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Abstract

The main problem of a closed-loop re-identification procedure is that, in general,
the dynamic control and identification objectives are conflicting. In fact, to
perform a suitable identification, a persistent excitation of the system is needed,
while the control objective is to stabilize the system at a given equilibrium point.
However, a generalization of the concept of stability, from punctual stability to
(invariant) set stability, allows for a flexibility that can be used to avoid the
conflict between these objectives. Taking into account that an invariant target
set includes not only a stationary component, but also a transient one, the
system could be excited without deteriorating the stability of the closed-loop.
In this work, a MPC controller is proposed that assures the stability of invariant
sets at the same time that a signal suitable for closed-loop re-identification is
generated. Several simulation results show the propose controller formulation
properties.

Keywords: Model predictive control, closed-loop identification, target set
control, persistent excitation.

1. Introduction

Model predictive control (MPC) is typically implemented as a lower stage of
a hierarchical control structure. The upper level stages are devoted to compute,
by means of a stationary optimization, the targets that the dynamic control
stage (MPC) should reach to economically optimize the operation of the pro-
cess. Since both, the dynamic and stationary optimizations are model based
optimizations, a periodic updating of the model parameters are desired to reach
meaningful optimums. In this context, a re-identification procedure should be
developed in a closed-loop fashion, since the process cannot be stopped each
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time an update is needed. As it is known, the main problem of a closed-loop
identification is that the dynamic control objectives are incompatible with the
identification objectives ([9]). In fact, to perform a suitable identification, a
persistent excitation of the system modes is needed, while the controller takes
this excitation as disturbance, and tries to reject this disturbance to stabilize
the system.

From a general point of view, the closed-loop identification methods fall into
the following main groups ([21]). The direct approach ignores the feedback law
and identifies the open-loop system using measurements of the input and the
output. The indirect approach identifies the closed-loop transfer function and
determines the open-loop parameters subtracting the controller dynamic. To
do that, the controller dynamics must be linear and known. The joint input-
output approach takes the input and output jointly, as the output of a system
produced by some extra input or set-point signal. Since the last two methods
need the exact knowledge of a linear controller, they are not directly applicable
for closed-loops under constrained MPC controllers.

Several strategies were developed to perform closed-loop re-identification un-
der MPC controllers: [4] proposed a controller named Model Predictive Control
and Identification (MPCI) where a persistent excitation condition is added by
means of an additional constraint in the optimization problem. This strategy,
which was explored later in [1], turns the MPC optimization problem non-
convex, and so, most of the well-known properties of the MPC formulation
cannot be established. [22] proposed a strategy that manipulates the steady
state target optimization (in the hierarchical MPC control structure) in order
to excite the system. In the context of data driven MPC formulations (i.e.,
MPC that are designed to perform predictions directly from collected data),
the subspace identification method is exclusively used ([18]). In [10], [23] and
[17] several approaches are presented, where a closed-loop re-identification is
needed to update the data for predictions. Though preliminary studies were
made according to the trade-off between stability and excitation, no definitive
results were presented.

In general, none of the reports cited in this section have shown results re-
garding the system stability of the MPC while the system is being re-identified.
In this work, based on the concept of stability of an invariant set (as a gener-
alization of stability of a point), a MPC controller with a extended domain of
attraction is proposed, which assures stability at the same time that a persis-
tent excitation can be generated to perform a closed-loop re-identification. Some
preliminary results regarding the complete strategy presented in this work, were
recently presented in [5].

Notation: Matrices In ∈ Rn×n and 0n,m ∈ Rn×m denote the identity
matrix and the null matrix, respectively. A C-set is a convex and compact set
that contains the origin. A proper C-set is a C-set that contains the origin
as an interior point. Consider two sets U ⊆ Rn and V ⊆ Rn, containing the
origin, and a real number λ. The Minkowski sum U ⊕ V ⊆ Rn is defined
by U ⊕ V = {(u + v) : u ∈ U , v ∈ V}; the set (U\V) ⊆ Rn is defined as
U\V = {u : u ∈ U ∧ u /∈ V}; and the set λU = {λu : u ∈ U} is a scaled set of
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U . |v|V is the distance from v to V. The boundary of a set U , is defined as ∂U .
Given a continuous function Ψ : Rn → R , and γ ≥ 0, the level set N [Ψ, γ]
is defined by N [Ψ, γ] = {x : Ψ (x) ≤ γ}. Im:n denotes the nonnegative integers
from m to n. Given x ∈ Rn and y ∈ Rn, ‖x − y‖2M = (x − y)TM(x − y), with
M ∈ Rn×n.

2. Problem statement and preliminaries

Consider a system described by a linear time-invariant discrete-time model

x+ = Ax+Bu, y = Cx

where x ∈ IRn is the system state, x+ is the successor state, u ∈ IRm is the
current control, and y ∈ IRp is the system output. The state, the control input
and the output at discrete-time instant k are denoted as x(k), u(k) and y(k),
respectively. The system is subject to hard constraints on state and input,

(x(k), u(k)) ∈ Z ∆
= (X ×U) ⊂ Rn+m for all k ≥ 0, where X ⊂ Rn and U ⊂ Rm.

Furthermore, the following assumption holds:

Assumption 1. Matrix A has all its eigenvalues strictly inside the unit circle,
the pair (A,B) is controllable and the state (corresponding to the true plant) is
measured at each discrete-time instant. Furthermore, the set X is convex and
closed, the set U is convex and compact and both contain the origin in their
interior. For simplicity, AX ⊆ λX , with λ ∈ [0, 1).

Previous to the controller formulation, some necessary definitions helpful
to generalize the concepts of equilibrium and invariance are introduced. To
simplify the notation, we denote system x+ = Ax + Bu, (x, u) ∈ Z as Non-
autonomous system (Nsys) and system x+ = Ax + Bκ(x), (x, κ(x)) ∈ Z,
where κ(x) is a state feedback, as Controlled system (Csys). Accord-
ingly, for a given sequence of control inputs, u = {u(0), · · · , u(j − 1)} and
a given initial state x(0) = x, the solution of Nsys will be denoted as:

x(j) = φ(j;x,u) = Ajx(0) +
∑j−1
i=0 A

j−i−1Bu(i), j ∈ I≥1. Similarly, for a
given initial state x(0) = x, the solution of Csys will be denoted as: x(j) =

φκ(j;x) = Ajx(0) +
∑j−1
i=0 A

j−i−1Bκx(i), j ∈ I≥1.

