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Abstract. Solving games played on timed automata is a well-known
problem and has led to tools and industrial case studies. In these games,
the first player (Controller) chooses delays and actions and the second
player (Perturbator) resolves the non-determinism of actions. However,
the model of timed automata suffers from mathematical idealizations
such as infinite precision of clocks and instantaneous synchronization
of actions. To address this issue, we extend the theory of timed games
in two directions. First, we study the synthesis of robust strategies for
Controller which should be tolerant to adversarially chosen clock impre-
cisions. Second, we address the case of a stochastic perturbation model
where both clock imprecisions and the non-determinism are resolved
randomly. These notions of robustness guarantee the implementability
of synthesized controllers. We provide characterizations of the resulting
games for Büchi conditions, and prove the EXPTIME-completeness of
the corresponding decision problems.

1 Introduction

For real-time systems, timed games are a standard mathematical formalism
which can model control synthesis problems under timing constraints. These
consist in two-players games played on arenas, defined by timed automata, whose
state space consists in discrete locations and continuous clock values. The two
players represent the control law and the environment. Since the first theoretical
works [2], symbolic algorithms have been studied [10], tools have been developed
and successfully applied to several case studies.

Robustness Because model-based techniques rely on abstract mathematical
models, an important question is whether systems synthesized in a formalism
are implementable in practice. In timed automata, the abstract mathematical
semantics offers arbitrarily precise clocks and time delays, while real-world digital
systems have response times that may not be negligible, and control software
cannot ensure timing constraints exactly, but only up to some error, caused by
clock imprecisions, measurement errors, and communication delays. A major
challenge is thus to ensure that the synthesized control software is robust, i.e.
ensures the specification even in presence of imprecisions [15].

Following these observations there has been a growing interest in lifting
the theory of verification and synthesis to take robustness into account. Model-
checking problems were re-visited by considering an unknown perturbation
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parameter to be synthesized for several kinds of properties [18, 12, 7], see also [9].
Robustness is also a critical issue in controller synthesis problems. In fact, due to
the infinite precision of the semantics, synthesized strategies may not be realizable
in a finite-precision environment; the controlled systems synthesized using timed
games technology may not satisfy the proven properties at all. In particular, due
to perturbations in timings, some infinite behaviors may disappear completely.
A first goal of our work is to develop algorithms for robust controller synthesis:
we consider this problem by studying robust strategies in timed games, namely,
those guaranteeing winning despite imprecisions bounded by a parameter.

Adversarial or Stochastic Environments We consider controller synthe-
sis problems under two types of environments. In order to synthesize correct
controllers for critical systems, one often considers an adversarial (or worst-case)
environment, so as to ensure that all behaviors of the system are correct. However,
in some cases, one is rather interested considering a stochastic environment which
determines the resolution of non-determinism, and the choice of clock perturba-
tions following probability distributions. We are then interested in satisfying a
property almost-surely, that is, with probability 1, or limit-surely, that is, for
every ε > 0, there should exist a strategy for Controller under which the property
is satisfied with probability at least 1− ε.

Contributions We formalize the robust controller synthesis problem against
an adversarial environment as a (non-stochastic) game played on timed au-
tomata with an unknown imprecision parameter δ, between players Controller

and Perturbator. The game proceeds by Controller suggesting an action and a
delay, and Perturbator perturbing each delay by at most δ and resolving the non-
determinism by choosing an edge with the given action. Thus, the environment’s
behaviors model both uncontrollable moves and the limited precision Controller

has. We prove the EXPTIME-completeness of deciding whether there exists
a positive δ for which Controller has a winning strategy for a Büchi objective,
matching the complexity of timed games in the classical sense. Our algorithm
also allows one to compute δ > 0 and a witness strategy on positive instances.

For stochastic environments, we study two probabilistic variants of the se-
mantics: we first consider the case of adversarially resolved non-determinism and
independently and randomly chosen perturbations, and then the case where both
the non-determinism and perturbations are randomly resolved and chosen. In
each case, we are interested in the existence of δ > 0 such that Controller wins
almost-surely (resp. limit-surely). We give decidable characterizations based on
finite abstractions, and EXPTIME algorithms. All problems are formulated in a
parametric setting: the parameter δ is unknown and is to be computed by our
algorithms. This is one of the technical challenges in this paper.

Our results on stochastic perturbations can also be seen as a new interpre-
tation of robustness phenomena in timed automata. In fact, in the literature
on robustness in timed automata, non-robust behaviors are due to the accu-
mulation of the imprecisions δ along long runs, and in the proofs, one exhibits
non-robustness by artificially constructing such runs (e.g. [12, 21]). In contrast,
in the present setting, we show that non-robust behaviors either occur almost
surely, or can be avoided surely (Theorem 13).

Related Work While several works have studied robustness issues for model-
checking, there are very few works on robust controller synthesis in timed systems:
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– The (non-stochastic) semantics we consider was studied for fixed δ in [11]
encoding by timed games; but the parameterized version of the problem was not
considered.
– The restriction of the parameterized problem to (non-stochastic) deterministic
timed automata was considered in [21]. Here, the power of Perturbator is restricted
as it only modifies the delays suggested by Controller, but has no non-determinism
to resolve. Therefore, the results consist in a robust Büchi acceptance condition
for timed automata, but they do not generalize to timed games. Technically, the
algorithm consists in finding an aperiodic cycle, which are cycles that are “stable”
against perturbations. This notion was defined in [3] to study entropy in timed
languages. We will also use aperiodic cycles in the present paper.
– A variant of the semantics we consider was studied in [8] for (deterministic)
timed automata and shown to be EXPTIME-complete already for reachability
due to an implicit presence of alternation. Timed games, Büchi conditions, or
stochastic environments were not considered.
– Probabilistic timed automata where the non-determinism is resolved following
probability distributions have been studied [16, 4, 17]. Our results consist in
deciding almost-sure and limit-sure Büchi objectives in PTAs subject to random
perturbations in the delays. Note that PTAs are equipped with a possibly
different probability distribution for each action. Although we only consider
uniform distributions, the two settings are equivalent for almost-sure and limit-
sure objectives. Games played on PTA were considered in [14] for minimizing
expected time to reachability with NEXPTIME ∩ co-NEXPTIME algorithms.

To the best of our knowledge, this work is the first to study a stochastic
model of perturbations for synthesis in timed automata.

Organization Definitions are given in Section 2. Preliminaries concerning
the notions of regions graphs, orbit graphs and shrunk difference bound matrices
are presented in Section 3. The finite-state game abstraction used to characterize
the positive instances of the (non-stochastic) problem is presented in Section 4
and the proof of correction is given in Section 5. In Section 6, we consider the
two stochastic models for the environment.

2 Robust Timed Games

Timed automata. Given a finite set of clocks C, we call valuations the elements
of RC

≥0. For a subset R ⊆ C and a valuation ν, ν[R← 0] is the valuation defined
by ν[R← 0](x) = 0 if x ∈ R and ν[R← 0](x) = ν(x) otherwise. Given d ∈ R≥0

and a valuation ν, the valuation ν + d is defined by (ν + d)(x) = ν(x) + d for all
x ∈ C. We extend these operations to sets of valuations in the obvious way. We
write 0 for the valuation that assigns 0 to every clock.

An atomic clock constraint is a formula of the form k � x �′ l or k � x−y �′ l
where x, y ∈ C, k, l ∈ Z∪{−∞,∞} and �,�′ ∈ {<,≤}. A guard is a conjunction
of atomic clock constraints. A valuation ν satisfies a guard g, denoted ν |= g, if
all constraints are satisfied when each x ∈ C is replaced with ν(x). We write ΦC

for the set of guards built on C. A zone is a subset of RC
≥0 defined by a guard.

A timed automaton A over a finite alphabet of actions Act is a tuple (L, C,
ℓ0,Act, E), where L is a finite set of locations, C is a finite set of clocks, E ⊆
L×ΦC ×Act× 2C ×L is a set of edges, and ℓ0 ∈ L is the initial location. An edge
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e = (ℓ, g, a, R, ℓ′) is also written as ℓ
g,a,R
−−−→ ℓ′. A state is a pair q = (ℓ, ν) ∈ L×RC

≥0.
An edge e = (ℓ, g, a, R, ℓ′) is enabled in a state (ℓ, ν) if ν satisfies the guard g.

The set of possible behaviors of a timed automaton can be described by the set
of its runs, as follows. A run of A is a sequence q1e1q2e2 . . . where qi ∈ L × R

C
≥0,

and writing qi = (ℓ, ν), either ei ∈ R>0, in which case qi+1 = (ℓ, ν + ei), or
ei = (ℓ, g, a, R, ℓ′) ∈ E, in which case ν |= g and qi+1 = (ℓ′, ν[R← 0]). The set of
runs of A starting in q is denoted Runs(A, q).

Parameterized timed game. In order to define perturbations, and to capture
the reactivity of a controller to these, we define the following parameterized timed
game semantics. Intuitively, the parameterized timed game semantics of a timed
automaton is a two-player game parameterized by δ > 0, where Player 1, also
called Controller chooses a delay d > δ and an action a ∈ Act such that every
a-labeled enabled edge is such that its guard is satisfied after any delay in the
set d+[−δ, δ] (and there exists at least one such edge). Then, Player 2, also called
Perturbator chooses an actual delay d′ ∈ d+ [−δ, δ] after which the edge is taken,
and chooses one of the enabled a-labeled edges. Hence, Controller is required to
always suggest delays that satisfy the guards whatever the perturbations are.

Formally, given a timed automaton A = (L, C, ℓ0,Act, E) and δ > 0, we define
the parameterized timed game of A w.r.t. δ as a two-player turn-based game
Gδ(A) between players Controller and Perturbator. The state space of Gδ(A)
is partitioned into VC ∪ VP where VC = L × R

C
≥0 belong to Controller, and

VP = L×R
C
≥0×R≥0×Act belong to Perturbator. The initial state is (ℓ0,0) ∈ VC .

The transitions are defined as follows: from any state (ℓ, ν) ∈ VC , there is a
transition to (ℓ, ν, d, a) ∈ VP whenever d > δ, for every edge e = (ℓ, g, a, R, ℓ′)
such that ν + d |= g, we have ν + d+ ε |= g for all ε ∈ [−δ, δ], and there exists
at least one such edge e. Then, from any such state (ℓ, ν, d, a) ∈ VP , there is a
transition to (ℓ′, ν′) ∈ VC iff there exists an edge e = (ℓ, g, a, R, ℓ′) as before, and
ε ∈ [−δ, δ] such that ν′ = (ν + d + ε)[R ← 0]). A play of Gδ(A) is a finite or
infinite sequence q1e1q2e2 . . . of states and transitions of Gδ(A), with q1 = (ℓ0,0),
where ei is a transition from qi to qi+1. It is said to be maximal if it is infinite or
cannot be extended. A strategy for Controller is a function that assigns to every
non-maximal play ending in some (ℓ, ν) ∈ VC , a pair (d, a) where d > δ and a
is an action such that there is a transition from (ℓ, ν) to (ℓ, ν, d, a). A strategy
for Perturbator is a function that assigns, to every play ending in (ℓ, ν, d, a), a
state (ℓ′, ν′) such that there is a transition from the former to the latter state.
A play ρ is compatible with a strategy f for Controller if for every prefix ρ′ of ρ
ending in VC , the next transition along ρ after ρ′ is given by f . We define similarly
compatibility for Perturbator’s strategies. A play naturally gives rise to a unique
run, where the states are in VC , and the delays and the edges are those chosen
by Perturbator.

Robust timed game problem. Given δ > 0, and a pair of strategies f, g,
respectively for Controller and Perturbator, we denote ρ the unique maximal run
that is compatible with both f and g. A Büchi objective is a subset of the
locations of A. A Controller’s strategy f is winning for a Büchi objective B if for
any Perturbator’s strategy g the run ρ that is compatible with f and g is infinite
and visits infinitely often a location of B. The robust timed game problem asks,
for a timed automaton A and a Büchi objective B, if there exists δ > 0 such

4



ℓ0

ℓ1

ℓ2

1<x<2,a,y:=0

y≥2,a,y:=0 x≤2,a,x:=0

(a)

ℓ0

ℓ1

ℓ2

ℓ3 ℓ4

ℓ5

ℓ6
x<1

x=1

x:=0

x>1

x:=0

x<3

2<x<3

2<x<3

x:=0

x:=0

x≤1

x≤1

x:=0

(b)

Fig. 1. On the left, a timed automaton from [18] that is not robustly controllable for the
Büchi objective {ℓ2}. In fact, Perturbator can enforce that the value of x be increased by δ

at each arrival at ℓ1, thus blocking the run eventually (see [21]). On the right, a timed
automaton that is robustly controllable for the Büchi objective {ℓ1, ℓ2, ℓ3}. We assume
that all transitions have the same label. The cycle around ℓ1 cannot be taken forever, as
value of x increases due to perturbations. The cycle around ℓ2 can be taken forever, but
Controller cannot reach ℓ2 due to the equality x = 1. Controller’s strategy is thus to loop
forever around ℓ3. This is possible as for both choices of Perturbator in location ℓ4, clock x

will be reset, and thus perturbations do not accumulate. If one of the two resets were ab-
sent, Perturbator could force the run to always take that branch, and would win the game.

that Controller has a winning strategy in Gδ(A) for the objective B. When this
holds, we say that Controller wins the robust timed game for A, and otherwise
that Perturbator does. Note that these games are determined since for each δ > 0,
the semantics is a timed game.

