋐ R 2 µ 2 . If µ 2 /
∈ Sat(ϕ 2), then we have µ ∈ Sat(ϕ B 12). Else, there must exist p ′ ∈ S P and s ′ 2 ∈ S 2 such that µ

P (p ′) > 0, δ 2 (p ′)(s ′ 2) > 0 and (p ′ , s ′ 2) / ∈ R 2 . As a consequence, (p ′ , s ′ 2) is in case 3 and there exists c = ε such that δ \ (p ′)(s ′ 1 , s ′ 2 , c) > 0, thus µ(s ′ 1 , s ′ 2 , c) > 0. As a consequence, µ ∈ Sat(ϕ B 12
). We thus conclude that there exists µ ∈ Sat(ϕ B 12) such that µ P ⋐ R \ µ. Finally, in all cases, there exists ϕ ∈ C(S) such that L((s 1 , s 2 , e), a, ϕ) = ⊥ and there exists µ ∈ Sat(ϕ) such that µ P ⋐ R \ µ.

• Let a ∈ A and ϕ ∈ C(S) such that L((s 1 , s 2 , e), a, ϕ) = ⊤. As above, there are several cases.

-If a = e, then, by construction of N 1 \ * N 2 , there must exists ϕ 1 ∈ C(S 1) such that L 1 (s 1 , a, ϕ 1) = ⊤. The rest of the proof is then as above.

-If a = e ∈ B a (p, s 2), then there exists µ P ∈ Dist(S P) such that L P (p, e, µ P) = ⊤. The rest of the proof is then as above. Recall that

B a (s 1 , s 2) ⊆ B a (p, s 2) ⊆ B a (s 1 , s 2) ∪ B b (s 1 , s 2). -Else, we necessarily have a = e ∈ B c (p, s 2) ∪ B f (p, s 2). Recall that, by con- struction, B c (p, s 2) ⊆ B c (s 1 , s 2) and B f (p, s 2) ⊆ B f (s 1 , s 2)
. Thus, there exists µ P ∈ Dist(S P) and ϕ 2 ∈ C(S 2) such that L 2 (s 2 , e, ϕ 2) = ⊥ and ∀µ 2 ∈ Sat(ϕ 2), µ P ⋐ R 2 µ 2 . Since e ∈ B c (s 1 , s 2) ∪ B f (s 1 , s 2), there also exist ϕ 1 ∈ C(S 1) such that L 1 (s 1 , e, ϕ 1) = ⊥. By determinism, ϕ 1 and ϕ 2 are unique. The rest of the proof follows as above. Thus, in all cases, there exists µ P ∈ Dist(S P) such that L P (p, a, µ P) = ⊤ and there exists µ ∈ Sat(ϕ) such that µ P ⋐ R \ µ.

Finally, R \ is a satisfaction relation. Moreover, we have s P 0 R 1 s 1 0 , (s P 0 , s 2 0) in case 3 and f ∈ B(s P 0 , s 2 0) by construction, thus s P 0 R \ (s 1 0 , s 2 0 , f) ∈ S 0 . We thus conclude that

P |= N 1 \ * N 2 .
The reverse inclusion unfortunately does not hold. Intuitively, as explained in the construction of the constraint ϕ B 12 above, one can postpone the breaking of the satisfaction relation for N 2 to the next state (condition (3.c)). This assumption is necessary in order to produce an APA representing all counterexamples. However, when there are cycles in the execution of N 1 \ * N 2 , then we may postpone forever, thus allowing for implementations that will ultimately satisfy N 2 . This is illustrated in the following example.

Example 1. Consider the APAs N 1 and N 2 given in Fig. 1. Their over-approximating difference N 1 \ * N 2 is given in Fig. 2a. One can see that the PA P in Fig. 2b satisfies both N 1 \ * N 2 and N 2 .

We will later see in Corollary 7 that even though N 1 \ * N 2 may be capturing too many counterexamples, the distance between N 1 \ * N 2 and the real set of counterexamples

[[N 1]] \ [[N 2]
] is zero. This means that the two sets are infinitesimally close to each other, so in this sense, and with respect to this distance, N 1 \ * N 2 is a best possible over-approximation. 4.3. Under-Approximating Difference. We now propose a construction that instead under-estimates the difference between APAs. This construction resembles the over-approximation presented in the previous section, the main difference being that in the underapproximation, states are indexed with integers which represent the maximal depth of the unfolding of counterexamples. The construction is as follows.

1, A, a 2, ⊥, ε 1, ⊥, ε 1, A, ε {{α}} {{α}} {{α}} {{β}} a, ϕ ⊥ 1 , ⊤ a, ϕ B 12 , ⊤ a, ϕ ⊥ 1 , ⊤ a, ϕ ⊥ 1 , ⊤ µ ∈ Sat(ϕ B 12) ⇐⇒ (µ(1, A, a) + µ(1, A, ε) = 1) ∧ (µ(1, A, a) > 0) ∨(µ(2, ⊥, ε) = 1) (a) N1 \ * N2 Ω {α} a, 1 (b)
Let

N 1 = (S 1 , A, L 1 , AP, V 1 , {s 1 0 }) and N 2 = (S 2 , A, L 2 , AP, V 2 , {s 2 0 }) be two determin- istic APAs in SVNF such that N 1 N 2 . Let K ∈ N be the parameter of our construction. As in Section 4.2, if V 1 (s 1 0) = V 2 (s 2 0), i.e. (s 1 0 , s 2 0) in case 2, then [[N 1]] ∩ [[N 2]] = ∅.
In this case, we define N 1 \ K N 2 as N 1 . Otherwise, the under-approximation is defined as follows.

Definition 8. Let N 1 \ K N 2 = (S, A, L, AP, V, S K 0), where S = S 1 ×(S 2 ∪{⊥})×(A∪{ε})× {1, . . . , K}, V (s 1 , s 2 , a, k) = V (s 1) for all s 2 , a, k < K, S K 0 = {(s 1 0 , s 2 0 , f, K) | f ∈ B(s 1 0 , s 2
0)}, and L is defined by:

• If s 2 = ⊥ or e = ε or (s 1 , s 2) in case 1 or 2, then for all a ∈ A and ϕ ∈ C(S 1) such that L 1 (s 1 , a, ϕ) = ⊥, let L((s 1 , s 2 , e, k), a, ϕ ⊥) = L 1 (s 1 , a, ϕ), with ϕ ⊥ defined below. For all other b ∈ A and ϕ ∈ C(S), let L((s 1 , s 2 , e, k), b, ϕ) = ⊥. • Else we have (s 1 , s 2) in case 3 and B(s 1 , s 2) = ∅ by construction. The definition of L is given in Table 2. The constraints ϕ ⊥ and ϕ B,k 12 are defined hereafter. Given a constraint ϕ ∈ C(S 1), the constraint ϕ ⊥ ∈ C(S) is defined as follows:

µ ∈ Sat(ϕ ⊥) iff ∀s 1 ∈ S 1 , ∀s 2 = ⊥, ∀b = ε, ∀k = 1, µ(s 1 , s 2 , b, k) = 0 and the distribution (µ ↓ 1 : s 1 → µ(s 1 , ⊥, ε, 1)) is in Sat(ϕ).
Given a state (s 1 , s 2 , e, k) ∈ S with s 2 = ⊥ and e = ε and two constraints

ϕ 1 ∈ C(S 1) and ϕ 2 ∈ C(S 2) such that L 1 (s 1 , e, ϕ 1) = ⊥ and L 2 (s 2 , e, ϕ 2) = ⊥, the constraint ϕ B,k 12 ∈ C(S) is defined as follows: µ ∈ Sat(ϕ B,k 12) iff (1) for all (s ′ 1 , s ′ 2 , c, k ′) ∈ S, if µ(s ′ 1 , s ′ 2 , c, k ′) > 0, then c ∈ B(s ′ 1 , s ′ 2) ∪ {ε} and either succ s 2 ,e (s ′ 1) = ∅, s ′ 2 = ⊥ and k ′ = 1, or s ′ 2 = succ s 2 ,e (s ′ 1), (2) the distribution µ 1 : s ′ 1 → c∈A∪{ε},s ′ 2 ∈S 2 ∪{⊥},k ′ ≥1 µ(s ′ 1 , s ′ 2 , c, k ′) satisfies ϕ 1 , and (3)
one of the following holds:

(a) there exists

(s ′ 1 , ⊥, c, 1) such that µ(s ′ 1 , ⊥, c, 1) > 0, (b) the distribution µ 2 : s ′ 2 → c∈A∪{ε},s ′ 1 ∈S 1 ,k ′ ≥1 µ(s ′ 1 , s ′ 2 , c, k ′) does not satisfy ϕ 2 , or (c) k = 1 and there exists s ′ 1 ∈ S 1 , s ′ 2 ∈ S 2 , c = ε and k ′ < k such that µ(s ′ 1 , s ′ 2 , c, k ′) > 0.
The construction is illustrated in Figure 3.

Table 2. Definition of the transition function

L in N 1 \ K N 2 . e ∈ N 1 , N 2 N 1 \ K N 2 Formal Definition of L B a (s 1 , s 2) s2 ϕ1 s1 e, ⊤ e ϕ ⊥ 1 e, ⊤ (s1, s2, e, k)
For all a = e ∈ A and ϕ ∈ C(S 1) such that L 1 (s 1 , a, ϕ) = ⊥, let L((s 1 , s 2 , e, k), a, ϕ ⊥) = L 1 (s 1 , a, ϕ). In addition, let L((s 1 , s 2 , e, k), e, ϕ ⊥ 1) = ⊤.

For all other b ∈ A and ϕ ∈ C(S), let For all a ∈ A and ϕ ∈ C(S 1) such that

L((s 1 , s 2 , e, k), b, ϕ) = ⊥. B b (s 1 , s 2)
L 1 (s 1 , a, ϕ) = ⊥, let L((s 1 , s 2 , e, k), a, ϕ ⊥) = L 1 (s 1 , a, ϕ).
a, ϕ ⊥ 1 , ⊤ a, ϕ ⊥ 1 , ⊤ 1, A, a, 1 1, ⊥, ε, 1 2, ⊥, ε, 1 a, ϕ B,1 12 , ⊤ µ ∈ Sat(ϕ B,1 12) ⇐⇒ (µ(2, ⊥, ε, 1) = 1) (a) N1 \ 1 N2 1, A, a, 2 1, A, a, 1 {{α}} {{α}} {{α}} {{β}} a, ϕ ⊥ 1 , ⊤ a, ϕ ⊥ 1 , ⊤ a, ϕ ⊥ 1 , ⊤ 1, A, ε, 1 2, ⊥, ε, 1 1, ⊥, ε, 1 a, ϕ ⊥ 1 , ⊤ a, ϕ B,1 12 , ⊤ {{α}} a, ϕ B,2 12 , ⊤ µ ∈ Sat(ϕ B,2 12) ⇐⇒ (µ(1, A, a, 2) + µ(1, A, a, 1) + µ(1, A, ε, 1) = 1) ∧(µ(1, A, a, 1) > 0) ∨(µ(2, ⊥, ε, 1) = 1) µ ∈ Sat(ϕ B,1 12) ⇐⇒ (µ(2, ⊥, ε) = 1) (b) N1 \ 2 N2 Figure 3.
Under-approximations at level 1 and 2 of the difference of APAs N 1 and N 2 from Figure 1.

4.4.

Properties. We already saw in Theorem 2 that N 1 \ * N 2 is a correct over-approximation of the difference of N 1 by N 2 in terms of sets of implementations. The next theorem shows that, similarly, all N 1 \ K N 2 are correct under-approximations. Moreover, increasing the value of K improves the level of approximation, and eventually all PAs in

[[N 1]] \ [[N 2]] are caught. (Hence in a set-theoretic sense, lim K→∞ [[N 1 \ K N 2]] = [[N 1]] \ [[N 2]].)
Theorem 3. For all deterministic APAs N 1 and N 2 in SVNF such that N 1 N 2 :

(1) for all K ∈ N, we have

N 1 \ K N 2 N 1 \ K+1 N 2 , (2
) for all K ∈ N, [[N 1 \ K N 2]] ⊆ [[N 1]] \ [[N 2]], and (3)
for all PA P ∈ [

[N 1]] \ [[N 2]], there exists K ∈ N such that P ∈ [[N 1 \ K N 2]].
Note that item 3 implies that for all PA P ∈ [

[N 1]] \ [[N 2]], there is a finite specification capturing [[N 1]]\[[N 2]
] "up to" P . The proof of the theorem is similar to the one of Theorem 2 (if somewhat more complicated) and available in appendix.

Using our distance defined in Section 3, we can make the above convergence result more precise. We first need a lemma comparing

N 1 \ K 1 N 2 with N 1 \ K 2 N 2 for K 1 ≤ K 2 . Lemma 4. Let N 1 = (S 1 , A, L 1 , AP, V 1 , {s 1 0 }) and N 2 = (S 2 , A, L 2 , AP, V 2 , {s 2 0 }) be two deterministic APAs in SVNF such that N 1 N 2 . Let 1 ≤ K 1 ≤ K 2 be integers. Then d(N 1 \ K 2 N 2 , N 1 \ K 1 N 2) ≤ λ K 1 . Proof. Let N 1 \ K i N 2 = N i = (S i , A, L i , AP, V i , T i 0)
. We first remark that for all (s 1 , s 2 , e) ∈ S 1 × (S 2 ∪ ⊥) × (A ∪ ε) and for all k ≤ K 1 , the distance between the states (s 1 , s 2 , e, k) 1 ∈ S 1 and (s 1 , s 2 , e, k) 2 ∈ S 2 is 0. Indeed, if k is the same in both states, then they are identical by construction.