Definition 1. (Control Equilibrium Set - CES) A set Ω ⊆ X is a control
equilibrium set for Nsys, if for every point x ∈ Ω the condition x+ = x holds for
some u ∈ U .

The maximal CES, Xss, is given by Xss = (GBU)∩X , where G = (In−A)−1.
In case of controlled systems, Csys, we simply say that a Control Equilibrium set
Ω is an Equilibrium Set - (ES), with u = κ(x). The proper generalization of
the concept of equilibrium point is not the concept of equilibrium set, as a mere
aggregation of steady-state points, but the concept of invariant set (associated
to an equilibrium set), in the sense that both, the equilibrium point and the
invariant set are geometric entities such that, if the system reaches them, it
remains in them indefinitely ([2], [11], [13]):
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Definition 2. (λ-Control Invariant Set - λ-CIS) A proper C-set Ω ⊆ X
is λ-control invariant, with λ ∈ [0, 1], for Nsys, if x ∈ Ω implies x+ ∈ λΩ, for
some u ∈ U .

Again, in case of controlled systems, Csys, a λ-Control Invariant set is simply
a λ-Invariant Set - (λ-IS), with u = κ(x). Furthermore, if λ = 1, the sets are
simply Invariant sets, and if λ ∈ [0, 1), the sets are known as Contractive sets.
The concept of invariant set, as a generalization of an equilibrium point, makes
possible the generalization of the concept of attractivity of an equilibrium point.
Then, we can define the attractivity of an IS set as follows ([20]):

Definition 3. (Local attractivity of an IS set) The IS set Ω ⊂ X is locally
attractive for Csys if for each x in a vicinity of Ω (that we call the domain of
attraction), it follows that |φκ(j;x)|Ω → 0, φκ(j;x) ∈ X , κ(φκ(j;x)) ∈ U as
j →∞.

3. Target invariant set for identification

The objective of this section is to propose a set (in the state space) that
is invariant under the excitation procedure necessary to perform a suitable
identification and, at the same time, can be used as attractive target set
(generalized equilibrium) by an MPC controller. As known, to estimate a model
from measured input and output data, each (controllable) mode of the system
must be excited. To do that, the excitation input signal must contain enough
variability. This property is generally indicated by the notion of persistence of
excitation ([15]). The persistent excitation input sequences might be of several
forms, going from a Pseudo-Random Binary Signal (PRBS) signal to a Filtered
Pseudo Gaussian White Noise Signal. A recent formulation proposed a filtered
Gaussian inputs signal specifically designed for MPC ([14]). Independently of
the form, the persistent excitation sequences have two main properties: they
are bounded, belonging to a compact set smaller than U , and more subtle, they
have a persistent-variability behavior. Regarding the first property, we define:

Definition 4. (Excitation input set, EIS). An input proper C-set U t ⊂ U ⊂
Rm, with enough size to excite the system will be denoted as excitation input
set.

The set U t defines a class of sequences u = {u(0), · · · , u(Tid − 1)} - denoted
by CUt - such that u(i) ∈ U t for i ∈ I0:Tid−1, where Tid is the length of the
data necessary to perform a suitable identification. Now, regarding the second
property of persistent excitation, we define the class of all feasible sequences that
fulfill the persistent-variability condition (see [8], [4], for the explicit expression
of this condition). This class - that we call the persistent excitation class, Cpe
- is made by sequences of the form upe = {upe(0), · · · , upe(Tid − 1)}, upe(i) ∈ U t,
i ∈ I0:Tid−1. Notice that, following the latter classification, Cpe is in CUt , but
there is an entire class of input sequences that are in CUt and not in Cpe. For
instance, a constant sequence of Tid elements, ū = {ū, · · · , ū}, with ū ∈ U t,
belongs to CUt but does not belong to Cpe.

4



The solution of Nsys for a particular sequence upe in Cpe, and an initial state
x(0) = x, will be denoted as x(j) = φ(j;x,upe), j ∈ I≥1 (persistently excited
system). Notice that once a particular input sequence is selected, then the
system evolves autonomously, in the sense that no manipulated controls modify
the system evolution. We can now define a set in the state space that is invariant
to the effect of any persistent excitation sequence.

Definition 5. (λ-Invariant set for Persistent Excitation) A proper C-set
X pe ⊆ X is a λ-invariant set for persistent excitation, with λ ∈ [0, 1], for Nsys,
if x ∈ X pe implies φ(j;x,upe) ∈ λX pe, for j ∈ I1:Tid

, for all upe ∈ Cpe.

The set X pe is well defined and it is what we need to formulate the MPC
for re-identification. However, X pe is not easy to characterize, given that the
Persistent Excitation condition is not related to a spatial condition, but to a
dynamic requirement. Next, an approximation of X pe that is useful for MPC
requirements is proposed.

3.1. A MPC target set that is an approximation of X pe

Instead of associate an invariant set, X pe, to the class Cpe, we could relax
the definition and associate an invariant set to the class CUt , which contains Cpe.
So, the following definition arises:

Definition 6. (λ-Invariant set for identification, λ-ISI) A proper C-set
X t ⊆ X is a λ-invariant set for identification, with λ ∈ [0, 1], for Nsys, if x ∈ X t
implies φ(j;x,u) ∈ λX t, for j ∈ I1:Tid

, for all u ∈ CUt .

A λ-ISI set with λ = 1 is simply an ISI set. Since by definition every input
sequence of Cpe is in CUt , it follows that X pe ⊆ X t, which means that X t is
an outer ”invariant” approximation of X pe. Clearly, an ISI set definition is a
robust invariant set definition adapted to identification requirements. So, it is
relatively easy to compute, and we can define the smallest ISI set, for a given
system, which is given by the minimal ISI set ([13]): X t =

⊕∞
i=0(AiBU t).