Figure 1 shows examples of timed automata where either Controller or
Perturbator wins the robust timed game according to our definitions. The main
result of this paper for this non-stochastic setting is the following.

Theorem 1. The robust timed game problem is EXPTIME-complete.

EXPTIME-hardness is proved in Appendix D. We focus on presenting the
EXPTIME membership in Sections 4 and 5. The algorithm relies on a characteri-
zation of winning strategies in a refinement of the region automaton construction.

In order to formally introduce the appropriate notions for this characterization,
we need definitions given in the following section.

3 Regions, Orbit Graphs and Shrunk DBMs

Regions and Region Automata. Following [12, 18, 3], we assume that the
clocks are bounded above by a known constant 4 in all timed automata we consider.
Fix a timed automaton A = (L, C, ℓ0,Act, E). We define regions as in [1], as
subsets of RC

≥0. Any region r is defined by fixing the integer parts of the clocks,
and giving a partition X0, X1, . . . , Xm of the clocks, ordered according to their
fractional values: for any ν ∈ r, 0 = frac(ν(x0)) < frac(ν(x1)) < . . . < frac(ν(xm))
for any x0 ∈ X0, . . . , xm ∈ Xm, and frac(ν(x)) = frac(ν(y)) for any x, y ∈ Xi.
Here, Xi 6= ∅ for all 1 ≤ i ≤ m but X0 might be empty. For any valuation ν,

4 Any timed automaton can be transformed to satisfy this property.
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let [ν] denote the region to which ν belongs. Reg(A) denotes the set of regions
of A. A region r is said to be non-punctual if it contains some ν ∈ r such that
ν + [−ε, ε] ⊆ r for some ε > 0. It is said punctual otherwise. By extension, we
say that (ℓ, r) is non-punctual if r is.

We define the region automaton as a finite automaton R(A) whose states
are pairs (ℓ, r) where ℓ ∈ L and r is a region. Given (r′, a) ∈ Reg(A) × Act,

there is a transition (ℓ, r)
(r′,a)
−−−→ (ℓ′, s) if r′ is non-punctual 5, there exist ν ∈ r,

ν′ ∈ r′ and d > 0 such that ν′ = ν + d, and there is an edge e = (ℓ, g, R, ℓ′) such
that r′ |= g and r′[R← 0] = s. We write the paths of the region automaton as
π = q1e1q2e2 . . . qn where each qi is a state, and ei ∈ Reg(A) × Act, such that

qi
ei−→ qi+1 for all 1 ≤ i ≤ n − 1. The length of the path is n, and is denoted

by |π|. If a Büchi condition B is given, a cycle of the region automaton is winning
if it contains an occurrence of a state (ℓ, r) with ℓ ∈ B.

Vertices and Orbit Graphs. A vertex of a region r is any point of r̄ ∩ N
C ,

where r̄ denotes the topological closure of r. Let V(r) denote the set of vertices
of r. We also extend this definition to V((ℓ, r)) = V(r).

With any path π of the region automaton, we associate a labeled bipartite
graph Γ (π) called the folded orbit graph of π [18] (FOG for short). Intuitively,
the FOG of a path gives the reachability relation between the vertices of the
first and the last regions, assuming the guards are closed. For any path π from
state q to q′, the node set of the graph Γ (π) is defined as the disjoint union of
V(q) and V(q′). There is an edge from v ∈ V(q) to v′ ∈ V(q′), if, and only if v′ is
reachable from v along the path π when all guards are replaced by their closed
counterparts. It was shown that any run along π can be written as a convex
combination of runs along vertices; using this observation orbit graphs can be
used to characterize runs along given paths [18]. An important property that we
will use is that there is a monoid morphism from paths to orbit graphs. In fact,
the orbit graph of a path can be obtained by combining the orbit graphs of a
factorization of the path.

When the path π is a cycle around q, then Γ (π) is defined on the node set
V(q), by merging the nodes of the bipartite graph corresponding to the same
vertex. A cycle π is aperiodic if for all k ≥ 1, Γ (πk) is strongly connected.
Aperiodic cycles are closely related to cycles whose FOG is a complete graph
since a long enough iteration of the former gives a complete FOG and conversely,
any cycle that has some power with a complete FOG is aperiodic (Appendix B
Lemma 21). In the timed automaton of Fig. 1(b), the cycles around locations
ℓ2 and ℓ3 are aperiodic while that of ℓ1 is not. Appendix A contains examples.
Complete FOG are of particular interest to us as they exactly correspond to paths
whose reachability relation (between valuations of the initial and last region) is
complete [3]. This means that there is no convergence phenomena along the path.

DBMs and shrunk DBMs. We assume the reader is familiar with the data
structure of difference-bound matrix (DBM) which are square matrices over
(R×{<,≤})∪{(∞, <)} used to represent zones. DBMs were introduced in [6, 13]
for analyzing timed automata; see also [5]. Standard operations used to explore
the state space of timed automata have been defined on DBMs: intersection is
written M ∩N , Pre (M) is the set of time predecessors of M , UnresetR(M) is the

5 Note this slight modification in the definition of the region automaton.
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set of valuations that end in M when the clocks in R are reset. We also consider
Pre>δ(M), time predecessors with a delay of more than δ.

x

y

= Pre











x

y











Fig. 2. Time-predecessors operation
(M,P ) = Pre(N,Q) applied on a shrunk
DBM. Here, the shaded area on the left
represents the set M − δP , while the zone
with the thick contour represents M .

To analyze the parametric game
Gδ(A), we need to express shrinkings
of zones, e.g. sets of states satisfying
constraints of the form g = 1 + δ <
x < 2−δ∧2δ < y, where δ is a param-
eter. Formally, a shrunk DBM is a pair
(M,P ), where M is a DBM, and P is
a nonnegative integer matrix called a
shrinking matrix (SM). This pair rep-
resents the set of valuations defined by
the DBM M − δP , for any δ > 0. For
instance, M is the guard g obtained
by setting δ = 0, and P is made of the
integer multipliers of δ.

We adopt the following notation: when we write a statement involving a
shrunk DBM (M,P ), we mean that for some δ0 > 0, the statement holds for
(M − δP ) for all δ ∈ [0, δ0]. For instance, (M,P ) = Pre>δ(N,Q) means that
M − δP = Pre>δ(N − δQ) for all small enough δ > 0. Additional operations are
defined for shrunk DBMs: for any (M,P ), we define shrink[−δ,δ](M,P ) as the set
of valuations ν with ν + [−δ, δ] ⊆ M − δP , for small enough δ > 0. Figure 2
shows an example of a shrunk DBM and an operation applied on it. Standard
operations on zones can also be performed on shrunk DBMs in poly-time [20, 8].

4 Playing in the Region Automaton

In this section, we will define an appropriate abstraction based on region automata
in order to characterize winning in the robust timed game. We note that the
usual region automaton does not carry enough information for our purpose; for
instance, the blocking behavior in Fig.1(a) cannot be detected in the region
automaton (which does contain infinite runs). We therefore define, on top of
the usual region construction, a complex winning condition W characterizing
accepting runs along aperiodic cycles. In order to be able to transfer the condition
W to the continuous semantics, we study the properties of W on the abstract
region game, and derive two necessary and sufficient conditions (CC and CP ) for
winning which will be used in the next section to derive the algorithm.

Abstract Arena and StrategiesWe fix a timed automatonA = (L, C, ℓ0,Act, E)
and a Büchi condition φ. We define a two-player turn-based game played on the
region automaton R(A). In this game, Controller’s strategy consists in choosing
actions, while Perturbator’s strategy consists in resolving non-determinism.

We consider standard notions of (finite-memory, memoryless) strategies in
this game and, given a finite-memory strategy σ, we denote by R(A)[σ] the
automaton obtained under strategy σ.
Winning Condition on R(A) We define set W of winning plays in the game
R(A): an infinite play is winning iff the following two conditions are satisfied: 1)
an accepting state in φ is visited infinitely often 2) disjoint finite factors with
complete folded orbit graphs are visited infinitely often.
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Proposition 2. The game (R(A),W) is determined, admits finite-memory
strategies for both players, and wining strategies can be computed in EXPTIME.

The above proposition is proved by showing that condition 2) of W can be
rewritten as a Büchi condition: the set of folded orbit graphs constitute a finite
monoid (of exponential size) which can be used to build a Büchi automaton
encoding condition 2). Using a product construction for Büchi automata, one
can define a Büchi game of exponential size where winning for any player is
equivalent to winning in (R(A),W). See Appendix B.

From the abstract game to the robust timed game We introduce two
conditions for Perturbator and Controller which are used in Section 5 to build
concrete strategies in the robust timed game.

CP : there exists a finite memory strategy τ for Perturbator such that no cycle in
R(A)[τ ] reachable from the initial state is winning aperiodic.

CC : there exists a finite-memory strategy σ for Controller such that every cycle
in R(A)[σ] reachable from the initial state is winning aperiodic.

Intuitively, determinacy allows us to write that either all cycles are aperiodic, or
none is, respectively under each player’s winning strategies. We prove that these
properties are sufficient and necessary for respective players to win (R(A),W):

Lemma 3. The winning condition W is equivalent to CP and CC : 1. Perturbator
wins the game (R(A),W) iff property CP holds. 2. Controller wins the game
(R(A),W) iff property CC holds. In both cases, a winning strategy for W is also
a witness for CC (resp. CP ).

The proof is obtained by the following facts: finite-memory strategies are
sufficient to win the game (R(A),W), thanks to the previous proposition; given
a folded orbit graph γ, there exists n such that γn is complete iff γ is aperiodic;
last, the concatenation of a complete FOG with an arbitrary FOG is complete.

5 Solving the Robust Timed Game

In this section, we show that condition CP (resp. CC) is sufficient to witness the
existence of a winning strategy in the robust timed game for Perturbator (resp.
Controller). By Lemma 3, the robust timed game problem is then reduced to
(R(A),W) and we obtain:

Theorem 4. Let A be a timed automaton with a Büchi condition. Then, Controller
wins the robust timed game for A iff he wins the game (R(A),W).

By Proposition 2, the robust timed game can be solved in EXPTIME. In
addition, when Controller wins the robust timed game, one can also compute δ > 0
and an actual strategy in Gδ(A): Lemma 3 gives an effective strategy σ satis-
fying CC and the proof of Lemma 6 will effectively derive a strategy (given as
shrunk DBMs).
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5.1 Sufficient condition for Perturbator

We first prove that under condition CP , Perturbator wins the robust timed game.
We use the following observations. Once one fixes a strategy for Perturbator

satisfying CP , intuitively, one obtains a timed automaton (where there is no more
non-determinism in actions), such that all accepting cycles are non-aperiodic. As
Perturbator has no more non-determinism to resolve, results of [21] apply and the
next lemma follows (see Appendix C).

Lemma 5. If CP holds, then Perturbator wins the robust timed game.

5.2 Sufficient condition for Controller

Proving that CC is a sufficient condition for Controller is the main difficulty in
the paper; the proof for the next lemma is given in this section.

Lemma 6. If CC holds, then Controller wins the robust timed game.

Proof outline. We consider the non-deterministic automaton B = R(A)[σ]
which represents the behavior of game R(A) when Controller plays according
to σ, given by condition CC . Without loss of generality, we assume that σ is
a memoryless strategy played on the game R(A)[σ] (states of R(A) can be
augmented with memory) and that B is trim. Given an edge e = q → q′ of B, we
denote by edge(e) the underlying transition in A.

Given a state p of B, we denote by Unfold(B, p) the infinite labeled tree
obtained as the unfolding of B, rooted in state p. Formally, nodes are labeled by
states of B and given a node x labeled by q, σ(q) is defined and there exists q′

such that q
σ(q)
−−−→ q′ in B. Then x has one child node for each such q′. We may

abusively use nodes to refer to labels to simplify notations.
We first choose states q1, . . . , qn such that every cycle of B contains one of

the qi’s. Let us denote by q0 the initial state of B, for i = 0..n, one can choose
a finite prefix ti of Unfold(B, qi) such that every leaf of ti is labeled by some qj ,
j = 1..n. Indeed, as B is trim and σ is a winning strategy for Controller in the
game (R(A),W), every branch of Unfold(B, qi) is infinite.