We now prove by induction on

1 ≤ k 1 ≤ K 1 and k 1 ≤ k 2 ≤ K 2 that d((s 1 , s 2 , e, k 2) 2 , (s 1 , s 2 , e, k 1) 1) ≤ λ k 1 : • Base case: k 1 = 1.
≤ λ = λ k 1 . • Induction. Let t 1 = (s 1 , s 2 , e, k 1) 1 and t 2 = (s 1 , s 2 , e, k 2) 2 , with 1 < k 1 ≤ k 2 .
Again, e / ∈ B c (s 1 , s 2) ∪ B e (s 1 , s 2) ∪ B f (s 1 s 2), then t 1 and t 2 are identical by construction and the result holds. Otherwise, the pair of constraints for which the distance is maximal will be constraints ϕ B,k 1 Proof. By Lemma 4, we know that d(N

1 \ L+1 N 2 , N 1 \ L N 2) ≤ λ L for each L, hence also d t ([[N 1 \ L+1 N 2]], [[N 1 \ L N 2]]) ≤ λ L
for each L by Proposition 1. Applying the triangle inequality and continuity of d t , we see that

d t ([[N 1]] \ [[N 2]], [[N 1 \ K N 2]]) ≤ d t ([[N 1]] \ [[N 2]], [[N 1 \ K+1 N 2]]) + d t ([[N 1 \ K+1 N 2]], [[N 1 \ K N 2]]) ≤ lim i→∞ d t ([[N 1]] \ [[N 2]], [[N 1 \ K+i N 2]]) + ∞ i=0 d t ([[N 1 \ K+i+1 N 2]], [[N 1 \ K+i N 2]]) ≤ ∞ i=0 λ K+i = λ K 1 -λ
For the actual application on hand however, particular accumulating distance d we have introduced in Section 3 may have limited interest, especially considering that one has to fix a discounting factor for actually calculating it. What is more interesting are results of a topological nature which abstract away from the particular distance used and apply to all distances which are topologically equivalent to d. The results we present below are of this nature.

It can be shown, cf. [START_REF] Thrane | Quantitative analysis of weighted transition systems[END_REF], that accumulating distances for different choices of λ are topologically equivalent (indeed, even Lipschitz equivalent), hence the particular choice of discounting factor is not important. Also some other system distances are Lipschitz equivalent to the accumulating one, in particular the so-called point-wise and maximum-lead ones, see again [START_REF] Thrane | Quantitative analysis of weighted transition systems[END_REF]. Theorem 6. Let N 1 and N 2 be two deterministic APAs in SVNF such that N 1 N 2 .

(1) The sequence (N 1 \ K N 2) K∈N converges in the distance d, and

lim K→∞ d(N 1 \ * N 2 , N 1 \ K N 2) = 0. (2) The sequence ([[N 1 \ K N 2]]) K∈N converges in the distance d t , and lim K→∞ d t ([[N 1]] \ [[N 2]], [[N 1 \ K N 2]]) = 0. Proof. Let N 1 = (S 1 , A, L 1 , AP, V 1 , {s 1 0 }) and N 2 = (S 2 , A, L 2 , AP, V 2 , {s 2 0 }) be two deter- ministic APAs in SVNF such that N 1 N 2 .
1. The proof of the convergence of both sequences

(N 1 \ K N 2) K and ([[N 1 \ K N 2]]) K is done as follows. Let ε > 0. Since λ < 1, there exists K ∈ N such that λ K < ε. As a consequence, by Lemma 4, we have that for all K ≤ K 1 ≤ K 2 , d(N 1 \ K 2 N 2 , N 1 \ K 1 N 2) ≤ λ K 1 ≤ λ K < ε.
The sequence (N 1 \ K N 2) K is thus bi-Cauchy (i.e. both forward-Cauchy and backwards-Cauchy) in the sense of [START_REF] Bonsangue | Generalized metric spaces: Completion, topology, and powerdomains via the Yoneda embedding[END_REF]. Hence, because of Proposition 1, the sequence (of sets of PA) ([[N 1 \ K N 2]]) K is also bi-Cauchy. The other two items show that they converge.

2.

Theorem 3 shows that the sequence ([[N 1 \ K N 2]]) K converges in a set-theoretic sense (as a direct limit), and that lim

K→∞ [[N 1 \ K N 2]] = [[N 1]]\[[N 2]]. Hence d t ([[N 1]]\[[N 2]], lim K→∞ [[N 1 \ K N 2]]) = 0, and by continuity of d t , lim K→∞ d t ([[N 1]] \ [[N 2]], [[N 1 \ K N 2]]) = 0.

⋐R ϕ2

Let ϕ 1 ∈ C(S 1) and ϕ 2 ∈ C(S 2) such that L 1 (s 1 , e, ϕ 1) = ⊥ and L 2 (s 2 , e, ϕ 2) = ⊥.

• If e ∈ Break(s 1 , s 2), then let µ 1 be the distribution given in Lemma 8. • Else, let µ 1 be an arbitrary distribution in Sat(ϕ 1) such that ∀µ 2 ∈ Sat(ϕ 2), µ 1 ⋐ R µ 2 . In both cases, let L((s 1 , s 2), e, µ 1) = ⊤.

B f (s 1 , s 2) s2 s1 ϕ1 ϕ2 = e, ⊤ e, ⊤ 9
. The counterexample P = (S, A, L, AP, V, s 0) is computed as follows:

• S = S 1 × (S 2 ∪ {⊥}), s 0 = (s 1 0 , s 2 0), • V (s 1 , s 2) = v ∈ 2 AP such that V 1 (s 1)
= {v} for all (s 1 , s 2) ∈ S, and • L is defined as follows. Let (s 1 , s 2) ∈ S.