Remark 1. Although the set X t could be easy to compute (for polytopic con-
straint sets), it could be much bigger than X pe. For instance, since Persistent
Excitation signals cannot remain constant at a boundary value of U t, then the
boundary regions of the set X t (the points far from the origin) that corresponds
to the equilibrium subspace Xss are not in X pe. The methodical reduction of
the size of set X t (and so, of the conservatism of the formulation) to obtain
accurate approaches of X pe could be done in several ways, using for instance the
concepts of probabilistic invariant sets ([12]) and other deterministic concepts
as the Pontryagin difference, etc.

Next, some properties regarding the ISI sets are stated.

Property 1. A set X t is a λ-ISI set for Nsys if and only if AX t⊕BU t ⊆ λX t.
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Property 2. Conisder a λ-ISI set X t, with λ ∈ [0, 1], for Nsys, and a CES set,
X tss = GBU t ⊆ X , for the same system. Also consider a λ-IS set, Ω ⊂ X , with
λ ∈ [0, 1), for the autonomous system x+ = Ax, x ∈ X . Then:

(1) X t is also a λ-invariant set for persistent excitation, X pe (contractivity
of X t under persistent excitation).

(2) For each x in a vicinity of X t, |φ(j;x,upe)|X t → 0, φ(j;x,upe) ∈ X , as
j →∞ (attractivity of X t under persistent excitation).

(3) X tss ⊆ X t and furthermore, if m < n, X tss ⊂ X t (X t includes station-
ary and transient states).

(4) Provided that (X t ⊕ Ω) ⊂ X , there exists a real δ ∈ (λ, 1), such that if
x ∈ (X t ⊕ Ω), then φ(j;x,u) ∈ δ(X t ⊕ Ω) for all j ∈ I≥1, for all upe ∈ Cpe
(contractivity of X t ⊕ Ω under persistent excitation).

(5) If δX t ⊂ X , for a constant δ > 1, δX t is also an λ-ISI set (contractivity
of δX t under persistent excitation).

The proofs of these properties are omitted for brevity.

3.2. Target set X t for model mismatch

It should be noticed that the ISI set X t, which will be a parameter of the
proposed MPC optimization cost, depends on the model. Since the excitation
scenario is precisely given when we suspect that the current model is no
longer accurate, a discussion about the effect of the model mismatch on the
computation of X t is needed. Two uncertainty descriptions - that are only
particular descriptions - were selected to present robust ISI sets.

Parametric uncertainty

Consider a system given by

x+ = A(w)x+B(w)u, y = C(w)x, w ∈ W ⊆ R, (1)

where A(w) and B(w) are affine functions of w, i.e., A(w) = A+ wĀ, B(w) =
B+wB̄ with w belonging to the proper C-setW ⊂ R. Furthermore, assume that
the Nominal model is given by x+ = A(wN = 0)x + B(wN = 0)u = Ax + Bu,
and the unknown Real model, is given by x+ = A(wR)x + B(wR)u, for some
wR ∈ W. In this context, there is a minimal ISI set X t(w) associated to each
particular model. Now, consider the following Theorem:

Theorem 1. Consider a λ-ISI set X t(w = 0), λ ∈ [0, 1), for x+ = Ax + Bu,
(x, u) ∈ Z. Then, there exists a non-empty set W ⊂ R for which the set
X t(w = 0) is an ISI set for x+ = A(w)x+B(w)u, (x, u) ∈ Z, for all w ∈ W.

Proof. Consider

A(w)X t ⊕B(w)U t = (A+ wĀ)X t ⊕ (B + wB̄)U t

⊆ (AX t ⊕BU t)⊕ w(ĀX t ⊕ B̄U t) ⊆ λX t ⊕ wΘ
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where Θ
∆
= ĀX t ⊕ B̄U t. The first inclusion follows from Minkowski sum prop-

erties, while the second one follows from the fact that X t(w = 0) is a λ-ISI set,
λ ∈ [0, 1), for the Nominal model. Now, since X t and U t are proper C-sets, Θ is
also a proper C-set. Then, a value w̄ > 0 does exists such that w̄Θ ⊆ (1−λ)X t.
Therefore, we have

A(w)X t ⊕B(w)U t ⊆ λX t ⊕ w̄Θ ⊆ λX t ⊕ (1− λ)X t = X t

Then, the non-empty set W ∆
= [0, w̄] is such that X t is an ISI set for x+ =

A(w)x + B(w)u, (x, u) ∈ Z, for all w ∈ W. Furthermore, assuming that Θ
is 0-simetric, a similar procedure can be followed for −w̄. In this way, the

(non-empty) set W is given now by W ∆
= [−w̄, w̄].

Next, based on the result in Theorem 1, a practical form to compute the
robust ISI set is proposed.

Remark 2. (Practical computation of the robust ISI set) Property 2,(4)
provides a way to obtain an ISI set like the one required by the hypotesis of
Theorem 1. Consider a λ-IS set Ωλ, λ ∈ [0, 1), for the autonomous system
x+ = A(w = 0)x = Ax, x ∈ X , and take into account that ξ Ωλ, ξ > 0, is also

a (contractive) λ-IS set for the same system. Then, the set X t = X t(ξ, λ)
∆
=

X t(w = 0) ⊕ ξ Ωλ, where X t(w = 0) is the minimal ISI set for the Nominal
system, is a δ-ISI set, with δ ∈ (λ, 1), for the same Nominal system. Now, for

given sets W ∆
= [−w̄, w̄] and U t, it is desirable to obtain the smallest robust ISI

set X t(ξ, λ), which can be done by solving the following problem:

(ξ̄, λ̄) = min
ξ,λ
{(ξ, λ)|(AX t(ξ, λ)⊕BU t)⊕ w̄(ĀX t(ξ, λ)⊕ B̄U t) ⊆ X t(ξ, λ)} (2)

The smallest robust ISI set is then given by X t = X t(ξ̄, λ̄)
∆
= X t(w = 0)⊕ ξ̄Ωλ̄.

Notice that the model described in (1) is not a mere scaling of matrices
A and B, since matrices Ā and B̄ are in general different from the nominal
matrices. So, notice that a general set X̃ containing all possible minimal in-
variant sets for the uncertainty system is not useful for a robust formulation of
the MPC, since this set is not necessarily an ISI set for each model of the family.