(r,Q1)

(r,Q3) (r,Q4) (s,Q5)

(s,Q2)(t, Q6)

Fig. 3. Proof idea of Lemma 6. Dashed ar-
rows represent cycles.

Strategies for standard timed
games can be described by means of
regions. In our robustness setting, we
use shrinkings of regions. Let (ℓi, ri)
be the label of state qi. To build a
strategy for Controller, we will identify
δ > 0 and zones si, i = 1..n, obtained
as shrinking of regions ri. These zones
satisfy that the controllable predeces-
sors through the tree ti computed with
zones (sj)j at leafs contains the zone
si: this means that from any configuration in (ℓi, si), Controller has a strategy to
ensure reaching a configuration in one of the (ℓj , sj)’s, when following the tree ti.
These strategies can thus be repeated, yielding infinite outcomes. This idea is
illustrated in Fig. 3 where the computations along some prefix t are depicted:
the shrunk zone at a node represents the controllable predecessors of the shrunk
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zones of its children. Here, from the shrunk set of the root node, one can ensure
reaching a shrinking of each leaf which is included in the shrinking of the starting
state of its cycle, yielding a kind of fixpoint. We have in fact (r,Qi) ⊆ (r,Q1) for
i = 3, 4, and (s,Q5) ⊆ (s,Q2).

To identify these zones si, we will successively prove the three following facts:
1) Prefixes ti’s can be chosen such that every branch has a complete FOG
2) Controllable predecessors through ti’s of non-empty shrunk zones are non-
empty shrunk zones
3) Controllable predecessors through ti’s can be faithfully over-approximated by
the intersection of controllable predecessors through branches of ti

Ensuring branches with complete FOGs. To prove property 1) of the Proof
outline, we use condition CC and the fact that long enough repetitions of aperiodic
cycles yield complete FOGs. We obtain:

Lemma 7. Under condition CC , there exists an integer N such that every path
ρ in B of length at least N has a complete folded orbit graph.

Controllable Predecessors and Merge. In order to compute winning states
in Gδ(A) through unfoldings, we define two operators. CPre is the standard set
of controllable predecessors along a single edge:

Definition 8 (Operator CPre). Let e = q → q1 be an edge in some unfolding
of B. Let us write q = (ℓ, r), q1 = (ℓ1, r1), σ(q) = (r′, a) and edge(q → q1) =
(ℓ, g1, a, R1, ℓ1). Let M1 be a DBM such that M1 ⊆ r1 and δ ≥ 0. We define the
set of δ-controllable predecessors of M1 through edge e as
CPreδe(M1) = r ∩ Pre>δ

(

Shrink[−δ,δ] (r
′ ∩ UnresetR1(M1))

)

.

The above definition is extended to paths. Intuitively, CPreδe(M1) are the
valuations in region r from which M1 can be surely reached through a delay in r′

and the edge e despite perturbations up to δ.
We now consider the case of branching paths, where Perturbator resolves

non-determinism. In this case, in order for Controller to ensure reaching given
subsets in all branches, one needs a stronger operator, which we call CMerge.
Intuitively, CMergeδe1,e2(M1,M2) is the set of valuations in the region starting r
from which Controller can ensure reaching either M1 or M2 by a single strategy,
whatever Perturbator’s strategy is. The operator is illustrated in Fig. 4.

Definition 9 (Operator CMerge). Let e1 = q → q1 and e2 = q → q2 be
edges in some unfolding of B, and write q = (ℓ, r), σ(q) = (r′, a) and for
i ∈ {1, 2}, qi = (ℓi, ri), edge(q → qi) = (ℓ, gi, a, Ri, ℓi). Let Mi be a DBM such
that Mi ⊆ ri for i ∈ {1, 2}. For any δ ≥ 0, define the set of δ-controllable

predecessors of M1,M2 through edges e1, e2 as CMergeδe1,e2(M1,M2) = r ∩

Pre>δ

(

Shrink[−δ,δ]

(

r′ ∩
⋂

i∈{1,2} UnresetRi
(Mi)

))

.

We extend CMerge by induction to finite prefixes of unfoldings of B (see
Appendix C.2). Informally, consider a tree t and shrunk DBMs (Mi, Pi)i for

its leaves, CMergeδt
(

(Mi, Pi)i
)

is the set of states for which there is a strategy

ensuring reaching one of (Mi, Pi). It should be clear that because CMergeδe1,e2
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is more restrictive than CPreδe1 ∩ CPreδe2 , we always have CMergeδt ⊆
⋂

β CPre
δ
β ,

where β ranges over all branches of t (See Fig. 4).
The following lemma states property 2) of the proof outline. Existence of

the SM Q follows from standard results on shrunk DBMs. Non-emptiness of
(M,Q) follows from the fact that every delay edge leads to a non-punctual region.
Define a full-dimensional subset of a set r ⊆ R

n is a subset r′ ⊆ r such that
there is ν ∈ r′ and ε > 0 satisfying Balld∞

(ν, ε)∩ r ⊆ r′, where Balld∞
(ν, ε) is the

standard ball of radius ε for the infinity norm on R
n.

Lemma 10. Let t be a finite prefix of Unfold(B, q), r the region labeling the root,
and r1, . . . , rk those of the leafs. M,N1, . . . , Nk be non-empty DBMs that are full
dimensional subsets of r, r1, . . . , rk satisfying M = CMerge0t ((Nj)j). We consider
shrinking matrices Pj, 1 ≤ j ≤ k, of DBM Nj such that (Nj , Pj) 6= ∅. Then,

there exists a SM Q such that (M,Q) = CMergeδt ((Nj , Pj)j), and (M,Q) 6= ∅.

x

y

r

r′

r2, P2

r1, P1

s

Fig. 4. We have s =
CMerge0((ri, Pi)i), which
is strictly included in
∩iCPre

0(ri, Pi) but has
the same shape.

Over-Approximation of CMerge. Given a prefix t
where each branch βi ends in a leaf labeled with (ri, Pi),
we see ∩βi

CPre0βi
((ri, Pi)) as an over-approximation

of CMerge0t ((ri, Pi)i). We will show that both sets have
the same “shape”, i.e. any facet that is not shrunk
in one set, is not shrunk in the other one. This is
illustrated in Fig. 4.

We introduce the notion of 0-dominance as follows:
for a pair of SMs P,Q, Q 0-dominates P , written P �0

Q, if Q[i, j] ≤ P [i, j], and Q[i, j] = 0 implies P [i, j] = 0
for all i, j. Informally, a set shrunk by P is smaller
than that shrunk by Q, but yields the same shape.
The 0-dominance is the notion we use for a “precise”
over-approximation of CMerge: (see Appendix C.3)

Lemma 11. Let t be a finite prefix of Unfold(B, q), with q = (ℓ, r), and let
(ℓi, ri), 1 ≤ i ≤ k denote the (labels of) leafs of t. We denote by βi, 1 ≤ i ≤ k,
the branches of t. Consider SMs Pi, 1 ≤ i ≤ k, for regions ri. Let us denote

(r, P ) = CMerge0t ((ri, Pi)1≤i≤k) and (r,Q) =
⋂k

i=1 CPre
0
βi
(ri, Pi), then P �0 Q.

Putting everything together. In order to complete the proof of Lemma 6, we
first recall the following simple lemma:

Lemma 12 ([21]). For any DBM M , there is a SM P0 s.t. (M,P0) 6= ∅, and is
fully dimensional, and for any SM P and ε>0 with (M,P ) 6= ∅ and M − εP0 6= ∅,
we have M − εP0 ⊆ (M,P ).

Remember we have identified states qi and trees ti, i = 0..n. Denote (ℓi, ri) the
label of qi. For each i = 1..n, we denote by Pi the SM obtained by Lemma 12
for ri. Consider now some tree ti, i = 0..n, with ((rj , Pj)j) at leafs. Let βj be
a branch of ti and denote by (rj , Pj) its leaf. By Lemma 7, the FOG of βj is
complete, and thus from any valuation in ri, one can reach every valuation
in the target region rj along βj (see [3]), and thus ri = CPre0βj

(rj , Pj). This

holds for every branch and we obtain ri =
⋂

j CPre
0
βj
(rj , Pj). By Lemma 11,

this entails ri = CMerge0ti((rj , Pj)j). We can choose ε > 0 small enough such
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that the zone si = ri − εPi is non-empty for every i = 1..n and we obtain
ri = CMerge0ti((sj)j). We can then apply Lemma 10, yielding some SM Qi of ri
such that ∅ 6= (ri, Qi) = CMergeδti((sj)j). There are two cases:

– i = 0: as r0 is the singleton {0}, we have (r0, Q0) = r0, and thus r0 =

CMergeδt0((sj)j). In other terms, for small enough δ’s, Controller has a strategy
in Gδ(A) along t0 to reach one of the (ℓj , sj)’s starting from the initial
configuration (ℓ0,0).

– i ≥ 1: Lemma 12 entails si ⊆ CMergeδti((sj)j), which precisely states that
for small enough δ’s, Controller has a strategy in Gδ(A) along ti, starting in
(ℓi, si), to reach one of the (ℓj , sj)’s.

These strategies can thus be combined and repeated, yielding the result.

6 Probabilistic Semantics

In some systems, considering the environment as a completely adversarial op-
ponent is too strong an assumption. In order to model the environment with
more realistic behavior, we define two semantics as probabilistic variants of the
robust timed games. The first variant is the stochastic game semantics where
Perturbator only resolves the non-determinism in actions, but the perturbations
are chosen independently and uniformly at random in the interval [−δ, δ]. The
second semantics is the Markov decision process semantics (MDP for short),
where the non-determinism is also resolved by a uniform distribution on the
edges. Note that there is no player Perturbator in the latter semantics.

6.1 Stochastic Game Semantics

Formally, given δ > 0, the state space is partitioned into VC∪VP as previously. At
each step, Controller picks a delay d ≥ δ, and an action a such that for every edge
e = (ℓ, g, a, R, ℓ′) such that ν + d |= g, we have ν + d+ ε |= g for all ε ∈ [−δ, δ],
and there exists at least one such edge e. Perturbator then chooses an edge e with
label a, and a perturbation ε ∈ [−δ, δ] is chosen independently and uniformly at
random. The next state is determined by delaying d+ ε and taking the edge e.
To ensure that probability measures exist, we restrict to measurable strategies.

In this semantics, we are interested in deciding whether Controller can ensure
a given Büchi objective almost surely, for some δ > 0. It turns out that the same
characterization as in Theorem 4 holds in the probabilistic case.

Theorem 13. It is EXPTIME-complete to decide whether for some δ > 0,
Controller has a strategy achieving a given Büchi objective almost surely in the
stochastic game semantics. Moreover, if CC holds then Controller wins almost-
surely; if CP holds then Perturbator wins almost-surely.

This is a powerful result showing a strong distinction between robust and non-
robust timed games: in the first case, a controller that ensures the specification
almost surely can be computed, while in non-robust timed games, any controller
will fail almost surely. Thus, while in previous works on robustness in timed
automata (e.g. [18]) the emphasis was on additional behaviors that might appear
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in the worst-case due to the accumulation of perturbations, we show that in our
setting, this is inevitable. Note that this also shows that limit-sure winning (see
next section) is equivalent to almost-sure winning.

6.2 Markov decision process semantics

The Markov decision process semantics consists in choosing both the pertur-
bations, and the edges uniformly at random (and independently). Formally, it
consists in restricting Perturbator to choose all possible edges uniformly at random
in the stochastic game semantics. We denote by GMDP

δ (A) the resulting game,
and P

σ
GMDP

δ
(A),s

the probability measure on Runs(A, s) under strategy σ.

For a given timed Büchi automaton, denote φ the set of accepting runs. We
are interested in the two following problems: (we let s0 = (ℓ0,0))

Almost-sure winning: does there exist δ > 0 and a strategy σ for Controller such
that Pσ

GMDP

δ
(A),s0

(φ) = 1?

Limit-sure winning: does there exist, for every 0 ≤ ε ≤ 1, a perturbation upper
bound δ, and a strategy σ for Controller such that Pσ

GMDP

δ
(A),s0

(φ) ≥ 1− ε?

ℓ0

ℓ1

x≤1,a,x:=0

x≤1,a

x≤1,a,x:=0

Fig. 5. This automaton is
losing in the MDP seman-
tics for the almost-sure
winning but winning un-
der the same semantics
for the limit-sure winning.
In fact, a blocking state
(ℓ0, x) with x > 1 − δ

is reachable with positive
probability for any δ.

