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We report a capillary-inertial flow in an unbounded liquid microchannel -a Plateau border in a
liquid foam- and discuss its relevance for foam drainage. In contrast to the case of jets of cylindri-
cal geometry, which are susceptible to the Rayleigh-Plateau instability, in this channel any liquid
perturbation is dispersed instead of amplified. The geometry of the Plateau border provides an effec-
tive negative surface tension that triggers the liquid redistribution. The dynamics is perturbation-
independent and leads to the formation of a hydraulic jump, at the micron-millimeter scale, traveling
at constant velocity.

The rheological behavior of liquids in unbounded ge-
ometries (i.e. without rigid boundary conditions) is not
well understood. Examples are jets, films, and liquid
foams, the dynamics of which is driven either by gravity
or geometrical inhomogeneities (capillary suction). The
drainage of soap foams under gravity has in particular
been investigated [1–5]. In such media, the liquid is as-
sumed to flow through the network of channels called
”Plateau borders” (PBs). The most controlled experi-
ment, called forced drainage, consists in pouring liquid
at constant flow rate on top of a foam column: a swollen
region of constant liquid fraction is observed to develop
from the top and travel downward at constant veloc-
ity [3]. Macroscopic measurements at the scale of the
foam sample have been satisfactorily accounted for by
effective-medium models of flow through porous media,
assuming a low Reynolds number. The so-called drainage
equation is used [1, 2, 5]. Capillary suction can be ne-
glected within the swollen region, which displays a homo-
geneous liquid fraction [1, 2, 5], however it can no longer
be disregarded for determining the exact profile of the
front zone [3, 6, 7] where capillary effects become impor-
tant, as evidenced by the few microgravity experiments
[8]. Generally speaking, few experiments have been de-
voted to the study of the local flow at the scale of one
elementary cell (i.e. one bubble), and all of them dealt
with steady regimes [1, 9].
The present study investigates transient flows through

a Plateau border with capillarity as the only driving
force. This is achieved experimentally by injecting a
droplet into a single Plateau border which is maintained
horizontally to eliminate gravity effects.
We use a straight, 15 mm-long Plateau border created

by dipping a triangular-prism frame into a soapy solution.
The frame is positioned so that the cross-section of the
three films that hold the PB adopts the Y-shape shown in
Fig. 1a. The setup geometry is analogous to the one used
by Piroird and Lorenceau to study oil imbibition inside
an aqueous foam [10]. The cross-section in Fig. 1b is typ-
ical of Plateau borders in foams. The radius of curvature

of the PB is controlled by continuously injecting liquid
at one upper-corner of the frame. Two kinds of surfac-
tant solutions are probed in the experiments: Solution A
was obtained from a commercial dishwashing liquid, So-
lutions B were obtained by dissolving TTAB (Tetradecyl
trimethyl ammonium bromide) into de-ionized water and
adding various amounts of glycerol in order to vary the
viscosity. Solutions A and B are characterized by tan-
gential stress-free interfaces (high surface mobility limit)
[9, 11]. We inject extra liquid into the PB by releasing
from above a small spherical droplet of the same surfac-
tant solution. After release, the droplet rebounds on the
PB, stabilizes and finally coalesces with the PB. In these
experiments, the droplet radius ranges from r = 0.2 mm
to 1.8 mm, while the initial radius of curvature of the PB
ranges from Ri = 0.1 to 1.3 mm. The relaxation of the
PB-with-drop is visualized by means of a fast camera.
There are two different dynamical regimes. A viscous