-If (s 1 , s 2) in case 1 or 2 or s 2 = ⊥, then for all a ∈ A and ϕ 1 ∈ C(S 1) such that L 1 (s 1 , a, ϕ 1) = ⊤, let µ 1 be an arbitrary distribution in Sat(ϕ 1) and let

L((s 1 , s 2), a, µ ⊥ 1) = ⊤ with µ ⊥ 1 ∈ Dist(S) such that µ ⊥ 1 (s ′ 1 , s ′ 2) = µ 1 (s ′ 1) if s ′ 2 = ⊥ and 0 otherwise. -Else, (s 1 , s 2) is in case 3 and B(s 1 , s 2) = ∅. For all a ∈ A \ B(s 1 , s 2) and ϕ 1 ∈ C(S 1
) such that L 1 (s 1 , a, ϕ 1) = ⊤, let µ 1 be an arbitrary distribution in Sat(ϕ 1) and let L((s 1 , s 2), a, µ ⊥ 1) = ⊤, with µ ⊥ 1 defined as above. In addition, for all e ∈ B(s 1 , s 2), let L((s 1 , s 2), e, .) be defined as in Table 3. In the table, given constraints ϕ 1 ∈ C(S 1) and ϕ 2 ∈ C(S 2) such that L 1 (s 1 , e, ϕ 1) = ⊥ and L 2 (s 2 , e, ϕ 2) = ⊥, and a distribution µ 1 ∈ Sat(ϕ 1), the distribution µ 1 ∈ Dist(S) is defined as follows: µ 1 (s ′ 1 , s ′ 2) = µ 1 (s 1) if s ′ 2 = succ s 2 ,e (s ′ 1) or succ s 2 ,e (s ′ 1) = ∅ and s ′ 2 = ⊥, and 0 otherwise. Theorem 9. The counterexample PA P defined above is such that P |= N 1 and P |= N 2 .

The proof of the theorem is similar to the one of Theorem 2 and available in appendix.

Conclusion

We have in this paper added an important aspect to the specification theory of Abstract Probabilistic Automata, in that we have shown how to exhaustively characterize the difference between two deterministic specifications. In a stepwise refinement methodology, difference is an important tool to gauge refinement failures.

We have also introduced a notion of discounted distance between specifications which can be used as another measure for how far one specification is from being a refinement of another. Using this distance, we were able to show that our sequence of under-approximations converges, semantically, to the real difference of sets of implementations, and that our overapproximation is infinitesimally close to the real difference.

There are many different ways to measure distances between implementations and specifications, allowing to put the focus on either transient or steady-state behavior. In this paper we have chosen one specific discounted distance, placing the focus on transient behavior. Apart from the fact that this can indeed be a useful distance in practice, we remark that the convergence results about our under-and over-approximations are topological in nature and hence apply with respect to all distances which are topologically equivalent to the specific one used here, typically discounted distances. Although the results presented in the paper do not hold in general for the accumulating (undiscounted) distance, there are other notions of distances that are more relevant for steady-state behavior, e.g. limit-average. Whether our results hold in this setting remains future work.

We also remark that we have shown that it is not more difficult to compute the difference of two APAs than to check for their refinement. Hence if a refinement failure is detected (for example by using the methods in the APAC tool [START_REF] Delahaye | APAC: A tool for reasoning about abstract probabilistic automata[END_REF]), it is not difficult to also compute the difference for assessing the reason for refinement failure. For the class of APAs with polynomial constraints, which is the one implemented in APAC, refinement checking can be done in time in the number of states and doubly-exponential in the number of constraints [START_REF] Delahaye | Abstract probabilistic automata[END_REF]; in APAC, the Z3 solver [START_REF] Mendonça De Moura | Z3: An efficient SMT solver[END_REF] is used for operations on constraints.

One limitation of our approach is the use of deterministic APAs. Even though deterministic specifications are generally considered to suffice from a modeling point of view [START_REF] Kim | Modal specifications[END_REF], non-determinism may be introduced for example when composing specifications. Indeed, our constructions themselves introduce non-determinism: for deterministic APAs N 1 , N 2 , both N 1 \ * N 2 and N 1 \ K N 2 may be non-deterministic. Hence it is of interest to extend our approach to non-deterministic specifications. The problem here is, however, that for non-deterministic specifications, the relation between refinement and inclusion of sets of implementations

N 1 N 2 ⇐⇒ [[N 1]] ⊆ [[N 2]
] breaks: we may well have

N 1 N 2 but [[N 1]] ⊆ [[N 2]
], cf. [START_REF] Delahaye | Abstract probabilistic automata[END_REF]. So the technique we have used in this paper to compute differences will not work for non-deterministic APAs, and techniques based on thorough refinement will have to be used.

As a last note, we wish to compare our approach of difference between APA specifications with the use of counterexamples in probabilistic model checking. Counterexample generation is studied in a number of papers [START_REF] Aljazzar | Directed explicit state-space search in the generation of counterexamples for stochastic model checking[END_REF][START_REF] Andrés | Significant diagnostic counterexamples in probabilistic model checking[END_REF][START_REF] Chadha | A counterexample-guided abstraction-refinement framework for Markov decision processes[END_REF][START_REF] Han | Counterexample generation in probabilistic model checking[END_REF][START_REF] Hermanns | Probabilistic CEGAR[END_REF][START_REF] Jansen | Hierarchical counterexamples for discrete-time Markov chains[END_REF][START_REF] Anvesh | Assume-guarantee abstraction refinement for probabilistic systems[END_REF][START_REF] Schmalz | Counterexamples in probabilistic LTL model checking for Markov chains[END_REF][START_REF] Wimmer | Counterexample generation for discrete-time Markov chains using bounded model checking[END_REF][START_REF] Wimmer | Minimal critical subsystems for discrete-time Markov models[END_REF], typically with the purpose of embedding it into a procedure of counterexample guided abstraction refinement (CEGAR). The focus typically is on generation of one particular counterexample to refinement, which can then be used to adapt the abstraction accordingly.

In contrast, although we propose a construction for building single counter-examples, our main focus is on computing APA difference, i.e. generating a representation of all counterexamples. Our goal is not to refine abstractions at system level, using counterexamples, but to assess specifications. This is, then, the reason why we want to compute all counterexamples instead of only one. Our work is hence supplementary and orthogonal to the CEGAR-type use of counterexamples: CEGAR procedures can be used also to refine APA specifications, but only our difference can assess the precise distinction between specifications.

 and (a) there exists e ∈ A and ϕ 1 ∈ C(S 1) such that L 1 (s 1 , e, ϕ 1) = ⊤ and ∀ϕ 2 ∈ C(S 2) : L 2 (s 2 , e, ϕ 2) = ⊥, s2 ϕ1 s1 e, ⊤ e (b) there exists e ∈ A and ϕ 1 ∈ C(S 1) such that L 1 (s 1 , e, ϕ 1) = ? and ∀ϕ 2 ∈ C(S 2) : L 2 (s 2 , e, ϕ 2) = ⊥, there exists e ∈ A and ϕ 1 ∈ C(S 1) such that L 1 (s 1 , e, ϕ 1) ≥ ? and ∃ϕ 2 ∈ C(S 2) : L 2 (s 2 , e, ϕ 2) = ?, ∃µ ∈ Sat(ϕ 1) such that ∀µ ′ ∈ Sat(ϕ 2) : µ ⋐ R µ ′ , there exists e ∈ A and ϕ 2 ∈ C(S 2) such that L 2 (s 2 , e, ϕ 2) = ⊤ and ∀ϕ 1 ∈ C(S 1) : L 1 (s 1 , e, ϕ 1) = ⊥, there exists e ∈ A and ϕ 2 ∈ C(S 2) such that L 2 (s 2 , e, ϕ 2) = ⊤ and ∃ϕ 1 ∈ C(S 1) : L 1 (s 1 , e, ϕ 1) = ?, there exists e ∈ A and ϕ