Observe that if almost-sure winning cannot be en-
sured, then limit-sure winning still has a concrete in-
terpretation in terms of controller synthesis: given a
quantitative constraint on the quality of the controller,
what should be the precision on clocks measurements
to be able to synthesize a correct controller? Consider
the timed automaton depicted on the right. It is easy
to see that Controller loses the (non-stochastic) robust
game, the stochastic game and in the MDP semantics
with almost-sure condition, but he wins in the MDP
semantics with limit-sure condition.

Theorem 14. It is EXPTIME-complete to decide
whether Controller wins almost-surely (resp. limit-
surely) in the MDP semantics of a timed Büchi automaton.

To prove this theorem, we will define decidable characterizations on R(A)
which we will see as a finite Markov decision process. In this MDP, the non-
determinism of actions is resolved according to a uniform distribution. Given
a strategy σ̂ for Controller and a state v, we denote by P

σ̂
R(A),v the resulting

measure on Runs(R(A), v). The initial state of R(A) is v0. We will use well-known
notions about finite MDPs; we refer to [19].

Almost-sure winning We introduce the following winning condition W ′:
a Controller’s strategy σ̂ in R(A) is winning in state v iff P

σ̂
R(A),v(φ) = 1 and

every run in Runs(R(A)[σ̂], v) contains infinitely many disjoint factors whose
FOG is complete. Observe that this combines an almost-sure requirement with a
sure requirement. This winning condition is our characterization for almost-sure
winning:

Proposition 15. Controller wins almost-surely in the MDP semantics of a timed
Büchi automaton A iff Controller wins the game (R(A),W ′) in v0.
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Intuitively, the first condition is required to ensure winning almost-surely, and
the second condition allows to forbid blocking behaviors. Notice the resemblance
with condition W ; the difference is that φ only needs to be ensured almost-surely
rather than surely. We prove the decidability of this condition.

Lemma 16. The game (R(A),W ′) admits finite-memory strategies, and winning
strategies can be computed in EXPTIME.

The proof of Prop. 15 uses the following ideas. We first assume that Controller
wins the abstract game using some strategy σ̂. We derive from σ̂ a strategy σ in
the MDP semantics by concretizing the delays chosen by σ. To do so, we consider
the automaton R(A)[σ̂] and proceed as in Section 5, which results in a strategy
defined by means of shrinking matrices. Using the results of Section 5, we can
prove that the outcomes of σ are never blocked, and thus the probabilities of paths
in R(A) under σ̂ are preserved by σ. As a consequence, σ wins almost-surely.

Conversely, by contradiction, we assume that Controller does not satisfy W ′

in R(A) while there exists an almost-sure strategy σ for the MDP semantics. We
build from σ a strategy σ̂ in R(A), and prove that it satisfies φ almost-surely.
This entails the existence of a run ρ in R(A)[σ̂] such that ρ eventually does
not contain factors with a complete FOG. We finally show that, with positive
probability, perturbations can be chosen to ensure that the run gets blocked along
a finite prefix of this path, Lemma 43), which ensures that σ is not almost-surely
winning.

Limit-sure winning As illustrated in Fig. 5, it is sometimes possible, ac-
cording to any ε > 0, to choose the parameter δ > 0 small enough to ensure a
winning probability of at least 1− ε. The idea is that in such cases one can ensure
reaching the set of almost-sure winning states with arbitrarily high probability,
although the run can still be blocked with a small probability before reaching
this set.

To characterize limit-sure winning, we define a new condition W ′′ as follows.
If Win′ denotes the set of winning states for Controller in the game (R(A),W ′),
then W ′′ is defined as the set of states from which one can almost surely reach
Win′.

Proposition 17. Controller wins limit-surely in the MDP semantics of a timed
Büchi automaton A from s0 iff Controller wins the game (R(A),W ′′) in v0.

The proof of this proposition relies on the following lemma, and uses techniques
similar as those introduced to prove Proposition 15.

Lemma 18. The game (R(A),W ′′) admits finite-memory strategies, and win-
ning strategies can be computed in EXPTIME.

7 Conclusion

In this paper, we defined robust timed games with Büchi conditions and unknown
imprecision parameters. Our formalism allows one to solve robust controller
synthesis problems both against an adversarial (or worst-case) environment, and
two variants of probabilistic environments. The procedures we have developed
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allow, when they exist, to effectively build a bound δ > 0 on the perturbation
and a winning strategy for Controller. Some questions remain open including the
generalization of these results to concurrent timed games with parity conditions
considered in [11]. We believe it is possible to derive symbolic algorithms but
this will require extending the theory to detect aperiodic cycles in zone graphs
rather than in the region graph.
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A Orbit Graphs

We start with some complements on the region automaton R(A). We may

sometimes decompose edges (ℓ, r)
(r′,a)
−−−→ (ℓ′, s), as the two following edges:

(ℓ, r)
∆
−→ (ℓ, r′) denotes the delay edge, which represents time-elapsing in the

timed automaton, and (ℓ, r′)
e
−→ (ℓ′, s) with e = (ℓ, g, a, R, ℓ′) ∈ E is the edge of

A used to build the transition (ℓ, r)
(r′,a)
−−−→ (ℓ′, s) of R(A). This representation of

edges in R(A) is thus more precise. We will use it in the appendices.
Using this notation, given a run ρ = p1e1p2e2 . . . pn of A with ei ∈ R>0 ∪ E,

its projection on regions is the path π = q1e
′
1q2e

′
2 . . . qn in the region automaton

s.t. pi ∈ qi, and e′i = ei if ei ∈ E and e′i = ∆ otherwise.
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Fig. 6. The orbit graph of a (cyclic) path in the region automaton of the automaton of
Fig. 1(a).

Fig. 7. The folded orbit graph of
the (non-forgetful) cycle of Fig. 6.

Fig. 8. The folded orbit graph of a
forgetful cycle.

With any path π of the region automaton, we associate a labeled bipartite
graph Γ (π) called the folded orbit graph of π [8] (FOG for short). Intuitively,
the FOG of a path gives the reachability relation between the vertices of the
first and last regions. Formally, for a transition τ = q1e1q2, its orbit graph
Γ (τ) = (V1 ∪ V2, (q1, q2), E) is a bipartite graph where V1 = {(1, v)}v∈V(q1),

and V2 = {(2, v)}v∈V(q2). For any
(

(1, u), (2, v)
)

∈ V1 × V2, we have an edge

((1, u), (2, v)) ∈ E, if, and only if u
ē1−→ v, where e1 = ∆ if e1 = ∆, and otherwise

e1 is obtained by replacing the guard by its closed counterpart. Note that each
vertex has at least one successor through e1 [1]. In order to extend Γ (·) to
paths, we use a composition operator ⊕ between FOGs, defined as follows.
If G = (V1 ∪ V2, (q1, q2), E) and G′ = (V ′

1 ∪ V ′
2 , (q

′
1, q

′
2), E

′) denote two FOGs,
then G⊕G′ is defined if, and only if, q2 = q′1, that is, when the path defining
the former graph ends in the first state of the path defining the latter graph. In
this case, the graph G′′ = G⊕G′ = (V1 ∪ . . . V

′
2 , (q1, q

′
2), E

′′) is defined by taking
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the disjoint union of G and G′, merging each node (2, v) of V2 with the node
(1, v) of V ′

1 . Now, we extend Γ (·) to paths by induction, as follows. Consider any
path π = q1e1 . . . qn−1en−1qn, and let G = (V1 ∪ V2, (q1, qn−1), E) be the FOG
Γ (q1e1 . . . qn−1), given by induction. Let G′ = (U ∪ U ′, (qn−1, qn), E

′) denote
the bipartite graph of qn−1en−1qn. Then, we let Γ (π) = G ⊕ G′. If the given
path π = q1 . . . q1 is a cycle, then we define Γ (π) on the node set V(q1), by
merging the nodes of the bipartite graph corresponding to the same vertex. Note
that delays of duration zero are allowed when defining orbit graphs. Figure 6
displays a path in the region automaton of the automaton depicted on Fig. 1(a).
Figure 7 shows the FOG of this path.

Orbit graphs are used to characterize runs along a given path on regions:

Lemma 19 ([8]). Let π be a path from region r to s. Consider any ν ∈ r with

ν =
∑

v∈V(r) λvv for some coefficients λv ≥ 0 and
∑

λv = 1. If ν
π
−→ ν′, then

for each v ∈ V(r), there exists a probability distribution {pν,ν
′

v,w }w∈RΓ (π)(v) over

RΓ (π)(v) such that ν′ =
∑

v∈V(r) λv

∑

w∈RΓ (π)(v)
pν,ν

′

v,ww.6

B Proofs of Section 4 (Playing in the Region Automaton)

In order to prepare the proof of Prop. 2, we first construct a deterministic Büchi
automaton B recognizing runs of R(A) that contain an infinite number of disjoint
factors with complete FOGs.

The goal of B is to take track of the current folded orbit graph, and recognize
complete orbit graphs. The state space contains all G and triples (G, a, r) where G
ranges over all folded orbit graphs of A, r is a region, and a a label. The size of
the state space is thus bounded by an exponential (see Section 3); the initial state
is Γ (∅) (that is, the graph of the identity relation). Informally, the transitions
implement the operation ⊕ on the monoid of folded orbit graphs. More precisely,

we have G
a,r′

−−→ (G, a, r′), and (G, a, r′)
e
−→ (G⊕ Γ ((ℓ, r)∆(ℓ, r′)e(ℓ′, s))), where

(ℓ, r)∆(ℓ, r′)e(ℓ′, s) is the path generated by delaying to r′ and taking the edge e.
More precisely, if we write e = (ℓ, g, a, R, ℓ′), then s = r′[R← 0]. All states
G such that G is a complete FOG are accepting. Furthermore, from any such
accepting state G, we remove the previously defined outgoing edges, and add the

edges G
a,r′

−−→ (Γ (∅), a, r′). Hence, the automaton tracks the FOG of the current
factor it is reading, and reinitializes the FOG when it visits a complete graph.
Note that B is a deterministic Büchi automaton.

Lemma 20. Given any timed automaton A, the Büchi automaton B constructed
as above is deterministic and recognizes the set of runs of R(A) that contain an
infinite number of disjoint factors with complete FOGs.

Proposition 2. The game (R(A),W) is determined, admits finite-memory
strategies for both players, and wining strategies can be computed in EXPTIME.

Proof. We first define a game B1 as a slight modification of R(A) where the
moves of both players are made explicit, in order to allow parallel composition

6 RΓ (π)(v) denotes here the successors of v in Γ (π).
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with the automaton B we just defined. Given a timed automaton A = (L, C,
ℓ0, Σ,E) and a Büchi condition B, the state space of B1 is defined as Player 1
states (ℓ, r) and Player 2 states (ℓ, r, r′, a), where ℓ is a location, r and r′ regions,
and a a label of A. The labels of B1 are either pairs (r, a) where r is a region,
and a is the label of an action, or edges e ∈ E. The transitions are defined as

follows. We have (ℓ, r)
(r′,a)
−−−→ (ℓ, r, r′, a) iff (ℓ, r)

(r′,a)
−−−→ (ℓ′, s) in R(A) for some

state (ℓ′, s). For any edge e = (ℓ, g, a, R, ℓ′) with label a, such that g is satisfied

by r′, we let (ℓ, r, r′, a)
e
−→ (ℓ′, s) where s = r′[R ← 0]. Hence, these transitions

“simulate” those of R(A) while the moves of both players are made visible at
intermediate states. As before, the accepting states are (ℓ, r) such that ℓ ∈ B.
The initial state is {(ℓ0, r0)}.

Now, let B ‖ B1 denote the parallel composition of B1 and B endowed with
the generalized Büchi condition given by the conditions of the two automata. We
already noted that B1 simply visits the region automaton given moves by both
players, and that given the same path, B keeps track of the orbit graph of the
factors. We see B ‖ B1 as a game where any state with a Player 1 component
in B1 is a Player 1 state. It is now clear that any winning strategy for (R(A),W)
can be translated into a winning strategy in B ‖ B1 and conversely. We know that
in B ‖ B1, 1-bit memory strategies are sufficient to win. Given such a strategy,
one can derive a strategy for B1 by seeing B as the memory (thanks to the fact
that it is deterministic). This provides a winning strategy for (R(A),W) with at
most exponential memory.

Note that the equivalence with a Büchi game means that the game is deter-
mined. ⊓⊔

In order to prepare the proof of Lemma 3, we need a couple of results proven
in previous works.

The following lemma explains the relation between aperiodic cycles and cycles
with complete orbit graphs.

Lemma 21. If π is an aperiodic cycle, then Γ (πn) is a complete graph for all
n ≥ |C0| × |C0|!. Conversely, if π is a cycle such that Γ (πn) is a complete graph
for some n ≥ 1, then π is aperiodic.