regime is observed for large bulk viscosities or small radii
of curvature of the Plateau border: the bulge correspond-
ing to the fluid in excess spreads with time and the liquid
is slowly evacuated into the PB (Fig.1c). The PB thick-
ness profile is smooth (Fig.1f) and presents a diffusive-
like spreading dynamics (data not shown). In contrast,
an inertial regime is observed for small solution viscosi-
ties and regular or large radii of curvature of the Plateau
border. The liquid in excess does not spread smoothly,
but is evacuated by dilating the initial PB in a front-like
manner (Fig.1d,e). A sharp traveling jump (Fig.1g,h)
separates the dilated part of the PB, which has a uni-
form and constant radius of curvature Rj , from the not-
yet-perturbed part characterized by the initial radius of
curvature Ri. This jump travels with a constant and
substantial velocity (∼ 0.1− 1 m/s).
We now turn to the transition between the two dynam-

ical regimes described above, as well as the reason for re-
ferring to them as “viscous” versus “capillary-inertial”.
Five parameters, namely ρ, η, γ, r and Ri, are relevant
in the system, which yields only two independent dimen-
sionless numbers. The first one is the ratio of the droplet



2

b)

m

1 film
2 films

droplet 2 mm

film film

film

Plateau

border

f)
0.25 mm

a)

c) d) e)

Δt = 2.5 ms

R i

η = 12 mPa.s
Ri = 0.17 mm
η = 1 mPa.s η = 1 mPa.s

Ri = 0.76 mmRi = 0.35 mm

FIG. 1. a) Experimental setup: the Plateau border is held
by three soap films. A drop is released from above and enters
in contact with the Plateau border. b) Cross-section of the
initial Plateau border observed through one of its extremity.
At rest, the cross-section is well approximated by the tangen-
tial contact of three arcs of circles of same radius equal to
Ri. ei is the apparent thickness of the PB and is proportional
to its radius of curvature Ri. c-e) Three sets of snapshots of
the longitudinal view of the PB that illustrate the different
behaviors observed. ∆t = 2.5 ms between consecutive images
(5 ms between the last two images of each series). c) Vis-
cous regime for a high viscosity TTAB solution. d) Inertial
regime for the less viscous TTAB solution. cl (cr) holds for
the velocity of the front that travels toward the left (right).
Red dashed lines are guides to the eyes to follow the front
position. e) Same as d) but for a thicker initial PB. f-h) En-
largement of the edge of the perturbed part of the PB. The
enlarged zones are pinpointed by the blue boxes drawn on the
penultimate images of the snapshot series in c-e).

size to the PB size, r/Ri. The second one is the so-
called Ohnesorge number - often used to deal with free-
interface problems in fluid mechanics [12]. This number
can be defined as the ratio of a capillary-inertial velocity
c0 =

√

γ/ρRi to a capillary-viscous velocity γ/η:

Oh =
η√
ργRi

. (1)

The Ohnesorge number is actually the inverse of the
Reynolds number Re based on c0. The experiments re-
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FIG. 2. Ohnesorge number as function of ratio of droplet size
to PB size. Red squares (�) and blue triangles (N) stand for
the inertial regime and for the viscous regime, respectively.
The straight horizontal line (Oh = 0.05) highlights the tran-
sition between the two regimes.

ported in Fig. 2 show a well-defined transition between
the two regimes, for a critical value Oh = 0.05, or equiv-
alently Re = 20, independently of r/Ri. For Oh larger
than 0.05 (Re < 20), viscosity is observed to dominate,
whereas for Oh smaller than 0.05 (Re > 20), a capillary-
inertial regime is observed. We emphasize that this tran-
sition is droplet-size-independent.

This new capillary-inertial dynamics needs to be inves-
tigated because all current foam drainage models con-
sider viscous flows only. In the rest of this paper, we
concentrate on this regime and its relevance for foam
drainage dynamics.