 For all a = e ∈ A and ϕ ∈ C(S 1) such that L 1 (s 1 , a, ϕ) = ⊥, let L((s 1 , s 2 , e), a, ϕ ⊥) = L 1 (s 1 , a, ϕ).In addition, let L((s 1 , s 2 , e), e, ϕ ⊥ 1) = ⊤. For all other b ∈ A and ϕ ∈ C(S), let L((s 1 , s 2 , e), b, ϕ) = ⊥. B b (s 1 , s 2) For all a ∈ A and ϕ ∈ C(S 1) such that L 1 (s 1 , a, ϕ) = ⊥, let L((s 1 , s 2 , e), a, ϕ ⊥) = L 1 (s 1 , a, ϕ). For all other b ∈ A and ϕ ∈ C(S), let L((s 1 , s 2 , e), b, ϕ) = ⊥. B e (s 1 , s 2) s2, e)For all a = e ∈ A and ϕ ∈ C(S 1) such thatL 1 (s 1 , a, ϕ) = ⊥, let L((s 1 , s 2 , e), a, ϕ ⊥) = L 1 (s 1 , a, ϕ).In addition, let L((s 1 , s 2 , e), e, ϕ B 12) = ?. For all other b ∈ A and ϕ ∈ C(S), let L((s 1 , s 2 , e), b, ϕ) = ⊥.B c (s 1 , s 2)For all a ∈ A and ϕ ∈ C(S 1) such that L 1 (s 1 , a, ϕ) = ⊥ (including e and ϕ 1), let L((s 1 , s 2 , e), a, ϕ ⊥) = L 1 (s 1 , a, ϕ). In addition, let L((s 1 , s 2 , e), e, ϕ B 12) = ⊤.For all other b ∈ A and ϕ ∈ C(S), let L((s 1 , s 2 , e), b, ϕ) = ⊥. B f (s 1 , s 2) in ϕB 12 must (1) follow the corresponding execution is N 1 and N 2 if possible, (2) satisfy ϕ 1 and (3), (a) reach a state in N 1 that cannot be matched in N 2 , (b) break the constraint ϕ 2 , or (c) report breaking the relation to at least one successor state.

s 1)

 1 and (s 2 = ⊥) and (e = ε) or (p R 1 s 1) and (p, s 2) in case 1 or 2 and and (e = ε) or (p R 1 s 1) and (p, s 2) in case 3 and (e ∈ B(p, s 2))

PFigure 2 .

 2 Figure 2. Over-approximating difference N 1 \ * N 2 of APAs N 1 and N 2 from Figure 1 and PA P such that P |= N 1 \ * N 2 and P |= N 2 .

 For all other b ∈ A and ϕ ∈ C(S), let L((s 1 , s 2 , e, k), b, ϕ) = ⊥.B e (s 1 , s 2) s2, e, k)For all a = e ∈ A and ϕ ∈ C(S 1) such thatL 1 (s 1 , a, ϕ) = ⊥, let L((s 1 , s 2 , e, k), a, ϕ ⊥) = L 1 (s 1 , a, ϕ). In addition, let L((s 1 , s 2 , e, k), e, ϕ B,k 12) = ?.For all other b ∈ A and ϕ ∈ C(S), letL((s 1 , s 2 , e, k), b, ϕ) = ⊥. B c (s 1 , s 2)For all a ∈ A and ϕ ∈ C(S 1) such that L 1 (s 1 , a, ϕ) = ⊥ (including e and ϕ 1), let L((s 1 , s 2 , e, k), a, ϕ ⊥) = L 1 (s 1 , a, ϕ). In addition, let L((s 1 , s 2 , e, k), e, ϕ B,k 12) = ⊤.For all other b ∈ A and ϕ ∈ C(S), let L((s 1 , s 2 , e, k), b, ϕ) = ⊥. B f (s 1 , s 2)

 By construction, t 1 = (s 1 , s 2 , e, k 1) 1 and t 2 = (s 1 , s 2 , e, k 2) 2 have the same outgoing transitions. The only distinction is in the constraints ϕ B,1 Moreover, we know by construction that D N 2 ,N 1 (ϕ ′ , ϕ, d) ≤ 1 for all ϕ ′ and ϕ. As a consequence, d(t 2 , t 1)

	and ϕ B,k 2 12 d(t 2 , t 1) = max when e ∈ B {c,e,f } (s 1 , s 2). Thus, t 1 and t 2 are compatible, and    max a,ϕ ′ :L 2 (t 2 ,a,ϕ ′) =⊥ min λD N 2 ,N 1 (ϕ ′ , ϕ, d) ϕ:L 1 (t 1 ,a,ϕ) =⊥   max a,ϕ:L 1 (t 1 ,a,ϕ)=⊤ min ϕ ′ :L 2 (t 2 ,a,ϕ ′)=⊤ λD N 2 ,N 1 (ϕ ′ , ϕ, d)	12

Table 3 .

 3 Definition of the transition function L in P .Let ϕ 1 ∈ C(S 1) such that L 1 (s 1 , e, ϕ 1) = ⊥ and let µ 1 be an arbitrary distribution in Sat(ϕ 1). Define L((s 1 , s 2), e, µ ⊥ 1) = ⊤. B b (s 1 , s 2)

	e ∈	N 1 , N 2	P	Formal Definition of L
	s1			s2
	B a (s 1 , s 2)	e, ⊤		e	(s1, s2)
	ϕ1		
					e
	s1			s2
		e, ?			µ ⊥ 1
				e
	ϕ1		
	s1			s2
	B d (s 1 , s 2)	e		e, ⊤	(s1, s2)
				ϕ2
					e
	s1			s2
		e, ?		
				e, ⊤
	ϕ1		ϕ2
	s1			s2
	B c (s 1 , s 2)	e, {?, ⊤}	e, ?
	ϕ1	=	ϕ2

For all µ ∈ Dist(S), let L((s 1 , s 2), e, µ) = ⊥.

B e (s 1 , s 2)

Consider the function δ :

). One can verify that δ ∈ RD(µ 2 , ϕ B,k 1 12) as follows:

2) be such that µ 2 (t ′ 2) > 0. By definition, we always have

(2) δ preserves all the conditions for satisfying ϕ B,k 2 12 . In particular, all states

As a consequence, the distribution µ 1 :

12 . As a consequence, all µ 2 ∈ Sat(ϕ B,k 2 12), we have inf

(the next-to-last step by induction). Since this is true for all µ 2 ∈ Sat(ϕ B,k 2 12), we have D N 2 ,N 1 (ϕ B,k 2 12 , ϕ B,k 1 12 , d) ≤ λ k 1 -1 . Finally, we have d(t 2 , t 1) ≤ λλ k 1 -1 = λ k , which proves the induction. For any state t 2 0 = (s 1 0 , s 2 0 , e, K 2) ∈ T 2 0 , there exists a state t 1 0 = (s 1 0 , s 2 0 , e, K 1) ∈ T 1 0 such that d(t 2 0 , t 1 0) ≤ λ K 1 . As a consequence, we have d(

The next proposition then shows that the speed of convergence is exponential in K; hence in practice, K will typically not need to be very large.