Additive disturbance uncertainty

In this case we have a model of the form x+ = Ax + Bu + Dd, where D
is the disturbance matrix, d ∈ D is the disturbance vector that describes the
uncertainty and D is a proper C-set. In such a case, by selecting a λ-ISI set X t,
for the extended system

x+ = Ax+
[
B D

] [ u
d

]
,

[
u
d

]
∈ U t ×D,
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we obtain a λ-ISI set for the uncertain system x+ = Ax + Bu + Dd, (x, u) ∈
Z, for all d ∈ D. This kind of disturbance can include output noise (i.e.,
identification noise), measurement noise, and other kinds of disturbances that
cannot be described by the parametric uncertainty.

The two robust ISI sets presented in this subsection are ISI sets for uncertain
systems. However, it should be noted that an explicit robust formulation of the
proposed MPC strategy, which assures the feasible robust convergence, is not
in the scope of the present approach, and is delayed for future works.

4. MPC suitable for re-identification (main result)

The objective of the proposed controller is to avoid the conflicts between
excitation and control objectives: when the system is outside a target set, the
target set is a control target; when the system is inside, the target set is a
safe identification set, that is considered as a generalized equilibrium by the
controller.

The key concept to achieve such an MPC controller is to propose an MPC
cost that (1) penalizes the distance to the target set, and (2) is null at every point
of the target set, in the same way a standard MPC cost is null at the desired
punctual target. This means that the controller does not make a difference
between any two points of the target, or, in other words, the controller leaves
the system in open loop when it enters the target set. We will start this class of
MPC controllers with a controller for tracking control equilibrium sets (CES),
which is known as zone control MPC controllers.

4.1. MPC for tracking control equilibrium sets (CES)

Consider the EIS set U t ⊂ U , and the associated CES set X tss = GBU t ⊆ X .
This controller is formulated following the strategy proposed in [3, 6], usually
known as zone control. The cost function is given by

V CESN (x,X tss; u, uss, xss) =

N−1∑
j=0

(‖x(j)− xss‖2Q + ‖u(j)− uss‖2R) + γ |xss|X t
ss
,

where Q > 0 and R ≥ 0 are penalization matrices, γ > 0 is a real number,
|x|X t

ss
is the distance function (from x to X tss) and N is the control horizon.

Furthermore, xss = GBuss is a free stationary state in Xss = GBU . For any
current state x ∈ X , the optimization problem PCESN (x,X tss) to be solved is
given by:
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Problem PCESN (x,X tss)

min
u,uss,xss

V CESN (x,X tss; u, uss, xss)
s.t.

x(0) = x,
x(j + 1) = Ax(j) +Bu(j), j ∈ I0:N−1

x(j) ∈ X , u(j) ∈ U , j ∈ I0:N−1

u(j) = uss, j ∈ IN−1:∞
xss = GBuss.

In this optimization problem, x and X tss are the parameters, while the sequence
u = {u(0), · · · , u(N − 1)} and xss, uss, are the optimization variables. Notice
that xss, uss are only forced to represent an equilibrium point, but are free
to assume any feasible equilibrium value. The control law, derived from the
application of a receding horizon policy, is given by κN (x,X tss) = u0(0;x), where
u0(0;x) is the first element of the solution sequence u0(x). Now the following
Theorem can be established:

Theorem 2. Consider that Assumption 1 holds, and consider a given CES
X tss = GBU t ⊆ X , with an associated input set U t. Then, X tss is an ES for the
closed-loop system x(j) = φκN

(j;x,X tss), x(0) = x, j ∈ I≥1. Furthermore, X tss
is locally attractive for the same closed-loop system, with a domain of attraction
given by X .

Proof. The proof can be seen in [3, 6].

Notice that this formulation comes directly from the output tracking prob-
lem, if we consider output zones of the form CX tss (being a particular case the
set-point tracking, if set X tss is a single point). The idea to steer the system
to an equilibrium set (with independence of the single value of the equilibrium
point), suggests the possibility to extend this concept to invariant sets, which
also include transient states.

4.2. MPC for tracking invariant sets for identification (ISI)

Now, a generalization of the MPC controller for tracking CES sets is pre-
sented. The idea is to track and reach sets - i.e., ISI sets - that not only include
stationary states, but also transient states, which is necessary to perform a
proper identification. We start with a quite general formulation, that is partic-
ularized in the next subsections to different applicable cases. The nominal case
will be considered, although the extension to the use of robust ISI sets is direct.
Consider an ISI set X t for Nsys, and the associated EIS set U t. Also consider
the following definition

Definition 7. (Generalized distance stage cost function) A generalized
distance function dX t(x), from x to the ISI set X t, is a function with the fol-
lowing properties: (1) dX t(x) is convex and continuous for all x ∈ X , (2)
dX t(x) = 0 for all x ∈ X t, (3) dX t(x) > 0 for all x ∈ X\X t, (4) dX t(x)
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is a Lyapunov function for the excited system x(j) = φ(j;x,upe), x(0) = x,
j ∈ I≥1, for all x ∈ X\X t.

The proposed controller cost function will be given by:

V ISIN (x,X t; u) =

N−1∑
j=0

(αdX t(x(j)) + βdUt(u(j))) + dterX t (x(N)). (3)

where α and β are positive real numbers and dterX t (·) is a terminal cost function
defined on X ter, and X ter ⊆ X t is the terminal set where the terminal state
x(N) is forced to belong. As usual in MPC design, we need to select a local
control action (defined by some conditions) that will act for predictions inside
the terminal set. At this moment we simply define a fixed control action û =
û(x) ∈ U t. Then, associated to this local control action, the terminal set and
terminal cost must fulfill the following conditions:

X ter is IS for x+ = Ax+Bû, x ∈ X (4)

dterX t (Ax+Bû)− dterX t (x) ≤ −αdX t(x),∀x ∈ X ter (5)

dterX t (x) = 0, ∀x ∈ X t. (6)

Different forms for the local control action, the terminal cost and terminal set
will be presented in section 5.3. For any current state in the set of states that
can be feasibly steered to X ter in N steps (the N -step controllable set to X ter),
x ∈ XN (X ter), the optimization problem P ISIN (x,X t) to be solved is given by:

Problem P ISIN (x,X t)

min
u

V ISIN (x,X t; u)

s.t.
x(0) = x,
x(j + 1) = Ax(j) +Bu(j), j ∈ I0:N−1

x(j) ∈ X , u(j) ∈ U , j ∈ I0:N−1

x(N) ∈ X ter.