Experimental results obtained in the inertial regime
are reported in Fig.3 for Solution A and for the less vis-
cous Solution B. The front velocity (computed as the
average over the right and left swelling fronts velocities,
see Fig.1d) strongly decreases when the initial radius of
curvature of the PB increases (Fig.3a); a power law inter-
polation gives exponents of −0.51±0.05 and −0.50±0.02
for the two solutions, respectively. The radius of cur-
vature Rj upstream of the jump increases linearly with
the initial radius of curvature Ri; the best linear fits are
Rj = (1.9 ± 0.1)Ri and Rj = (1.5 ± 0.1)Ri for the two
solutions, respectively (Fig.3b). All the experiments in
the inertial regime show similar behavior: the properties
of the traveling jump are determined by the properties of
the initial PB and do not depend on the amplitude of the
perturbation. Within our experimental range, the initial
radius of the droplet does not appear to play a signifi-
cant role neither on the front velocity nor on the radius
of curvature of the perturbed region of the PB. This is
true as long as the droplet acts as a liquid reservoir that
can sustain the jump geometry.

We propose a model based on two assumptions. First,
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FIG. 3. Characterization of the inertial regime for Solu-
tion A (light red circles •) and for the less viscous Solution
B (dark red squares �). a) Front velocity as a function of
the initial radius of curvature Ri of the Plateau border, for
various radii of the coalescing droplets (logarithmic scales).
The black straight line drawn on the graph has a slope -0.5.
b) Radius of curvature of the dilated part of the Plateau bor-
der as a function of the initial radius of curvature Ri of the
Plateau border (same experiments as in a)). Solid lines are the
best linear fits. c) Measured front velocity compared to the
front velocity predicted by the model based on the capillary
hydraulic jump geometry (Eq. 6). The data points that cor-
respond to the experiments shown in Fig.1d,e are pinpointed
by arrows on a) and b).
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FIG. 4. a) Sketch of the cross-section of the PB held by
the three liquid films. Geometrical considerations lead to
S = (

√
3 − π/2)R2 and h = R/

√
3. b) Representation of the

capillary hydraulic jump geometry (based on experimental
observations, Fig. 1g,h) in the reference frame of the moving
front.

the Reynolds number based on the front velocity (∼
0.2m/s) and on the PB size (∼ 0.5mm) is of order 100.
Therefore we will consider the flow as inertia-dominated.
Secondly, we assume a plug-flow inside the PB, at least
far from the front zone, because of the high mobility of
the surfactants at the interfaces [11]. The geometry of the
jump zone is analogous to the one of a hydraulic jump
triggered by gravity [13] if considered in the reference
frame of the moving front Rf .

A sketch of this geometry is displayed in Fig. 4, to-
gether with the notations used. Balance equations relate
to Rf . We assume that the liquid is initially at rest in
the reference frame of the lab, R, thus Vi = c, where c is
the velocity of the traveling front in R. The mass balance
equation applied on both sides of the jump gives:

R2
i c = R2

jVj (2)

The momentum difference rate accross the jump thus is:

∆p/∆t = ρSic
2 − ρSjV

2
j = ρSic

2
(

(Ri/Rj)
2 − 1

)

, (3)

where Sk = (
√
3 − π/2)R2

k is the BP cross-section area
(Fig. 4). This negative rate must be balanced by the
net capillary force Fj − Fi that applies on the capillary
jump. Three contributions to the capillary force have to
be taken into account (ordered as such in the following
formula): (1) capillary pressure force on the PB cross-
section, (2) line tension on the PB contour and (3) line
tension on the three holding films (note that each film
has two liquid-gas interfaces):

Fj − Fi

γ
=

(

Sj

Rj
− Si

Ri

)

+ π(Rj −Ri)− 6(hj − hi) (4)

which reduces to

Fj − Fi

γ
= −(

√
3− π/2)(Rj −Ri) (5)

It is noteworthy that the film contribution is always neg-
ative and is dominant in the capillary net force. It is
also remarkable that the expression of the driving force
(Eq. 5) is equivalent to the one of a capillary pressure
with a negative surface tension −γ [14]: this reflects the
fact that an increase in the PB radius is energetically fa-
vorable as it results in a decrease of the interfacial area
of the holding films that prevails over the concomitant
increase of the interfacial area of the PB. For that rea-
son, the capillary pressure only (the same holds for the
tension force) would never support a capillary hydraulic
jump in classical 1D geometries, like jets.