Proof. For the direct implication, Lemma 13 in [11] actually states that Γ (πn) is
complete for some n ≤ |C0| × |C0|!. To conclude, it suffices to observe that the
(left or right) concatenation of a complete folded orbit graph with any folded
orbit graph is still complete. Conversely, first note that if Γ (πn) is complete for
some n, then it is also complete for any n′ ≥ n. Suppose that π is not aperiodic,
then there exists k such that the graph Γ (πk) is not strongly connected. But
then Γ (πki) is also not strongly connected, for any i ≥ 1. Contradiction. ⊓⊔

The following lemma is a factorization lemma à la Ramsey. Although Ramsey’s
theorem can be used to prove it, better bounds were obtained in [11].

Lemma 22 ([11]). Let π be a path of R(A) written as π = π0π1π2 . . . πn where
each πi is a cycle that starts in the same state, for i ≥ 1. Then, one can write

π = π′
0π

′
1π

′
2 . . . π

′
m+1 such that m ≥

√

n/r − 2 − 1, where r = 2(|C|+1)2 |R(A)|,
and for some indices 0 = α0 < α1 < . . ., we have π′

i = παi
· . . . · παi+1−1 for

each i ≥ 0, and Γ (π′
1) = Γ (π′

i) for all 1 ≤ i ≤ m.
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Once a strategy σ for Controller is fixed and a strategy τ for Perturbator is
fixed, this defines a unique play ρ in R(A). We say that ρ is consistent with the
couple (σ, τ).

Lemma 3. The winning condition W is equivalent to CP and CC : 1. Perturbator
wins the game (R(A),W) iff property CP holds. 2. Controller wins the game
(R(A),W) iff property CC holds. In both cases, a winning strategy for W is also
a witness for CC (resp. CP ).

Proof (Proof of Lemma 3).

1. We start by showing the direct implication. Assuming Perturbator wins the
game (R(A),W), we know by Proposition 2, that there exists a winning
finite-memory strategy τ for Perturbator. Let us show that condition CP
holds. Assume towards a contradiction that there exists a reachable winning
aperiodic cycle in R(A)[τ ]. Denote by π such a cycle. This means that
Controller has a strategy σ to eventually reach π and repeat π forever. Since π
is aperiodic, for some n, we know that Γ (πn) is a complete graph (Lemma 21).
Thus, the play consistent with (σ, τ) that starts in (ℓ0, r0) belongs to W, a
contradiction.
We show the converse implication. Assume that CP holds and let us prove that
Perturbator wins the game (R(A),W). Let τ be the finite memory strategy
given by CP . By contradiction, suppose that there exists a strategy σ for
Controller such that the play ρ consistent with the couple of strategies (σ, τ)
starting in (ℓ0, r0) belongs to W. ρ is a run in the automaton R(A)[τ ], and
therefore one can factorize ρ into ρ0ρ1 · · · such that ρi for any i > 0 is a
cycle in R(A)[τ ] around a same state. Now, as ρ is accepting and there are
finitely many folded orbit graphs, one can use a Lemma 22 to factor ρ1ρ2 · · ·
into ρ′1ρ

′
2 · · · such that ρ′i is an accepting cycle around a same state for i > 0,

and Γ (ρ′1) = Γ (ρ′2) = · · · = γ. Since CP holds, γ is not aperiodic. As ρ ∈ W,
there exist i < j such that ρ′i · · · ρ

′
j contains a factor with a complete FOG.

Then we have that Γ (ρ′i · · · ρ
′
j) = γj−i+1 is complete, contradiction, as γ is

not aperiodic (Lemma 21).
2. Direct implication. Assume that Controller wins in (R(A),W) and let us

show that CC holds. By Proposition 2, there exists a winning finite-memory
strategy σ for Controller. Let us show that every reachable cycle in R(A)[σ]
is winning aperiodic. Assume towards a contradiction the existence of a cycle
which is not winning aperiodic. Denote this cycle by π. This means that
there exists a strategy τ for Perturbator such that the cycle π is eventually
reached and repeated forever. Because π is not winning aperiodic, the play
that starts in (ℓ0, r0) and stays consistent with the couple of strategies (σ, τ)
cannot belong to W, a contradiction.
Let us show the converse implication. Assume that CC holds, and let σ the
finite memory strategy given by CC . We show that the strategy σ is wining
for Controller in (R(A),W). Let τ be an arbitrary strategy for Perturbator

and let ρ be the play consistent with (σ, ρ). As in case 1., one can factorize
ρ into ρ′0ρ

′
1ρ

′
2 · · · such that ρ′i for i > 0 are cycles around a same state and

Γ (ρ′1) = Γ (ρ′2) = · · · = γ. To see that ρ ∈ W , it suffices to notice that ρ′i for
i > 1 is an accepting cycle and that γ is aperiodic, thus there exists n such
that γn is complete.
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⊓⊔

C Proofs of Section 5 (Solving the Robust Timed Game)

We note the following lemma from [11].

Lemma 23 ([11]). For a timed automaton A with distinct labels Controller

wins the robust timed game in A iff R(A) has a reachable winning aperiodic
cycle.

Lemma 5. If CP holds, then Perturbator wins the robust timed game.

Proof. Let τ be Perturbator’s finite-memory strategy yielding R(A)[τ ] witnessing
property CP .

Let A′ be the timed automaton defined on the set of locations R(A)[τ ],
where the clock set is that of A. We have an edge (ℓ, r) −→ (ℓ, r′) with the
guard r′, whenever r′ is a time-successor region of r (that is, ∃d ≥ 0, r + d ∈ r′).

Furthermore, there exists an edge (ℓ, r)
a
−→ (ℓ′, s) with guard r′ if there exists

an edge (ℓ, g, a, R, ℓ′) with r′ |= g in A . By Lemma 23, Perturbator has a
winning strategy τ ′ in A′, since R(A′) = R(A), and it has no reachable aperiodic
cycles. Now, we show that the combination of τ and τ ′ is a winning strategy for
Perturbator in the robust timed game on A.

We define strategy τ ′′ in A as follows. At any state (ℓ, ν), if Controller chooses
the delay d ≥ 0 and action a, then τ ′′ determines the edge (ℓ, g, a, R, ℓ′) following
strategy τ , and the perturbation is chosen following τ ′. The fact that we respect
the strategy τ ensures that the projection of the play to regions stay within
R(A)[τ ]. So the projection to regions of any outcome is also a path in R(A′).
The fact that the perturbations are chosen by τ ′ means that the generated play
of A is also a play of A′. If some play of A under τ ′′ were infinite and accepting,
this would mean that there is a corresponding play in A′ winning for Controller,
which is a contradiction. ⊓⊔

Lemma 7. Under condition CC , there exists an integer N such that every path
ρ in B of length at least N has a complete folded orbit graph.

Proof. The arguments used in this proof already appear in the proof of Lemma 3;
we sketch the ideas. It suffices to choose N large enough and apply Lemma 22
(with n ← N). In fact, if all branches of the tree are long enough, then for
each branch π, we get a factorization of the form π = π′

0π
′
1π

′
2 . . . π

′
m+1 with

m ≥ |C0| × |C0|!. By Lemma 21, this means that π contains a factor with a
complete FOG. ⊓⊔

C.1 Shrunk DBMs

In order to make the presentation of the paper self-contained, we summarize here
some results about shrunk DBMs and give details about elementary operations
on this data structure. Most of the content of this section is from [5].

We call elementary operator on shrunk DBMs any operator obtained by mean
of elementary operations that is : ∩,Pre>0,Pre>δ,UnresetR(, ) and Shrink[−δ,δ].
The following lemma states that these elementary operator can be computed at
the level of shrunk DBMs, in poly-time.
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Lemma 24 ([10, 5]). Let M = f0(N1, . . . , Nk) be an equation where f is an
elementary operator and N1, . . . , Nk are normalized DBMs. Let P1, . . . , Pk be SMs.
Then, there exists a SM Q such that (M,Q) = fδ

(

(N1, P1), . . . , (Nk, Pk)
)

. The
SM Q and an upper bound on δ can be computed in poly-time.

We now give some computational details about the result of Lemma 24 which
we will need in subsequent proofs.

The operations on shrunk DBMs follow closely the counterparts on DBMs.
Essentially, the matrices are defined on a richer algebra where elements are of
the form ((m,≺), p), which represent a constraint x − y ≺ m − δp, instead of
only (m,≺). We consider the following operations and relations. The addition
is defined by ((m1,≺1), p1) + ((m2,≺2), p2) = ((m1 + m2,≺), p1 + p2), where
≺ = ≤ if ≺ = ≺′ = ≤, and < otherwise.

Further, we let

((α,≺), k) � ((β,≺′), l) ⇔







α < β or
α = β and k > l, or
α = β and k = l and ≺′=< ⇒ ≺=< .

(1)
Intuitively, the above relation can be obtained easily by instantiating δ to a
sufficiently small value; the smaller constraint is the most restrictive. We also
define the minimum as follows.

min (((α,≺), k), ((β,≺′), l)) =

{

((α,≺), k) if ((α,≺), k) � ((β,≺′), l),
((β,≺′), l) otherwise.

(2)

Given these operations, elementary operations are computed in shrunk DBMs
just like in usual DBMs. For instance, to compute (O,R) = (M,P ) ∩ (N,Q),
we let (O,R)x,y = min ((M,P )x,y, (N,Q)x,y), and we apply normalization (see
below). To compute Pre ((M,P )), we set the first row of the matrix to ((0,≤), 0)
and apply normalization.

It remains to explain the normalization procedure, which is again very similar
to that in DBMs. For any DBM M , let G(M) denote the graph over nodes
C0, where there is an edge (x, y) ∈ C20 of weight Mx,y if Mx,y < (∞, <). The
normalization of M corresponds to assigning to each edge (x, y) the weight of
the shortest path in G(M). We say that M is normalized when it is stable under
normalization [4].

Similarly to DBMs, the normalization of shrunk DBMs is defined using finite
shortest paths in the graph G(M) of a given DBM M .

Definition 25. Let M be a normalized DBM. For any x, y ∈ C0, we define
Πx,y(G(M)) as the set of paths with least and finite M-weight from x to y
in G(M).

Notice that the shortest paths are defined with respect to weights in M and not M .
In the rest of this paper, we consider paths π = π1 . . . πn ∈ Πx,y(G(M)) weighted
by a given DBM or any matrix. The M -sign of a path π, written signM (π) is <
if ≺M

πi,πi+1
=< for some i, and ≤ otherwise. For a matrix P , the P -weight of π,

written P (π), (or the weight of π in P ) is the sum of the weights Pπj ,πj+1
for

1 ≤ j ≤ n − 1. Finite-weighted shortest paths can be used to characterize the
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non-emptiness and the normalization of shrunk DBMs. In fact, the normalization
consists in replacing each component of a shrunk DBM with the weight of its
shortest path.

Now, normalization consists in computing shortest paths in our algebra: Given
a shrunk DBM (M,P ) we define norm(M,P ) = (M ′, P ′) as follows: for each
(x, y) ∈ C0, let P

′
x,y be the largest P -weight of the paths in Πx,y(G(M)). We let

M ′
x,y = (Mx,y,≺

M ′

x,y) where ≺M ′

x,y= < if some path of Πx,y(G(M)) of P -weight
P ′
x,y has sign <, and ≤ otherwise.

Lemma 26 ([5]). Let M be a normalized non-empty DBM and P be a shrinking
matrix. Then, (M,P ) is non-empty if, and only if, for all x ∈ C0, there is no
path in Πx,x(G(M)) with positive P -weight. Moreover, if (M,P ) is not empty,
then, writing (M ′, P ′) = norm(M,P ), there exists δ0 > 0 such that M ′ − δP ′ is
normalized and defines the same set as M − δP for all δ ∈ [0, δ0].

C.2 Controllable Predecessors and Merge Operations

The goal of this subsection is to prove several properties about the controllable
predecessor and merge operators. We prove that these operators yield non-empty
sets along non-punctual paths. This crucial property will allow us to apply these
operator to solve our robust timed games.

Let us first give the formal definition of CMerge on the whole unfolding.

Definition 27 (CMerge on trees). Let t be a finite prefix of an unfolding
Unfold(B, q), denote by q1, . . . , qn the (labels of) leafs of t with qi = (ℓi, ri), and
let δ ≥ 0. Let (Mi)1≤i≤n be DBMs such that Mi ⊆ ri, we define the set of
δ-controllable predecessors of Mi’s through t as follows:

– if the depth of t is equal to 0, then we have n = 1 and q = q1 and we let:
CMergeδt (M1) = M1

– otherwise, we can write t = q(t1, . . . , tk). Then there exist indices ij and
nj, with 1 ≤ j ≤ k, such that (labels of) leafs of subtree tj are precisely
qij , . . . , qij+nj

. We let q′j denote the root of tj, ej = q → q′j, with 1 ≤ j ≤ k,

and define: CMergeδt ((Mi)1≤i≤n) = CMergeδe1,...,ek((Nj)1≤j≤k) where

Nj = CMergeδtj ((Mp)ij≤p≤ij+nj
)

The following lemma shows that the controllable predecessors of a non-
punctual path is non-empty provided that the target set has non-empty interior.