Proposition 5. Let N 1 and N 2 be two deterministic APAs in SVNF such that N 1 N 2 , and let K ∈ N.

3. Finally, we prove that lim K→∞ d(N 1 \ * N 2 , N 1 \ K N 2) = 0. This proof is very similar to the proof of Lemma 4 above: we can show that the distance between N 1 \ * N 2 and N 1 \ K N 2 is bounded as follows:

. We start by proving by induction on 1 ≤ k ≤ K that for all (s 1 , s 2 , e) ∈ S 1 ×(S 2 ∪⊥)×(A∪ε), we have d((s 1 , s 2 , e) * , (s 1 , s 2 , e, k)) ≤ λ k . The only difference with the proof of Lemma 4 is in the choice of the function δ : S * × S K → [0, 1] in the induction part. Here, we choose δ as follows:

The rest of the proof is identical, and we obtain that for all 1 ≤ k ≤ K and for all (s 1 , s 2 , e) ∈ S 1 × (S 2 ∪ ⊥) × (A ∪ ε), we have d((s 1 , s 2 , e) * , (s 1 , s 2 , e, k)) ≤ λ k . In particular, this is also true for initial states. As a consequence, for all states t * 0 = (s 2 0 , s 1 0 , e) ∈ T * 0 , there exists a state

Recall that as d and d t are not metrics, but only (asymmetric) pseudometrics (i.e. hemimetrics), the above sequences may have more than one limit; hence the particular formulation. The theorem's statements are topological, as they only allude to convergence of sequences and distance 0; topologically equivalent distances obey precisely the property of having the same convergence behavior and the same kernel, cf. [START_REF] Aliprantis | Infinite Dimensional Analysis: A Hitchhiker's Guide[END_REF].

The next corollary, which is easily proven from the above theorem by noticing that its first part implies that also lim

shows what we mentioned already at the end of Section 4.2: with respect to the distance d, N 1 \ * N 2 is a best possible over-approximation of

Again, as d t is not a metric, the distance being zero does not imply that the sets

] are equal; it merely means that they are indistinguishable by the distance d t , or infinitesimally close to each other.

Counter-Example Generation

Here we show how some techniques similar to the ones we have introduced can be used to generate one counterexample to a failed refinement N 1 N 2 . Note that when we compute the approximating differences N 1 \ * N 2 and N 1 \ K N 2 , we are in principle generating (approximations to) the set of all counterexamples, hence what we do in Section 4 is much more general than what we will present below. Generating only one counterexample may still be interesting however, as it is somewhat easier than computing the differences N 1 \ * N 2 , N 1 \ K N 2 and is all that is needed in a CEGAR approach.

First remark that Definition 4 can be trivially turned into an algorithm for checking refinement. Let N 1 = (S 1 , A, L 1 , AP, V 1 , {s 1 0 }) and N 2 = (S 2 , A, L 2 , AP, V 2 , {s 2 0 }) be two deterministic APAs in SVNF. Consider the initial relation R 0 = S 1 × S 2 . Compute R k+1 by removing all pairs of states not satisfying Definition 4 for R k . The sequence (R n) n∈N is then strictly decreasing and converges to a fixed point within a finite number of steps K ≤ |S 1 × S 2 |. This fixed point R K coincides with the maximal refinement relation R between N 1 and N 2 . Let the index of this fixed point be denoted with

We now observe that if a pair of states (s 1 , s 2) is removed from the relation R by case 3, then we need to keep track of the actions that lead to this removal in order to use them in our counterexample. Whenever a pair of states is in cases 3.a, 3.b, 3.d or 3.e, we have that Ind R (s 1 , s 2) = 0 and the counterexample can be easily produced by allowing or disallowing the corresponding transitions from N 1 and N 2 . Cases 3.c and 3.f play a different role: due to the fact that they exploit distributions, they are the only cases in which refinement can be broken by using its recursive axiom. In these cases, producing a counterexample can be done in two ways: either by using a distribution that does not satisfy the constraints in N 2 (if such a distribution exists, then Ind R (s 1 , s 2) = 0), or by using a distribution that reaches a pair of states

, only the latter is possible. This recursive construction has disadvantages: it allows us to produce loops that may lead to incorrect counterexamples. In order to prevent these loops, we propose to use only those distributions that decrease the value of Ind in this particular case. The set Break(s 1 , s 2) defined hereafter allows us to distinguish the actions for which the value of Ind decreases, hence ensuring (by Lemma 8 below) the correctness of our counterexample construction.

Remark that the conditions for Break above are exactly the conditions for removing a pair of states (s 1 , s 2) at step k of the algorithm for computing R defined above. Under the assumption that V 1 (s 1) ⊆ V 2 (s 2) and Ind R (s 1 , s 2) = k < Ind(R), we can be sure that the set Break(s 1 , s 2) is not empty. Moreover, we have the following lemma. Lemma 8. For all pairs of states (s 1 , s 2) in case 3 and for all actions e ∈ (B c (s

Proof. Let R be the maximal refinement relation between N 1 and N 2 and let (s

(5.1)

Let K be the smallest index such that R K = R. By construction, we know that

Consider the distribution µ 1 given by (5.1) above. We have that ∀µ 2 ∈ Sat(ϕ 2) : ∀ corresp. δ :

) and 0 otherwise. There are several cases.

• If there exists s

In other words, the above lemma ensures that a pair (s ′ 1 , s ′ 2) such that Ind R (s ′ 1 , s ′ 2) = 0 can be reached within a bounded number of transitions for all pairs of states (s 1 , s 2) in case 3. As explained above, this is a prerequisite for the correctness of the counterexample construction defined hereafter.

We now propose a construction to build counterexamples. Let

Let R be the maximal refinement relation between N 1 and N 2 .

Appendix: Proof Theorem 3

Proof of Theorem 3. For the first claim, consider the relation

where R id denotes the identity relation. One can verify that, by construction, R is a refinement relation witnessing

Let

1. We first prove that for all

Otherwise, assume that (s 1 0 , s 2 0) is in case 3 and let K ∈ N. We have N 1 \ K N 2 = (S, A, L, AP, V, S K 0) defined as in Section 4.3. Let P = (S P , A, L P , AP, V P , s P 0) be a PA such that P |= N 1 \ K N 2 . Let R \ ⊆ S P × S be the associated satisfaction relation and let f ∈ B(s 1 0 , s 2 0) be such that s P 0 R \ (s 1 0 , s 2 0 , f, K). We show that P |= N 1 and P |= N 2 . We start by proving that

• By construction, we have

• Let a ∈ A and µ P ∈ Dist(S P) be such that L P (p, a, µ P) = ⊤. By R \ , there exists ϕ ∈ C(S) such that L((s 1 , s 2 , e, n), a, ϕ) = ⊥ and there exists µ ∈ Sat(ϕ) such that µ P ⋐ R \ µ.