The main differences between this problem and problem PCESN (x,X tss) are: (1)
the target set is now an ISI set, which includes transient states (i.e., the states
can be moved in a certain region with null control cost and without control
actions), and (2) the generalized distance functions are now used to penalize
the state and input trajectory in the MPC cost. The controller derived from
this formulation assures the convergence of the closed-loop system to the ISI set
X t, and once the system is there, it only assures that it will remain indefinitely
in it. The next Theorems formalize these properties:

Theorem 3. Let Assumption 1 hold, and consider an ISI set X t ⊆ X , with
an associated EIS set U t. Then, X t is an IS set for the closed-loop system
x(j) = φκN

(j;x,X t), x(0) = x, j ∈ I≥1.

10



Proof. Consider a state x ∈ X t. Then, by definition of ISI sets, any input
sequence û = {u(0), . . . , u(N − 1)}, with u(j) ∈ U t, for j ∈ I0:N−1, produces
a sequence of states that remain in X t. So, considering the definition of the
generalized distance function, the input sequence is a trivial optimal solution of
P ISIN (x,X t), with V ISIN (x,X t; û) = 0. On the other hand, any input sequence
û with u(j) /∈ U t, for some j ∈ I0:N−1, produces a cost V ISIN (x,X t; û) ≥ 0.
This means that necessarily u0(0;x) ∈ U t. This proves that the MPC cost
V ISIN (x,X t; u) is null along every trajectory starting in an initial state inside
X t, and furthermore, u0(0;x) is a control input inside U t. From this fact, it
directly follows that X t is an IS set for the MPC closed-loop system.

Theorem 4. Let Assumption 1 hold, and consider an ISI set X t ⊆ X , with an
associated EIS set U t. Then, X t is locally attractive for the closed-loop system
x(j) = φκN

(j;x,X t), x(0) = x, j ∈ I≥1, with a domain of attraction given by
XN (X ter).

Proof. Consider a state x ∈ XN (X ter)\X t, at a given time k. Consider also the
solution defined for this state, u0(x) =

{
u0(0;x), · · · , u0(N − 1;x)

}
, and the

corresponding state sequence x0(x) =
{
x0(0;x), · · · , x0(N ;x)

}
, with x(N ;x)0 ∈

X ter. The cost function of Problem P ISIN (x,X t) corresponding to u0(x) is given
by

V ISIN

0
(x,X t) = V ISIN (x,X t; u0(x))

=

N−1∑
j=0

(αdX t(x0(j;x)) + βdUt(u0(j;x))) + dterX t (x0(N ;x)).

Now, consider the successor state x+ = Ax + Bu0(0;x), at time k + 1, which
is obtained by applying the control law κN (x,X t) = u0(0;x), and define the
following sequence: û =

{
u0(1;x), · · · , u0(N − 1;x), û

}
, where û is the local

control action. Since no model mismatch is considered for predictions, the
successor states x+ is equal to x0(1;x). This solution has an associated state
sequence x̂ =

{
x0(1;x), · · · , x0(N ;x), x̂

}
, where x̂ = Ax0(N ;x) + Bû. Since

x0(N ;x) ∈ X ter and X ter is an IS set for the system x+ = Ax+Bû, x ∈ X , then
x̂ ∈ X ter. Therefore, sequence û is a feasible solution for problem P ISIN (x,X t)
at time k + 1. The cost function of Problem P ISIN (x+,X t), at k + 1, for the
sequence û, is given by

V ISIN (x+,X t; û) =

N−1∑
j=0

(αdX t(x(j;x+)) + βdUt(u(j;x+))) + dterX t (x(N ;x+)),

where x+ = x0(1;x). So, this cost can be written as a function of x,

V ISIN (x+,X t; û) =

N−1∑
j=1

(αdX t(x0(j;x)) + βdUt(u0(j;x)))

+(αdX t(x0(N ;x)) + βdUt(û)) + dterX t (x̂)

11



If we compare now the proposed feasible cost at time k + 1 with the optimal
one at time k, we have:

V ISIN (x+,X t; û) − V ISIN

0
(x,X t)=−αdX t(x0(0;x))− βdUt(u0(0;x))

+(αdX t(x0(N ;x)) + βdUt(û)) + dterX t (x̂)− dterX t (x0(N ;x))

Since û ∈ U t by definition, dUt(û) = 0. Furthermore, since x(N ;x)0 ∈ X ter and
x̂ ∈ X ter, then - by conditions (5), dterX t (x̂)−dterX t (x(N ;x)0) ≤ −αdX t(x(N ;x)0).
Therefore,

V ISIN (x+,X t; û)− V ISIN

0
(x,X t) = −αdX t(x0(0;x))− βdUt(u0(0;x))

+αdX t(x0(N ;x))− αdX t(x0(N ;x))

= −αdX t(x0(0;x))− βdUt(u0(0;x)).

Now, by optimality of the solution to Problem P ISIN (x+,X t), at k+ 1, we have

V ISIN
0
(x+,X t) ≤ V ISIN (x+,X t; û), and so

V ISIN

0
(x+,X t)− V ISIN

0
(x,X t) ≤ −αdX t(x0(0;x))− βdUt(u0(0;x)). (7)

Since the generalized distance is a positive definite function, (7) implies that
x0(0;x) tends to X t and u0(0;x) tends to U t as k → ∞, and so, the system
converges to the desired ISI set.

Theorems 3 and 4 suggest that an extra requirement to the input, such
as a persistent excitation requirement, could be included in the proposed cost
function. In fact, what is shown is that, when the system is in X t, any bounded
external input disturbance that does not bring the input outside U t, will not
produce any effect on the controller.