We consider the usual d∞ metric on R
C , defined as d∞(ν, ν′) = maxx∈C |ν(x)−

ν′(x)|. We define Balld∞
(u, ε) as the open ball of radius ε around the valuation u

using the infinite norm on valuations.

Lemma 28 ([11]). Let π be a non-punctual path from a region r to s. Let s′ ⊆ s

such that there exists v′ ∈ s′ and ε > 0 with Balld∞
(v′, ε)∩s ⊆ s′. Then, CPreδπ(s

′)
is non-empty for small enough δ > 0.

We state here a more precise version of the above lemma.
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Lemma 29. Let π be a non-punctual path from a region r to s. Let r′ ⊆ r
and s′ ⊆ s such that there is v′ ∈ s′ and ε > 0 with Balld∞

(v′, ε) ∩ s ⊆ s′, and
r′ = CPre0π(s

′). We suppose that r′ and s′ are defined by DBMs. Consider P a
SM such that (s′, P ) 6= ∅. Then, there exists Q a SM such that:

– (r′, Q) = CPreδπ(s
′, P ), and

– (r′, Q) is non-empty for small enough δ.

Proof. To prove the first item, it is sufficient to notice that CPre is an elementary
operator, thus thanks to Lemma 24 there exists a SM Q such that the first item
holds.

Let us show the second item. For this notice first that (s′, P ) 6= ∅ means
that for small enough δ > 0, s′ − δ · P has a non-empty interior in the topology
induced on s. Therefore, the requirements of Lemma 28 hold, and it follows that

there exists δ′ such that CPreδ
′

π (s
′ − δ · P ) 6= ∅. To obtain the desired result, it

is sufficient to show that the second item holds when δ′ = δ. Assume first that
δ′ ≥ δ, then the second item of the lemma follows because CPreδ0π (Z) ⊆ CPreδ1π (Z)
for δ0 > δ1. If δ

′ < δ, then the result still holds because z − δ ·M ⊆ z − δ′ ·M
for δ′ < δ. ⊓⊔

A similar property can be proved on the CMerge operator.

Lemma 30. Let r, r1, · · · , rn be a set of regions satisfying r = CMerge0e1,...,en(r1, · · · , rn).
Consider r′ ⊆ r, and r′i ⊆ ri for each i such that there is v′i ∈ r′i and ε > 0
with Balld∞

(v′i, ε)∩ ri ⊆ r′i, and r′ = CMerge0e1,...,en(r
′
1, · · · , r

′
n). We suppose that

r′, r′1, . . . , r
′
n are defined by DBMs. Let P1, · · · , Pn be a set of SMs such that

(r′i, Pi) 6= ∅. Then there exits a SM Q such that:

– (r′, Q) = CMergeδe1,...,en((r
′
i, Pi)i), and

– (r′, Q) is non-empty for small enough δ.

Proof. Let us denote by (ℓ, gi, a, Ri, ℓi) the transition associated with edge ei, and
denote by s the non-punctual intermediate region time-successor of r and such that
s[Ri ← 0] = ri. For any i, there exists a SM P ′

i such that UnresetRi
((r′i, Pi))∩s =

(s′i, P
′
i ) 6= ∅ where s′i = UnresetRi

(r′i) ∩ s. Moreover because (r′i, Pi) has non-
empty interior in the topology induced on ri and s is non-punctual, s′i is also
non-punctual. Then there exists a SM P ′ such that

⋂n
i=1(s

′
i, P

′
i ) = (s′, P ′) 6= ∅,

where s′ is non-punctual. We get the desired result thanks to the following facts.
On one hand, r is a temporal predecessor of s′. Therefore, there exists a valuation
ν ∈ r and a delay d such that we have ν · d = ν′. On the other hand, s′ is
non-punctual, hence there exists η > 0 such that ν′ + [−η, η] ⊆ Balld∞

(ν′, ε′). ⊓⊔

It is then easy to deduce from Lemmas 29 and 30 that Lemma 10 holds, by
induction on the size of the (finite) prefix of an unfolding.

C.3 The notion of 0-dominance

The subsection contains the proof of the results related to 0-dominance. The goal
of these developments is to prove Lemma 11, which is the only lemma used in
the rest of the proof.

The following lemma shows that the 0-dominance relation is monotonous; in
other terms, it shows how the zeros of the shrinking matrices are (backward-)
propagated along computations.
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Lemma 31. The operations Pre,Unreset(),∩ are monotonous for the relation �0

in the following sense.

– Let (N,P ′) = (M1, P1) ∩ (M2, P2) and (N,Q′) = (M1, Q1) ∩ (M2, Q2). Then
P1 �0 Q1 ∧ P2 �0 Q2 ⇒ P ′ �0 Q′.

– Let (N,P ′) = Pre((M,P )) and (N,Q′) = Pre((M,Q)). Then P �0 Q ⇒
P ′ �0 Q′.

– Let (N,P ′) = UnresetR((M,P )) and (N,Q′) = UnresetR((M,Q)). Then
P �0 Q⇒ P ′ �0 Q′.

Proof. – ThatQ′ ≤ P ′ follows from the monotonicity of the operation (Z,Z ′) 7→
Z ∩ Z ′. We show that Q′

x,y = 0 implies P ′
x,y = 0 for any x, y. We recall the

intersection operation on shrunk DBMs. We first define a SM P ′′ as follows.
For any x, y ∈ C0, if (Mi)x,y < (M3−i)x,y for some i = 1, 2, then (N ′

i)x,y =
(Mi)x,y and P ′′

x,y = (P1)x,y. Otherwise P ′′
x,y = max((P1)x,y, (P2)x,y). Then,

(N,P ′) is the normalization of (N ′, P ′′). Let us denote by Q′′ this intermediate
SM computed for the other equation. It is clear that under the assumption
P1 �0 Q1 ∧ P2 �0 Q2, Q

′′
x,y = 0 implies P ′′

x,y = 0. Now, the normalization
consists in assigning to each P ′

x,y, the maximum P ′′-weight of the shortest
paths from x to y in G(N ′). So, if P ′

x,y > 0, then there exists a shortest
path in G(N ′) from x to y whose P ′′-weight is positive, that is, there exists
an edge (z, z′) in this path with P ′′

z,z′ > 0. But we must have Q′′
z,z′ > 0 by

assumption. This implies that Q′
x,y > 0.

– That Q′ ≤ P ′ follows again from the monotonicity of the operation Z 7→
Pre(Z). Given (M,P ), the Pre((M,P )) is computed as follows. We first
define (M ′, P ′′) by assigning (0, 0) to all components of the first row, and
then define (N,P ′) as the normalization of (M ′, P ′′). By the same reasoning
on the normalization procedure as in the first case, we obtain that P �0 Q
implies P ′ �0 Q′.

– That Q′ ≤ P ′ follows again from the monotonicity of the operation Z 7→
UnresetR(Z). The unreset operation is defined as UnresetR(Z) = freeR(R =
0 ∧ Z), that is we first intersect with the zone ∧x∈Rx = 0, and free all
constraints on the clocks x ∈ R. The intersection was treated by the first
case of this lemma. Thus, if we denote (M ′, P1) = (R = 0) ∧ (M,P ) and
(M ′, Q1) = (R = 0) ∧ (M,Q), then we know that P1 �0 Q1. We now
concentrate on the freeR operation which consists in replacing by (∞, 0)
all components (x, y) of the given shrunk DBM where x ∈ R or y ∈ R,
and applying normalization. The 0-dominance relation is preserved before
normalization by construction, and after normalization by the same reasoning
as in the first case of this lemma.

⊓⊔

The following two lemmas compare the operators CPre and CMerge with
respect to 0-dominance.

Lemma 32. Let r, r′, r1, r2 be regions and P, P1, P2, Q,Q1, Q2 be SMs such that:

– (r, P ) = CMerge0a,r′((r1, P1), (r2, P2)) ∩ r,

– (r,Q) = CPre0e1(r1, Q1) ∩ CPre0e2(r2, Q2) ∩ r,
– Pi �0 Qi for i ∈ {1, 2}.
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Then P �0 Q.

Proof. We start by rewriting the shrunk DBMs under consideration. We have :

(r, P ) = CMerge0a,r′((r1, P1), (r2, P2)) ∩ r
= Pre(r′ ∩ UnresetR1

((r1, P1)) ∩ UnresetR2
((r2, P2))) ∩ r

= Pre((r′ ∩ UnresetR1
((r1, P1))) ∩ (r′ ∩ UnresetR2

((r2, P2)))) ∩ r .

and:

(r,Q) = CPre0e1(r1, Q1) ∩ CPre0e2(r2, Q2) ∩ r
= Pre(r′ ∩ UnresetR1

((r1, Q1))) ∩ Pre(r′ ∩ UnresetR2
((r2, Q2))) ∩ r .

We let (r′, P ′
i ) = r′ ∩ UnresetRi

((ri, Pi)), (r
′, Q′

i) = r′ ∩ UnresetRi
((ri, Qi)), and

(r,Q′′
i ) = r ∩ Pre((r′, Q′

i)) for i ∈ {1, 2} and we obtain :

(r, P ) = Pre((r′,max(P ′
1, P

′
2))) ,

(r,Q) = (r,max(Q′′
1 , Q

′′
2)) .

We let (M,PM ) = Pre ((r′, P ′
1) ∩ (r′, P ′

2)) and (M,QM ) = Pre ((r′, Q′
1)) ∩

Pre ((r′, Q′
2)). It suffices to show that PM �0 QM since this implies, by Lemma 31

that P �0 Q. Again by Lemma 31, we already know that P ′
i �0 Q′

i for all i = 1, 2.
We will need the following observation. For any shrunk DBMs satisfying

(N ′, R′) = Pre((N,R)), for any x, y ∈ C0 with x 6= 0, Rx,y = R′
x,y. In other terms,

the diagonal constraints and upper bounds are preserved under the pretime
operation. This can be seen as follows. In DBMs, the pretime consists in assigning
0 to the first row and applying normalization. Because the first row always takes
nonpositive values, the normalization only changes the first row. In fact, consider
any component (z, z′) with z 6= 0. Because the value of a component (0, x)
cannot decrease after being assigned 0, this operation does not introduce any
new shortest paths from z to z′, so the component (z, z′) is not updated during
normalization. In shrunk DBMs, the situation is similar: because no new shortest
paths are introduced from z to z′, Rz,z′ is not updated during normalization,
hence R′

z,z′ = Rz,z′ .
We now show PM �0 QM . Assume that (PM )x,y > 0 for some x, y ∈ C0 with

y 6= 0. Given the previous remark, we get that either (P ′
1)x,y > 0 or (P ′

2)x,y > 0.
But because P ′

i �0 Q′
i, this means that either (Q′

1)x,y > 0 or (Q′
2)x,y > 0. It

follows that Pre((r′, Q′
i))x,y > 0 for some i = 1, 2, thus (QM )x,y > 0. It remains

to show that (PM )0,x > 0 implies (QM )0,x > 0. Let (r′, P ′′) = (r′, P ′
1) ∩ (r′, P ′

2).
Because the pretime operation first resets the row of (r′, P ′′) to (0, 0) before
applying normalization, this means that there exists a shortest path in G(M)
from 0 to x along which there is an edge (z, z′) such that (P ′′)z,z′ > 0. This
implies that (P ′

i )z,z′ > 0 for some i = 1, 2, so (Q′
i)z,z′ > 0. It follows that the

component (z, z′) of Pre((r′, Q′
i)) is positive, so (QM )z,z′ > 0.

⊓⊔

Lemma 33. Let r, r1, r2 be regions and P, P1, P2, Q,Q1, Q2 be SMs such that:

– (r, P ) = CPre0π0

(

CPre0π1
((r1, P1)) ∩ CPre0π2

(r2, P2))
)

,

– (r,Q) = CPre0π0π1
(r1, Q1) ∩ CPre0π0π2

(r2, Q2),
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– Pi �0 Qi for i ∈ {1, 2}.

Then P �0 Q.

Proof. Let us write (s, P ′
i ) = CPre0π1

((ri, Pi)) and (s,Q′
i) = CPre0π1

((ri, Qi)) for
i = 1, 2. We rewrite

– (r, P ) = CPre0π0
((s, P ′

1) ∩ (s, P ′
2)),

– and (r,Q) = CPre0π0
((s,Q′

1)) ∩ CPre0π0
((s,Q′

2)).