If s 2 = ⊥ or e = ε or a = e, then by construction of N 1 \ K N 2 , there exists

) and it follows that µ P ⋐ R 1 µ ↓ 1 . Otherwise, assume that s 2 ∈ S 2 , e ∈ A and a = e. There are several cases.

-

As above, we thus have

-Else, if e ∈ B e (s 1 , s 2), then there exists ϕ 1 ∈ C(S 1) and ϕ 2 ∈ C(S 2) such that L 1 (s 1 , e, ϕ 1) =? and L 2 (s 2 , e, ϕ 2) = ⊤. Moreover, ϕ is of the form ϕ B 12 , and

) and 0 otherwise. By construction, δ 1 is a correspondence function and we have µ P δ 1 = µ 1 . Thus there exists µ 1 ∈ Sat(ϕ 1) such that µ

, then there exists ϕ 1 ∈ C(S 1) such that L(s 1 , e, ϕ 1) = ⊥, and either ϕ = ϕ ⊥ 1 or ϕ = ϕ B 12 as in the case above. In both cases, as proven before, there exists

If s 2 = ⊥ or e = ε or a = e, then by construction of

As a consequence, there exists a distribution µ P ∈ Dist(S P) such that L P (p, a, µ P) = ⊤ and there exists µ

Otherwise, assume that s 2 ∈ S 2 , e ∈ A and a = e. Since L 1 (s 1 , a, ϕ 1) = ⊤, (s 1 , s 2) can only be in cases 3.a, 3.c or 3.f . As a consequence, e ∈ B a (s 1 , s 2) ∪ B c (s 1 , s 2) ∪ B f (s 1 , s 2). By construction, in all of these cases, we have L((s 1 , s 2 , e, n), a, ϕ ⊥ 1) = ⊤. Thus, there exists a distribution µ P ∈ Dist(S P) such that L P (p, a, µ P) = ⊤ and there exists µ ∈ Sat(ϕ ⊥ 1) such that µ P ⋐ R \ µ. As above, it follows that Otherwise, e ∈ B e (s 1 , s 2) ∪ B c (s 1 , s 2) ∪ B f (s 1 , s 2) and there exists µ P ∈ Dist(S P) such that L P (p, e, µ P) = ⊤. Let ϕ 1 ∈ C(S 1) and ϕ 2 ∈ C(S 2) be the corresponding constraints in N 1 and N 2 . Consider the corresponding constraint ϕ B, 1 12 ∈ C(S). By R \ , there exists µ ∈ Sat(ϕ B, 1 12) such that µ P ⋐ R \ µ. By construction of ϕ B,1 12 , we know that either (3.a) there exists

does not satisfy ϕ 2 . If there exists (s ′ 1 , ⊥, ε, 1) such that µ(s ′ 1 , ⊥, ε, 1) > 0, then there exists p ′ ∈ S P such that µ P (p ′) > 0 and succ s 2 ,e (p ′) = ∅. Thus there cannot exists µ ′ 2 ∈ Sat(ϕ 2) such that µ P ⋐ R 2 µ ′ 2 . Otherwise, by determinism of N 2 , we know that the only possible correspondence function for µ P and R 2 is δ 2 :

) and 0 otherwise. By construction, we have µ P δ 2 = µ 2 and thus there is no distribution µ ′ 2 ∈ Sat(ϕ 2) such that µ P ⋐ R 2 µ ′ 2 . Consequently, (p, s 2) / ∈ R 2 . • Induction. Let 1 < n ≤ K and assume that for all k < n, for all p ′ ∈ S P , s ′ 2 ∈ S 2 , whenever there exists s

then by construction there is an e transition in either P or N 2 that cannot be matched by the other. Thus (p, s 2) / ∈ R 2 . The same is verified if e ∈ B e (s 1 , s 2) and there is no distribution µ P ∈ Dist(S P) such that L P (p, e, µ P) = ⊤. Else, e ∈ B e (s 1 , s 2) ∪ B c (s 1 , s 2) ∪ B f (s 1 , s 2) and there exists µ P ∈ Dist(S P) such that L P (p, e, µ P) = ⊤. Let ϕ 1 ∈ C(S 1) and ϕ 2 ∈ C(S 2) be the corresponding constraints in N 1 and N 2 .

Consider the corresponding constraint ϕ B,n 12 ∈ C(S). By R \ , there exists µ ∈ Sat(ϕ B,n 12) such that µ P ⋐ R \ µ. By construction of ϕ B,n 12 , we know that either (3.a) there exists

By hypothesis, we have s P 0 R \ (s 1 0 , s 2 0 , f, K). As a consequence, we have that (s P 0 , s 2 0) / ∈ R 2 , implying that P |= N 2 .

We now prove that for all PA

, then for all K ∈ N, we have N 1 \ K N 2 = N 1 and the result holds.

Otherwise, assume that (s 1 0 , s 2 0) is in case 3. Let P = (S P , A, L P , AP, V P , s P 0) be a PA such that P |= N 1 and P |= N 2 . Let R 1 be the satisfaction relation witnessing P |= N 1 and R 2 be the maximal satisfaction relation between P and N 2 . Assume that R 2 is computed as described in Section 5. Let Ind R 2 be the associated index function and let K be the minimal index such that R 2K = R 2 . We show that Remark that whenever (p, s 2) is in case 3, we know that Ind R 2 (p, s 2) < K, thus Ind R 2 (p, s 2)+ 1 ≤ K.

We prove that R \ is a satisfaction relation. Let p R \ (s 1 , s 2 , e, k). If s 2 = ⊥ or e = ε, then since p R 1 s 1 , R \ satisfies the axioms of a satisfaction relation by construction.

Else we have s 2 ∈ S 2 and e = ε, thus, by definition of R \ , we know that (p, s 2) is in case 3. The rest of the proof is almost identical to the proof of Theorem 2. In the following, we report to this proof and only highlight the differences.

• By construction, we have

• Let a ∈ A and µ P ∈ Dist(S P) such that L P (p, a, µ P) = ⊤. There are several cases.

-If a = e, or a = e ∈ B a (p, s 2), the proof is identical to the proof of Theorem 2.