4.3. Including the exciting mode

Given the properties of the latter formulation, several strategies could be
followed to excite the system under control, when the state is in X t, and fur-
thermore, to update the model parameters by means of an on line estimation.
To do the first, we could add an exciting constraint, as the one used in [16],[4],
or even a penalization term into the optimization cost, as the one proposed in
[9]. To update the model parameters, a simple recursive least-square (RLS)
algorithm ([15]) is recommended for practical applications.

However, since the focus of the present work is mainly in the separation of
the objectives in the MPC formulation, we will simply consider a precomputed
sequence upe in Cpe (which is also in CUt) as desired input trajectory. On
the other side, no parameter update methods will be discussed. The proposed
persistent excitation MPC cost function is as follows:

V EXCN (x,X t,upe, k; u) = (1− ρ(x))V ISIN (x,X t; u) + ρ(x)‖u(0)− upe(k)‖,

where ρ(x) = 1 if x ∈ X t, and ρ(x) = 0, otherwise. The proposed strategy is
a switching control strategy, in which the switching is operated by function
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ρ(x). Notice that the state x corresponding to the true plant is assumed to be
known, and so, the switching function operates on true state measurements.
For any initial state x in XN (X ter), at a given time step k, the optimization
problem PEXCN (x,X t,upe, k), to be solved at each time instant k, is given by:

Problem PEXCN (x,X t,upe, k)

min
u

V EXCN (x,X t,upe, k; u)

s.t.
x(0) = x,
x(j + 1) = Ax(j) +Bu(j), j ∈ I0:N−1

x(j) ∈ X , u(j) ∈ U , j ∈ I0:N−1

x(N) ∈ X ter

Notice that the function ρ(x) is a discontinuous function necessary to cancel the
persistent excitation in case that an external disturbance takes the system away
from the invariant set X t. The following Theorem formalizes the properties of
the proposed MPC controller:

Theorem 5. Let Assumption 1 hold, and consider an ISI set X t and a persistent
excitation sequence upe in Cpe. Then, for any initial state x ∈ X t, the system
controlled by the receding horizon MPC control law κN (x,X t) = u0(0;x), will
be persistently excited inside X t, i.e., x(j) = φκN

(j;x,X t,upe, j) = φ(j;x,upe),
x(0) = x, j ∈ I≥1. Furthermore, for any initial state x ∈ XN (X ter)\X t, the
closed-loop converges to X t.

Proof. i) Let us consider an initial state x ∈ XN (X t)\X t. Then, ρ(x) = 0, and
so Problem PEXCN (x,X t,upe, k) is equivalent to Problem P ISIN (x,X t). Further-
more, for Theorem 4, the closed-loop system will admissibly converge to X t.

ii) Consider now an initial state x ∈ X t. Then ρ(x) = 1, and the persistent
excitation penalization is activated. Furthermore, (1−ρ(x))V ISIN (x,X t; u) = 0.
This means that the cost of problem PEXCN (x,X t,upe, k) will be:

V EXCN (x,X t,upe, k; u) = ‖u(0)− upe(k)‖.

Now, since X t is an ISI set and the persistent excitation sequence upe is in U t,
then, the system will remain inside X t. So, the cost can be admissibly canceled
if and only if u0(0;x) = upe(k) for each time k. This guarantees the persistent
excitation of the open-loop system.

Remark 3. Another (practical) alternative to implement the strategy is by
defining a second λ-ISI set X tt = δX t, δ > 1. Then, if the state is in X tt\X t,
the system keeps in open-loop (the control action are forced to be null). The
invariant condition of X tt (property 2.(5)) assures that once the state enter X tt
it will keep in X tt, and furthermore, the attractivity condition of X t (property
2.(2)) assures that the state will reach X t.

13



4.4. Operation of the loop

Based on the discussion in 4.1, 4.2 and 4.3, the MPC controller operation
will be presented. We have two Operation modes: (1) Control operation
mode: in this mode no re-identification is needed, and the MPC for tracking
CES set is implemented (Problem PCESN (x,X tss)); and (2) Re-identification
operation mode: this mode is activated only when there is a suspect that the
model is not working properly, and a re-identification is needed. In this mode
the persistent excitation MPC is used (Problem PEXCN (x,X t,upe, k)).

Remark 4. Based on Theorem 5, the Re-identification operation mode
has in addition two spatially separated modes. When the system is outside X t,
it is positively steered to it by the controller; once it is inside X t, it cannot be
steered outside this set by the controller, even in an uncertainty scenario as the
one described in section 3.2. If an unknown moderate disturbance enters the
system and takes the state outside X t - and provided that the current state x
is measured or well estimated, then the controller will automatically switch, by
means of function ρ(x), to only control the system to X t. On the other hand,
if a strong disturbance scenario arises, a Re-identification experiment has no
sense, and it is recommended to pass to the Control operation mode.

5. Candidates for generalized distance functions and the terminal
costs

Provided that the proposed MPC formulations are strongly based on the
concept of generalized distance functions, two possible candidates that fulfills
Definition 7 will be presented in this section.

5.1. Distance from a point to a set

Definition 8. Distance from a point to a set. Given an ISI set X t ⊂ X ,
the distance from x to X t is defined as

|x|X t

∆
= min
x̂∈X t

‖x− x̂‖2M , M > 0.

Function |x|X t has the following properties:

Property 3. (1) |x|X t is convex and continuous for all x ∈ X , (2) |x|X t = 0
for all x ∈ X t, (3) |x|X t > 0 for all x ∈ X\X t, (4) N [|x|X t , γ] = X t ⊕ Bγ , for

all x ∈ X\X t, where Bγ
∆
= {x ∈ X : ‖x‖2M ≤ γ}, γ > 0.