By Lemma 31, we have P ′
i �0 Q′

i. We prove the result by induction on |π0| ≥ 0.
For the base case, assume that π0 = e consists of one edge. In this case, notice

that (r, P ) = CMergea,r′((s, P
′
1), (s, P

′
2)). The result then follows from Lemma 32.

Assume |π0| > 0 and write π0 = eπ′. Let us write

– (s, P 1) = CPre0π′ ((s, P ′
1) ∩ (s, P ′

2)),
– (s,Q1) = CPre0π′ ((s,Q′

1)) ∩ CPre0π′ ((s,Q′
2)).

By induction hypothesis, we have P 1 �0 Q1. We now consider

– (r, P ) = CPre0e
(

CPre0π′ ((s, P ′
1) ∩ (s, P ′

2))
)

,

– (r,Q2) = CPre0e
(

CPre0π′ ((s,Q′
1)) ∩ CPre0π′ ((s,Q′

2))
)

.

which yields P �0 Q2 by Lemma 31. Last, we consider the following equations.

– (r,Q2) = CPre0e
(

CPre0π′ ((s,Q′
1)) ∩ CPre0π′ ((s,Q′

2))
)

.

– (r,Q) = CPre0e
(

CPre0π′ ((s,Q′
1))

)

∩ CPre0e
(

CPre0π′ ((s,Q′
2))

)

,

By Lemma 32, applied with e1 = e2, we get that Q2 �0 Q. It follows that
P �0 Q. ⊓⊔

D EXPTIME-hardness

We reduce the halting problem for linearly-bounded alternating Turing machines
to the reachability of an absorbing state in our semantics, which implies the
hardness for Büchi objectives as well. We first explain the reduction for robust
timed games, i.e. in the adversarial semantics. At the end of this section, we
will adapt the reduction to almost-sure reachability in the MDP semantics. Note
that the EXPTIME-hardness of the stochastic game semantics follows from the
equivalence with the adversarial semantics.

D.1 Hardness of Robust Timed Games

The reduction follows that of [11] from non-alternating Turing machines that
shows the PSPACE-hardness of the problem when Perturbator can only perturb
delays. The encoding is quite standard for timed automata with the particularity
that it should allow the operations to be defined without the use of equality
guards. The alternation is introduced thanks to the ability of both players to
determine the successor locations.

An alternating Turing machine contains three types of states:
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– (disjunction) trans(q) = q′ ∨ q′′

– (conjunction) trans(q) = q′ ∧ q′′

– (instruction) trans(q) = (γ, γ′, dir, q′) where γ, γ′ ∈ {a, b} and dir ∈ {←,→}.
Such a transition reads a γ in the current cell, write a γ′ and follows direction
given by dir.

We do not recall the acceptance condition on disjunctive and conjunctive states,
and refer to [7]. We assume that there is one distinguished state halt where the
machine halts.

LetM be a linearly-bounded alternating Turing machine, and w0 be an input
toM. Let N be the bound on the tape ofM when simulating on input word w0

(N is linear in |w0|). We assume the alphabet is {a, b}, and we encode the content
of the i-th cell Ci ofM using a clock xi with the following convention: when the
module is entered, cell Ci contains an a whenever xi < 1, and it contains a b
whenever xi > 2.

To simulate a transition at a state q with trans(q) = (α, β, dir, q′) ofM, where
α, β ∈ {a, b} and dir ∈ {−1, 1}, we build a module as in Fig. 9 for every index i
such that both i and i+ dir lie between 1 and N . Along this module, after any
initial delay of duration u0 ∈ (2, 3), cell Cj contains a iff xj < 4, and it contains b
iff xj > 4. Transitions between pj and pj+1, for j 6= i, ensure preservation of
this encoding. Between pi and pi+1, the module checks that Ci = α (through
guard gα,i), and replace this content with β (through reset Yβ,i). This way, one
run through the module updates the content of the tape and the position of the
tape head according to the selected transition ofM.

q, i

p1 p2 . . . pi pi+1 . . . pN pN+1

q′, i+ dir

u:=0

2<u<3

u<3
u:=0

ga,1

x1:=0

gb,1

gα,i

Yβ,i

ga,N

xN :=0

gb,N

Fig. 9. Simulating states q with trans(q) = (α, β, dir, q′) where α, β ∈ {a, b}. Index i is
such that 1 ≤ i ≤ N and 1 ≤ i + dir ≤ N . Guards and resets are defined as follows:
ga,j is (xj < 4∧u < 3) and gb,j is (xj > 4∧u < 3), while Ya,j is {xj} and Yb,j is empty.
Notice that at any state pi, only one transition is enabled. So we assume that all edges
have distinct labels in this module.

A disjunctive state q with trans(q) = q′ ∨ q′′ is simulated by the following
module, which allows Controller to pick any successor.

A conjunctive state q with trans(q) = q′ ∧ q′′ is simulated by the following
module, which allows Perturbator to pick the successor.

We also need a simple normalization module which will make sure that the
clocks are bounded. Assume that an a in cell Cj is encoded with clock constraint
xj < 1, and a b with clock constraint 2 < xj < 4 when entering a state (q, i).
Then all above modules ensure that, when leaving the module, either xj < 1 (in
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q, i

q′, i

q′′, i
2<u<3

2<u<3,q′

2<u<3,q′′

Fig. 10. Simulating states q with trans(q) = q′ ∨ q′′. The edges leaving the state (q, i)
have distinct labels q′ and q′′ which correspond to Controller’s choice.

q, i

q′, i

q′′, i
2<u<3

2<u<3,q

2<u<3,q

Fig. 11. Simulating states q with trans(q) = q′ ∧ q′′. The edges leaving the state (q, i)
have the same label q. Thus Perturbator has full control on the successor location at
this state.

Fig. 9, in case cell Cj now contains an a), or either 2 < xj < 4 or 4 < xj < 7 (the
two possible cases for cell Cj to contain a b). It is easy to plug at the end of each
module another module, which ensures that 2 < xj < 4 when cell Cj contains
an a, and xj < 1 when cell Cj contains a b. Then we can plug at the end of this
second module another one which ensures that xj < 1 when cell Cj contains
an a, and 2 < xj < 4 when cell Cj contains a b, which is the initial encoding.
Using this trick, the constructed timed automata has only bounded clocks.

We complete the construction with an initialization module (encoding input w0

on the tape). We write A for this timed automaton and write halt for the halting
location (which is made a sink). The set {halt} is the Büchi condition.

We show the following lemma:

Lemma 34. Let s0 be the initial configuration of A. The following conditions
are equivalent:

1. M has a halting computation on w0;
2. Controller has a strategy in Gδ(A) to reach halt, for all δ < 1

4N ;

Proof. First assume that M has a halting computation on w0. We describe a
robust winning strategy for the Controller in A. We consider the simulation of
the state q and transition (α, β, dir, q′) ofM. Assume state (q, i) is entered with
some valuation v0 that properly encodes some content of the tape ofM: if cell Cj

contains an a, then v0(xj) < 1, and if cell Cj contains a b, then v0(xj) > 2.
We describe a strategy for Controller, and then pick a corresponding outcome
(with perturbations). The candidate strategy is as follows: leave (q, i) when
u = 2.5, and in each of the pj ’s, wait for δ time units, and then takes the next
feasible transition.

Under this strategy, and assuming that Perturbator perturbs by −δ ≤ ε0 ≤ δ
on transition leaving (q, i), and by −δ ≤ εj ≤ δ on transition leaving pj , the
valuation when arriving in pj is vj (resp. in (q′, i+ dir) is v′0) such that:
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– if i 6= j and cell Cj contains a b, or if i = j and β = b, then for every

1 ≤ k ≤ N + 1, vk(xj) = v0(xj) + 2.5 + (k − 1)δ +
∑k−1

h=0 εh;
– if i 6= j and cell Cj contains an a, or if i = j and β = a, then for every

1 ≤ k ≤ j, vk(xj) = v0(xj) + 2.5 + (k− 1)δ+
∑k−1

h=0 εh, vj+1(xj) = 0, and for

every j + 2 ≤ k ≤ N + 1, vk(xj) = (k − j − 1)δ +
∑k−1

h=j+1 εh.

Note that in all cases, since δ < 1
4N , if cell Cj contains an a, then vj+δ+εj |= ga,j ,

and if cell Cj contains a b, then vj + δ + εj |= gb,j . Note also that if either i 6= j
and cell Cj contains an a, or if i = j and β = a, then v′0(xj) < 1, and if either
i 6= j and cell Cj contains a b, or if i = j and β = b, then v′0(xj) > 2. This means
that whatever the perturbation, at the end of the module the clocks properly
encode the new content of the tape of M after the mentioned transition has
been taken. The same strategy is applied in the normalization modules; this
ensures that perturbations are not accumulated too much along disjunctive or
conjunctive states.

We can apply this strategy in every module simulating a transition of the
Turing machine. SinceM halts on w0, the halt state can be reached by following
this strategy.

Conversely, ifM does not halt on w0, then when playing without perturba-
tions, Controller cannot reach the halting state. In particular, Controller has no
robust strategy. ⊓⊔

D.2 Hardness of the MDP semantics

We consider the same reduction with a slight modification. Observe that if a
linearly bounded alternating Turing machineM accepts a word w0, then it accepts
in at most |M |2N steps. In other terms, this is the bound on the execution tree
witnessing the acceptance.

Now, in each module we constructed, the automaton spends at most 3 + 4N
time units, where 3 time units are spent for simulating a transition, and at most
4N for normalization of the encoding. Given an instance M,w0, let A

′ denote
the timed automaton obtained from A by adding a new clock t which is guarded
by t ≤ (3 + 4N)|M |2N at each transition, except on the self-loop of state halt.
We can now rewrite Lemma 34, as follow: the word w0 is accepted by M if, and
only if Controller has a strategy in Gδ(A

′) reaching halt for δ < 1
4N . Note also

that A′ can be constructed in polynomial time. In particular, the constants can
be encoded in polynomial space.

Because time progresses in each module of A′ the only infinite behaviors
are those reaching halt. The reduction for the MDP semantics follows. In fact,
if the Turing machine accepts, then Controllerhas a strategy ensuring that all
compatible runs reach halt in less than (3 + 4N)|M |2N time units, so this also
holds if perturbations and the non-determinism are probabilistic. Conversely, if
M does not accept, then for any Controllerstrategy, there exists a choice for the
conjunctions such that the machine does not end in halt after |M |2N steps; it
follows that with positive probability, halt is not reached before (3 + 4N)|M |2N

time units.

Lemma 35. Let s0 be the initial configuration of A. The following conditions
are equivalent:
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1. M has a halting computation on w0;
2. Controller has a strategy in GMDP

δ (A′) to reach halt almost surely, for all
δ < 1

4N ;

E Probabilistic Semantics

In this section, we formally define a probability space on timed automata runs
under given strategies, and prove our results in this setting. Our definitions follow
closely [2]. In particular, we define the probability measure on cylinders defined
by the same constrained symbolic paths (see below). This allows us to reuse the
proofs of [2] to derive the well-definedness of our measure.

We start by formally defining the stochastic game semantics, and then define
the MDP semantics as a particular case.

E.1 Probability Measures

Fix a timed automaton A. For any state s = (ℓ, ν), and set of edges e1 . . . en, we
will define a symbolic path as the set of runs that start at s and follow the edges
e1 . . . en. We will moreover consider a constraint C ⊆ R

n over the sequence of
delays of such runs. Formally,

πC(s, e1 . . . en) = {ρ = s
τ1,e1
−−−→ s1 −→ . . . −→ sn | ρ ∈ Runsf (A, s), (τi)i ∈ C}.

We define the cylinder of πC(s, e1 . . . en) as the set of infinite runs whose prefix
of length n belongs to πC(s, e1 . . . en).

Given a pair of strategies, we will define a probability measure based on
these cylinders. A Controller’s strategy σ is measurable if for any action a ∈ Act,
the subset of histories σ−1(R × {a}) is Lebesgue-measurable. A Perturbator’s
strategy τ is measurable if for any edge e, the subset of histories τ−1({e}) is
Lebesgue-measurable.

We will write the histories as sequences of the form sd1t1e1 . . . dntnen, where s
is the starting state, di the delay suggested by Controller, ti the perturbed delay
(such that |ti−di| ≤ δ, and ei the edge that is taken after the delay. Histories where
Controller has made a move will be denoted by sd1t1e1 . . . dntnen(dn+1, an+1).
Note that ei determines the action chosen by Controller along with the delay di.
For Controller’s strategy σ, we denote by σd(h) the delay prescribed at history h.