-Else, we necessarily have

) such that L 1 (s 1 , e, ϕ 1) = ⊥ and there exists µ 1 ∈ Sat(ϕ 1) and a correspondence function δ 1 :

12 is such that L((s 1 , s 2 , e, k), e, ϕ B,k 12) = ⊤. We now prove that there exists µ ∈ Sat(ϕ B,k 12) such that µ P ⋐ R \ µ. Consider the function δ : S P → (S → [0, 1]) defined as follows: Let p ′ ∈ S P such that µ P (p ′) > 0 and let s ′ 1 = succ s 1 ,e (p ′), which exists by

Remark that for all p ′ ∈ S P such that µ P (p ′) > 0, there exists a unique s ′ ∈ S ′ such that δ(p ′)(s ′) = 1. Thus δ is a correspondence function. We now prove that µ

(3) Depending on k, there are 2 cases.

* If k > 1, assume that for all p ′ ∈ S P such that µ P (p ′) > 0, we have

. In the first case (2), consider the distribution µ 2 defined as follows:

We have the following: for all

As a consequence, µ 2 / ∈ Sat(ϕ 2) and µ ∈ Sat(ϕ B,k 12). In the second case (3), we have). We thus conclude that there exists µ ∈ Sat(ϕ B,k 12) such that µ P ⋐ R \ µ. • Let a ∈ A and ϕ ∈ C(S) such that L((s 1 , s 2 , e), a, ϕ) = ⊤. As in the proof of Theorem 2, there are several cases that all boil down to the same arguments as above. Finally, R \ is a satisfaction relation: Let c ∈ Break R 2 (s P 0 , s 2 0) and consider the relation R \ ′ = R \ ∪{(s P 0 , (s 1 0 , s 2 0 , c, K))}. Due to the fact that K ≥ Ind R 2 (s P 0 , s 2 0), one can verify that the pair (s P 0 , (s 1 0 , s 2 0 , c, K)) also satisfies the axioms of a satisfaction relation. The proof is identical to the one presented above. As a consequence, R \ ′ is also a satisfaction relation. Moreover, we now have that (s P 0 , (s 1 0 , s 2 0 , c, K)) ∈ R \ ′ , with (s 1 0 , s 2 0 , c, K) ∈ S 0 , thus

Let P = (S, A, L, AP, V, s 0) be the counterexample defined as above. We prove that P |= N 1 and P |= N 2 .

We prove that R s is a satisfaction relation. Let t = (s 1 , s 2) ∈ S and consider (t, s 1) ∈ R s .

• By construction, we have V (s 1 , s 2) ⊆ V 1 (s 1).

• Let a ∈ A and ϕ 1 ∈ C(S 1 such that L 1 (s 1 , a, ϕ 1) = ⊤. There are several cases.

-If (s 1 , s 2) in case 1 or 2 or s 2 = ⊥, then by construction there exists µ ⊥ 1 ∈ Dist(S) such that L((s 1 , s 2), a, µ ⊥ 1) = ⊤. By construction, we have that there exists µ

), the result follows as above. Else, either a ∈ B a (s 1 , s 2) ∪ B b (s 1 , s 2) and the result follows again by construction, or a ∈ B c (s 1 , s 2) ∪ B f (s 1 , s 2). In this case, there exists a distribution µ 1 ∈ Dist(S) such that L((s 1 , s 2), a, µ 1) = ⊤. By construction, µ 1 is defined as follows:

, where µ 1 is either the distribution given by Lemma 8 if a ∈ Break(s 1 , s 2) or an arbitrary distribution in Sat(ϕ 1). In both cases, µ 1 ∈ Sat(ϕ 1). Consider the function δ

and 0 otherwise. Using standard techniques, on can verify that δ is a correspondence function and that µ 1 ⋐ Rs µ 1 .

• Let a ∈ A and µ ∈ Dist(S) such that L((s 1 , s 2), a, µ) = ⊤. By construction of P , there must exists ϕ 1 ∈ C(S 1) such that L 1 (s 1 , a, ϕ 1) = ⊥ and µ is either of the form µ ⊥ 1 or µ 1 for some µ 1 ∈ Sat(ϕ 1). As above, we can prove that in all cases, µ ⋐ Rs µ 1 .

Finally s is a satisfaction relation. Moreover, we have ((s 1 0 , s 2 0), s 1 0) ∈ R s , thus P |= N 1 . P |= N 2 . Let R s ⊆ S × S 2 be the maximal satisfaction relation between P and N 2 , and assume that R s is not empty. Let R ⊆ S 1 × S 2 be the maximal refinement relation between N 1 and N 2 and let K be the smallest index such that R K = R. We prove that for all (s 1 , s

• Base case. If Ind R (s 1 , s 2) = 0, then there are several cases.

- By construction, we have that L((s 1 , s 2), e, µ 1) = ⊤ for µ 1 given above. Since Ind R (s 1 , s 2) = 0, case (III) above is not possible. From cases (I) and (II), we can deduce that for all µ 2 ∈ Sat(ϕ 2), we have µ 1 ⋐ Rs µ 2 . Moreover, by determinism of N 2 , ϕ 2 is the only constraint such that L 2 (s 2 , e, ϕ 2) = ⊥. As a consequence, ((s 1 , s 2), s 2) / ∈ R s . • Inductive step. Let 0 < k < K and assume that for all k ′ < k and for all (s ′ 1 , s 2) ∈ § 1 × S 2 , if Ind R (s 1 , s 2) = k ′ , then ((s 1 , s 2), s 2) / ∈ R s . Assume that Ind R (s 1 , s 2) = k. There are two cases.

-If (s 1 , s 2) in cases 2, 3.a, 3.b, 3.d or 3.d, the same reasoning applies as for the base case. We thus deduce that ((s By construction, we have that L((s 1 , s 2), e, µ 1) = ⊤ for µ 1 given above. As above, if cases (I) or (II) apply, then we can deduce that ((s 1 , s 2), s 2) / ∈ R s . If case (III) applies, then there exists (s ′ 1 , s ′ 2) ∈ S such that µ 1 (s ′ 1 , s ′ 2) > 0, s 2 = succ s 2 ,e (s ′ 1) and Ind R (s ′ 1 , s ′ 2) < Ind R (s 1 , s 2). Since s ′ 2 = succ s 2 ,e (s ′ 1), then, by determinism of N 2 , all correspondence functions δ will be such that δ((s ′ 1 , s ′ 2), s ′ 2) = 1. However, we have that Ind R (s ′ 1 , s ′ 2) < k, thus by induction ((s ′ 1 , s ′ 2), s ′ 2) / ∈ R s . As a consequence, we have that for all µ 2 ∈ Sat(ϕ 2), we have µ 1 ⋐ Rs µ 2 . We can thus deduce that ((s 1 , s 2), s 2) / ∈ R s . Finally, we know that Ind R (s 1 0 , s 2 0) < k. As a consequence, we have ((s 1 0 , s 2 0), s 2 0) / ∈ R s and thus P |= N 2 .