Combining Eqs. (3) and (5) leads to the following in-
trinsic relation linking geometry and dynamics:

c(Ri/Rj) = c0
1

√

Ri/Rj(1 +Ri/Rj)
, (6)
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where c0 =
√

γ/ρRi is the capillary-inertial velocity pre-
viously introduced. We use the value given by the ex-
perimental data (Fig. 3b) for the ratio Ri/Rj in order
to compute the velocity predicted by the model (Eq. 6).
The comparison with the front velocity that was mea-
sured is shown in Fig. 3c. Despite some dispersion, the
agreement is satisfactory since the model comprises no
free parameter.

Consider now liquid foams. In the dry foam limit, the
radius of curvature of the Plateau borders is related to an
effective bubble diameter. For instance, the Kelvin struc-
ture leads to the approximate relation: Φ ≃ 1.32(Ri/D)2

[15], where D is the bubble diameter and Φ is the liquid
fraction of the foam. The Ohnesorge number thus is:

Oh = 1.07
η

√

ργDΦ1/2
(7)

This expression yields an estimate of the critical bub-
ble radius Dc above which the inertial regime may be
observed. Common values for liquid foams (ρ = 1000
kg.m−3, γ = 30 mN.m−1, η = 1 mPa.s and Φ = 0.01)
lead to Dc = 0.15 mm. One has to be cautious when ex-
trapolating data from experiments performed on model
foams that have characteristic sizes significantly larger
than the ones of usual foams. More importantly, a large
set of experiments reported in the literature should ex-
hibit a fast liquid flow along the Plateau borders. This is
true for drainage studies [1, 8, 16, 17], but also for other
liquid redistribution cases such as bubble rearrangements
[18]. However, since this process is fast compared to other
processes involved (dissipation in vertices for drainage
studies, dissipation inside the opening film during bub-
bles rearrangements), the dynamics of the system is ruled
by the latter and capillary suction is not the origin of the
limiting time scale. Nevertheless, it should be taken into
account in gravity-free environment or to describe the
shape of the transition zone in drainage studies. Note
that the analysis performed in this study is valid only for
tangential stress-free interfaces. Experiments performed
with surfactants of low surface mobility reveal other be-
haviors (data not shown). We have never observed the
hydraulic jump geometry in this case.

In summary, we have designed a local scale experiment
and shown the occurrence of a fast mass transport regime
along Plateau borders in liquid foams. This regime is
triggered by capillary suction and is characterized by a
capillary-inertial velocity which scales as

√

γ/ρRi, where
γ, ρ and Ri are the surface tension of the liquid, its den-

sity and the radius of curvature of Plateau border, re-
spectively. We have given a phenomenological criterion
for this regime to occur in foams, in terms of interfacial
properties of the liquid, foam liquid fraction and bub-
ble radius. It will be crucial to look closely at the exact
profile of the front zone during forced drainage and to
scrutinize the Plateau borders during bubble rearrange-
ments like T1 processes to detect the capillary-inertial
regime.
We gratefully acknowledge fruitful discussions with

members of the GDR 2983 Mousses et Emulsions
(CNRS). Franck Celestini is thanked for insightful com-
ments. This work was supported by a research funding
granted by the University of Nice Sophia Antipolis.

∗ corresponding author: Alexandre.Cohen@unice.fr
[1] S. A. Koehler, S. Hilgenfeldt, and H. A. Stone, Langmuir

16, 6327 (2000).
[2] G. Verbist, and D. Weaire, Europhys. Lett. 26, 631

(1994).
[3] D. Weaire, N. Pittet, S. Hutzler, and D. Pardal, Phys.

Rev. Lett. 71, 2670 (1993).
[4] A. Saint-Jalmes, Soft Matter 2, 836 (2006).
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