Property 4. Let Assumption 1 hold, and suppose that X t ⊆ X is an ISI set
for Nsys. Furthermore, consider that matrix M > 0, associated to the distance
function, is such that ATMA −M = −Q for some Q > 0. Then, the distance
function |x|X t is a Lyapunov function for the excited system x(j) = φ(j;x,upe),
x(0) = x, j ∈ I≥1, for all x ∈ X\X t.
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Proof. First, notice that the set Bγ defined in Property 3.(4), is a λ-IS for the
system x+ = Ax, x ∈ X , with λ ∈ [0, 1), provided that matrix M > 0 is such
that ATMA −M = −Q for some Q > 0. Therefore, from Property 2,(4), and
Property 3.(4), it follows that the level sets N [|x|X t , γ] = X t⊕Bγ , with γ > 0,
are δ-IS sets, δ ∈ (λ, 1), for the excited system x(j) = φ(j;x,upe), x(0) = x,
j ∈ I≥1, for all x ∈ X\X t (we assume for simplicity that (X t ⊕ Bγ) ⊂ X ).
Consider now a state x ∈ ∂(X t ⊕ Bγ), for some γ > 0, which implies that
|x|X t = γ. Then,

x+ = (Ax+Bu) ∈ δ(X t ⊕ Bγ), ∀u ∈ U t.

This implies that |x+|X t ≤ δγ, an so, |x+|X t ≤ δ |x|X t , with δ ∈ (λ, 1), which
means that |x|X t is a Lyapunov function for the aforementioned system, for all
x ∈ X\X t.

5.2. Modified Minkowski functional

The Minkowski functional ([2]) is defined as:

Definition 9. Given an ISI set X t ⊂ X , the Minkowski functional ΨX t asso-
ciated to X t is defined as

ΨX t(x) = inf{µ ≥ 0 : x ∈ µX t}.

The Minkowski functional has a number of useful properties ([2]). It also
was already used as a part of MPC costs in works as [19] and [7]. However,
the Minkowski functional is not null inside the set to which it is associated. To
achieve this property, we need to introduce the modified Minkowski functional.

Definition 10. Modified Minkowski functional. Given a convex set X t ⊂
X that includes the origin as an interior point, and a λ-IS, Ω, with λ ∈ [0, 1),
for the system x+ = Ax, x ∈ X , the modified Minkowski functional is defined
as

Ψ̂X t(x)
∆
= inf{µ ≥ 0 : x ∈ X t ⊕ µΩ}

Function Ψ̂X t(x) has the following properties:

Property 5. (1) Ψ̂X t(x) is convex and continuous for all x ∈ X , (2) Ψ̂X t(x) =

0 for all x ∈ X t, (3)Ψ̂X t(x) > 0 for all x ∈ X\X t, (4) N
[
Ψ̂X t(x), γ

]
= X t⊕γΩ,

for all x ∈ X\X t, γ > 0.

Property 6. Let Assumption 1 hold, and suppose that X t ⊆ X is an ISI
set for Nsys. Then, Ψ̂X t(x) is a Lyapunov function for the excited system
x(j) = φ(j;x,upe), x(0) = x, j ∈ I≥1, for all x ∈ X\X t.
Proof. This proof follows a similar procedure to the one of Theorem 4, taking
into account Property 5.(4), of the Modified Minkowski functional, and the λ-IS
condition of Ω.

Figure 1 shows a schematic plot of a Modified Minkowski functional and
a Distance function - together to the level sets - associated to an arbitrary
polytopic set. Notice that inside the set the functions are null.
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Figure 1: Descriptive plot of the Modified Minkowski Functional and the Distance Function
associated to a given set.

5.3. Several choices for the local control action and the terminal cost and set

The easiest choice for the local control action, û, is û
∆
= 0 ∈ U t (this choice

is possible since A is stable). Then, the terminal set and terminal cost are

X ter ∆
= X and dterX t (x)

∆
= δdX t(x(j)) ≥

∑∞
j=0 αdX t(x(j)), x(0) = x, respectively.

Since X is an IS set for x+ = Ax, by definition, then X ter fulfills equality
(4). On the other hand, since dX t(x) is a Lyapunov function for the system
x(j) = φ(j;x,upe), x(0) = x, j ∈ I1:N−2, for x ∈ X\X t (Properties 4 and 6),
and u(j) = 0 ∈ U t, for j ∈ IN−1:∞, it is possible to select a (large enough) real
number δ > 0 such that dterX t (x) fulfills inequality (5) for all x ∈ X . Equality
(6) is fulfilled trivially. The drawback of this choice is that the proposed MPC
solution could be far from optimality, since no control action is implemented for
predictions beyond the horizon N .

The other choice for the local control action is to simply select any fixed
û ∈ U t. Then, two options could be considered for the terminal set and terminal

cost. The first option is X ter ∆
= X t and dterX t (x) ≡ 0 (no terminal cost). In this

case, X ter fulfills equality (4) and dterX t (x) fulfills inequality (5) and equality (6)
trivially. One drawback of this selection is that the domain of attraction of the
proposed MPC is given by XN (X t), which can be considerably small. A second

option is X ter ∆
= X t ⊕ δX ⊆ X and dterX t (x) ≥

∑∞
j=0 αdX t(x(j)), x(0) = x. In

this case, the real number δ < 0 should be selected to maximize the volume of
X ter. Notice that X ter is an ISI set (by Property 2,(4)), and so fulfill condition
(4). Furthermore, a simply procedure to obtain the proposed dterX t (x), which
fulfill conditions (5) and (6), was presented before.

Remark 5. It should be remarked that no prohibitive computational costs are
added with the proposed MPC formulation. If the distance function is used
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as generalized distance function, the optimization problem could be re-arranged
to remain a QP problem. If the modified Minkowski functional is used, an
additional linear programing problem should be solved.

6. Simulation results

6.1. Nominal case

In this section some simulations results will be presented, to evaluate the
proposed control strategy. To this end, a 3-state stable system of the form of
Nsys is used, with matrices

A =

 0.5 0.2 −0.3
0.4 0.3 0.4
−0.3 0.2 0.5

 , B =

 0.6 0.85
0.5 −0.67
−0.2 0.4


C =

[
−0.54 0.8 0.2

0.3 −1.1 0.7

]
,

The constraints of the system are given by: X =
{
x ∈ R3 : ‖x‖∞ ≤ 9

}
and

U =
{
u ∈ R2 : ‖u‖∞ ≤ 1.25

}
. The EIS set has been selected to be U t ={

u ∈ R2 : ‖u‖∞ ≤ 0.8
}

, while the persistent excitation signal was selected to
be a (bounded) White Noise Signal. The ISI set, X t, was selected with a vol-
ume large enough to give some robustness to the controller. Figure 2 (right)
shows the relation between the feasible state space X (in light red) and the ISI
set X t (in dark red).

The simulations were designed to show the Re-identification operation mode
of the controller. Several initial states in X\X t was selected. As can be seen in
Figure 2 (left), every (feasible) state is steered to the target set X t, and once the
system is inside this set, the exciting procedure is activated. Furthermore, in
Figure 2 (right), the state evolution inside the target set is shown. Notice that
the state trajectory is around the stationary target X tss, which is also plotted
(shadow plane).

Figure 3 shows the input, outputs and cost function time evolutions. Notice
that there are two clear modes: first, from time k = 0 to time k = 5, the system
is steered to the ISI set, with a decreasing cost function. Then, from time k = 6
on, the cost function remains null, which corresponds to a persistent excitation
determined by the (bounded) White Noise Signal upe. The two time periods
have been separated using different colors. Notice also, that the input is on
its upper bound at the very beginning of the simulation, because the controller
objective is to drive the system to the target. Furthermore, after time k = 5,
the input remain inside the EIS set U t, denoted by two dotted-lines.

6.2. Model-mismatch case

In this section some simulations results are presented, to evaluate the pro-
posed control strategy in a model uncertainty scenario. To this end, a 2-state
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Figure 2: State evolution (left) outside and (right) inside X t.

Figure 3: Input, output and cost evolution.

stable system of the form of (1) is used, with matrices:

A(w) =

[
0.42 −0.28
0.02 0.6

]
+ w

[
−0.6 0.4
−0.6 −0.85

]
,

B(w) =

[
0.3
−0.4

]
+ w

[
−0.2
−0.4

]
,

C(w) =
[
−0.3 0.6

]
+ w

[
0.1 0.1

]
,

and w ∈ W = [−0.22, 0.22]. The Nominal model is given by A(wN ), B(wN )
and C(wN ), with wN = 0, while the unknown Real model is given by A(wR) =
[0.54 − 0.20; 0.14 0.43], B(wR) = [0.34; − 0.32]T , C(wR) = [−0.32 0.58],
which corresponds to wR = −0.20. The constraints of the system are given
by X =

{
x ∈ R2 : ‖x‖∞ ≤ 17

}
and U = {u ∈ R : ‖u‖∞ ≤ 1}. The EIS set has

been selected to be U t = {u ∈ R : ‖u‖∞ ≤ 0.65}, while the persistent excitation
signal was selected to be a (bounded) White Noise Signal.

The robust ISI set, X t, was selected according to Remark 2 (and Theorem
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1). It is given by:

X t = X t(ξ̄, λ̄) = X t(wN )⊕ ξ̄ Ωλ̄ = X t(wN )⊕ 0.85 Ω0.6

where X t(wN ) is the minimal ISI set corresponding to the Nominal model, and
Ωλ̄ is a λ̄-invariant set for x+ = A(wN )x. Figure 4 shows a family of 8 minimal
ISI sets, corresponding to parameters w going from −0.2 to 0.1. Furthermore,
the Nominal and the Real minimal ISI sets X t(wN ) and X t(wR), together with
the ISI set X t and ξ̄ Ωλ̄ are plotted. The simulations were designed to show the

Figure 4: Family of 8 minimal ISI sets corresponding to parameters w going from −0.2 to 0.1
and the Robust ISI set X t

Re-identification operation mode of the controller. To this end several initial
states in X\X t was selected. As can be seen in Figure 5 (left), every (feasible)
state is steered to the target set X t, and once the system is inside this set, the
exciting procedure is activated.

Notice that the system enters X t(wN ) and then leaves it, because this set
is not associated to the Real model. In fact, the minimal ISI set for the real
system is given by X t(wR) and it can be seen that once the system enters this
set, it does not leaves it anymore. The important point here is that X t is also
a (non-minimal) ISI set for the Real system, and the state never leaves X t once
it enters the set. These facts are depicted in Figure 5 (right). Figures 6 (left)
and 6 (right) show the input, outputs and cost function time evolutions. Figure
6 (left) has a time scale that goes only to k = 20 to clearly show how the MPC
control the system. From time k = 0 to time k = 5, the system is steered to
the ISI set, with a decreasing cost function. Then, from time k = 5 on, the
cost function remains null, which corresponds to the injection of the persistent
excitation signal upe. The two time periods have been separated using different
colors. Notice also, that the input is on its upper bound in the first time periods,
because the controller tries to drive the system to the target.
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Figure 5: State evolution (left) outside and (right) inside X t.

Figure 6: Input, output and cost evolution: (left) complete simulation, (right) first 20 time
steps

Figure 6 (right) goes to k = 210 to clearly show the excitation procedure.
Notice that after time k = 5, the input remains inside the EIS set U t, denoted
by two dotted-lines. The excitation signal has different mean values along the
simulation time, to show the invariance condition of the ISI set in this scenario.

Remark 6. The latter simulation was tested including in the loop a state ob-
server, since in an identification scenario an observer is usually present. How-
ever, since the selected systems are of small dimension, and a well tuned observer
was used, the obtained responses were not substantially different to the responses
in Figure 6.

7. Conclusions

In this work, some results regarding a new MPC formulation suitable for
closed-loop re-identification was presented. The proposed MPC guarantees per-
sistent excitation when the system is inside a target region and guarantees re-
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cursive feasibility and closed-loop stability to this target region when the system
is outside.

The key concept to pursue these two opposite objectives is the concept of
attractivity of a robust invariant set, inside of which the excitation of the system
can be made. In this way, the controller does not superpose the control and
identification objectives, since inside the target region no control is performed
and outside the target region no persistent excitation is injected to the system.
To account for these properties novel generalized distance functions was pro-
posed to construct the MPC cost function. Furthermore, to prove convergence
of the method these functions have shown to be formal Lyapunov functions.

From a practical point of view, a main advantage of the method is that the
identification procedure can be made as in open-loop fashion, since once the
system is inside the target region, no control actions affect the system. On the
other side, a preliminary drawback of the method is that a new robust invariant
set needs to be computed if the target change. Future research clearly includes
the study of the relation between the invariant target region and the exciting
input set, in order to obtain a less conservative formulation.
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