In the probabilistic setting, we will restrict to pairs of measurable strategies.
Let σ, τ be such a pair. Consider a sequence of edges ē = e1 . . . en, and denote
by ai the label of edge ei. We consider a sequence of nonnegative reals t1, . . . , tn,
and use the notation t̄i = (t1, . . . , ti). We also denote by hσ,τ

s,i = sd1t1e1 . . . ditiei,
the history of length i starting at s under σ, τ . We define for 1 ≤ i < n,

Iσ,τi (s, t̄i−1, ē) = σd(h
σ,τ
s,i−1)± δ

∩{ti | h
σ,τ
s,i ∈ σ−1(R× {ai+1})}

∩{ti | h
σ,τ
s,i · (di, ai) ∈ τ−1({ei+1})}

For i = n, we let Iσ,τn (s, t̄n, ē) = σd(h
σ,τ
s,n−1)± δ. This defines the set of perturbed

delays that can be observed at given history when Controller has strategy σ, such
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that the players’ next moves conform to the edge sequence ē. By hypothesis,
each set Iσ,τi (·) is measurable. 7 For any measurable constraint C, we define the
probability of a constrained symbolic path as follows.

P
σ,τ

GSG

δ
(A),s

(πC(s, e1 · · · en)) =
∫

t1∈I
σ,τ
1 (s,ē)

∫

t2∈I
σ,τ
2 (s,t̄1,ē)

∫

tn∈I
σ,τ
n (s,t̄n−1,ē)

1C
dt1
2δ ·

dt2
2δ · · · ·

dtn
2δ ,

We initialize by P
σ,τ

GSG

δ
(A),s

(πC(s)) = 1. This definition makes sure that we sum

over values for t1, . . . , tn which are compatible with the strategies, satisfies C,
and follow the symbolic path e1 . . . en. Note that each integral is well-defined
thanks to the measurability assumption on the strategies.

We define the MDP semantics by restricting to a unique strategy of Perturbator,
consisting, given a move (d, a) by Controller, in choosing all available edges with
label a with equal probability. We define the probability measure P

σ
GMDP

δ
(A),s

(·)

given state s, and Controller strategy σ.
Let us denote Ωs

A the σ-algebra generated by the cylinders.

Theorem 36. For any timed automaton A, state s, and pair of measurable strate-
gies σ, τ , Pσ,τ

GSG

δ
(A),s

and P
σ
GMDP

δ
(A),s

define a probability measure over (Runs(A, s), Ωs
A).

Proof. The proof follows step by step that of [2], see [3, pages 40-42]. ⊓⊔

Notice that the probability measure in the MDP semantics is a particular case of
that of the stochastic game semantics; so it suffices to show the correctness of
the latter.

Note that the set of Büchi-accepting runs is measurable since it can be written
as the intersection, for n > 0, of all cylinders that visit at least n times accepting
locations. Let us denote by φ the set of runs that are accepting for the given
Büchi condition. We say that a strategy σ for Controller is almost surely winning
if for any Perturbator’s strategy τ , Pσ,τ

GSG

δ
(A),s

(φ) = 1.

E.2 Stochastic Game Semantics: Characterization

Our main result on the stochastic game semantics is that considering proba-
bilistic perturbations rather than adversarial ones do not weaken Perturbator:
the characterization for the robust game semantics also holds in the stochastic
game semantics. The idea is the following. If condition CC holds, then we know
that Controller can win against adversarial perturbations, so he can also win
against Perturbator with probabilistic perturbations. The converse is more tricky:
we show that if CP holds, then under any Controllerstrategy, a non-aperiodic
cycle is repeated a large number of times, and almost surely the run is blocking;
thus finite, and fails to satisfy the Büchi condition.

We will now formalize these ideas and give the full proof. Let us first recall
some definitions: We define ε-far runs and show that such runs are blocking along
non-aperiodic cycles.

7 In fact, if Cyl(hσ,τ
s,i−1) denotes all histories extending h

σ,τ
s,i−1, then we have I

σ,τ
i (·) =

pi
(

Cyl(hσ,τ
s,i−1) ∩ σ−1(R× {ai+1}

)

, where pi denotes the canonical projection from
R

n to the i-th component.
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Let us call a valuation v ε-far if v + [−ε, ε] ⊆ [v]. A run is ε-far if all delays
end in ε-far valuations. We show that after any Controller’s move the perturbed
delay is ε-far with nonzero probability.

Lemma 37. Given any δ > 0, and any timed automaton with C clocks, let
ε = δ

4(C+1) . For any state (ℓ, ν), and Controller’s valid move (d, a), there exists

an interval I ⊆ [d− δ, d+ δ] such that |I| ≥ ε, and for all d′ ∈ I, ν + d′ is ε-far.

Proof. After any delay ν
d
−→ ν′, d ≥ δ, chosen by Controller, consider the regions

spanned by the set ν′ + [0, δ]. It is easy to see that this set intersects at most
|C| + 1 different regions (See also [5, Lemma 6]), all of which must satisfy the
guard by definition of the game. So some region r satisfies ν′ + [α, β] ⊆ r, for
some 0 ≤ α < β ≤ δ with β − α ≥ δ

|C|+1 . Thus, [α, β] contains an interval with

desired properties. ⊓⊔

We say that a run is ε-far if all perturbed delays end in ε-far valuations. It
was shown in [11] that these runs along non-aperiodic cycles necessarily lead to a
deadlock.

Lemma 38 ([11, Section 5]). For any timed automaton A, let ε be as in
Lemma 37. There exists n > 0 such that along any non-aperiodic cycle, there is
no ε-far run of length n.

Before we prove Theorem 13, observe that the strategy σ derived from
condition CC is measurable since it has finite-memory and described via shrunk
DBMs. Similarly, the strategy τ derived from CP is also measurable.

Now the idea behind the proof in our case is to show that along any infinite
run, almost-surely, some n consecutive delays will be ε-far.

Theorem 13. It is EXPTIME-complete to decide whether for some δ > 0,
Controller has a strategy achieving a given Büchi objective almost surely in the
stochastic game semantics. Moreover, if CC holds then Controller wins almost-
surely; if CP holds then Perturbator wins almost-surely.

Proof. We first show that if CC holds then Controller wins almost-surely. This is a
straightforward corollary of the fact that if CC holds, then there exists a strategy
σ that wins against any strategy of Perturbator, this in particular includes the
strategies of Perturbator where the perturbations are chosen at random.

Let us show that if CP holds then Perturbator wins almost-surely. In order to
obtain the desired result, we first show that under CP , for any choice of strategies
(σ, τ) any maximal play that is infinite and consistent with the couple (σ, τ) is
eventually ε-far for n steps with n > 0.

Denote by Ak,n the set of plays that are are either of length less than k+n and
cannot be extended or of length k+ n and are ε-far between steps k+ 1 . . . k+ n.
Note the ε-far requirement can be written as a set of constraints over n variables,
therefore we can express this set of plays by set of symbolic paths. Hence this set
is measurable. Moreover, because k, n are both finite and at each step the choice
of ε is independent of the current prefix of the play it follows that:

∀σ, ∀τ, P
σ,τ

GSG

δ
(A),s

(Ak,n) ≥

(

δ

4(C + 1)

)n

.
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It follows that

∀σ, ∀τ, P
σ,τ

GSG

δ
(A),s

(∃k > 0, Ak,n) = 1 .

We now consider the strategy τ for Perturbator given by CP under which all cycles
are non-aperiodic. It follows from Lemma 38 that there is no infinite run under τ ,
so P

σ,τ

GSG

δ
(A),s

(φ | ∃k > 0, Ak,n) = 0. Therefore, for any strategy σ for Controller

we have:

P
σ,τ

GSG

δ
(A),s

(φ) = P
σ,τ

GSG

δ
(A),s

(φ | ∃k > 0, Ak,n)P
σ,τ

GSG

δ
(A),s

(∃k > 0, Ak,n)

+ P
σ,τ

GSG

δ
(A),s

(φ | ∀k > 0, ¬Ak,n)(1− P
σ,τ

GSG

δ
(A),A

(∃k > 0, Ak,n))

= P
σ,τ

GSG

δ
(A),s

(φ | ∀k > 0,¬Ak,n)(1− P
GSG

δ (A),σ,τ
s (∃k > 0, Ak,n)) = 0 .

⊓⊔

E.3 MDP semantics: Characterization

In the MDP semantics, for given δ > 0, at each step, Controller picks a delay d ≥ δ,
and an action a such that for every edge e = (ℓ, g, a, R, ℓ′) such that ν + d |= g,
we have ν + d+ ε |= g for all ε ∈ [−δ, δ], and there exists at least one such edge
e. Then, a perturbation ε ∈ [−δ, δ], and an edge satisfying the above conditions
are chosen independently and uniformly at random. Thus in this semantics,
Controller’s strategy resolves all non-determinism, and defines a random process.

For a given timed Büchi automaton, denote φ the set of accepting runs. The
almost-sure winning problem under the MDP semantics consists in deciding the
following equation:

∃δ > 0, ∃σ, P
σ
s0
(φ) = 1. (3)

We will present a decidable characterization on the region graph R(A). First
we define formally what an MDP is.

Definition 39. An MDP is a tuple (S,A, P ), where S is a finite set of states,
A is a finite set of actions, and P is the following mapping P : S ×A→ dist(S)
where dist(S) is the set of probability distributions of S.

We will see R(A) as an MDP by assigning uniform probability distributions to
all available actions (r′, a) at each state (ℓ, r). We then consider the deterministic
Büchi automaton B of Lemma 20 which recognizes infinite paths in the region
automaton containing infinitely many disjoint factors with complete FOGs.
We consider the direct product of the MDP R(A) with the (deterministic)
automaton B, which is again a finite-state MDP, which we denote by G. Let us
denote by FB the set of states of G whose projections to B are accepting. By an
abuse of notation, we still denote by φ the set of states of G whose projections
to R(A) are accepting for φ.

A run in an MDP is infinite sequence of states, a history is a finite run, and
a strategy is a mapping that assigns to every history an action. Once an initial
state s and a strategy σ are chosen in an MDP M , one can define a unique
measure over the runs of M denoted P

σ
M (c.f. [9]).
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Algorithm for almost-sure winning We are now ready to state two equivalent
conditions on R(A), which we will then prove to characterize almost sure Büchi
winning condition for the MDP semantics. The first condition C1 corresponds
to W ′ in the core of the paper; however, we also need to introduce the equivalent
condition C2 in order to carry out the proofs.

Lemma 40. The following conditions are equivalent:

(C1) there exists a finite-memory strategy σ for R(A) such that every reachable
cycle in R(A)[σ] is aperiodic, and P

σ
R(A)(φ) = 1.

(C2) there exists a finite memory strategy σ for G such that Büchi condition FB

is surely satisfied, and P
σ
G(φ) = 1.

Proof. We start by showing that C1 =⇒ C2. Let σ be the strategy defined by
C1. We denote by σ̃ the strategy of Controller in G defined for any finite prefix h
of G by

σ̃(h) = σ(f(h)),

where f is the projection of h over the states of R(A). Since B does not restrict
the moves of R(A) and P

σ
R(A)(φ) = 1 it follows that Pσ̃

G(φ) = 1.

We show that under σ̃, FB is satisfied surely. Let π be an infinite run over
G[σ̃] and let ρ = f(π) be the projection of π over R(A)[σ]. As in the proof of
Lemma 3, because all cycles of R(A)[σ] are aperiodic, by Lemma 7, ρ contains
infinitely many factors with complete FOGs. Furthermore, any path that contains
a factor with a complete FOG has a complete FOG too. By construction of B, it
follows that B accepts ρ.

We show now that C2 =⇒ C1. Assume C2 and let σ be the strategy witnessing
C2. We define the strategy σ̂ for every finite prefix h over the states of R(A) as
follows:

σ̂(h) = σ(h′),

where h′ = f−1(h), which is well defined since B is deterministic. Again since σ
satisfies φ almost-surely in G and the fact that B does not restrict the actions of
R(A), it follows that Pσ̂

R(A)(φ) = 1.

It remains to show that under σ̂, every reachable cycle in R(A)[σ̂] is aperiodic.
Assume towards a contradiction the existence of a reachable non-aperiodic cycle
in R(A)[σ̂] and let ρ0ρ

ω be a run in R(A) compatible with σ̂ such that γ(ρ) is
non-aperiodic. Then, there exists an infinite run π0π

ω in G compatible with σ
such that f(π0) = ρ and f(π) = ρ. We show that π0π

ω is not accepted by B.
In fact, if a complete FOG appears in this word, then any longer suffix has a
complete FOG, which is not the case since for each n >, π0π

n has a non-aperiodic
FOG. ⊓⊔

Before proving that these conditions characterize almost-sure winning in the
MDP semantics, let us prove that they are decidable in exponential time, thus
proving Lemma 16. For this, we prove a more general result showing how to
compute winning states and strategies in MDPs given with one almost-sure and
one sure Büchi objectives.

For an MDP M , and a subset of states S′ ⊆ S, we say that S′ induces a
sub-MDP if the MDP M restricted to states of S′ is an MDP. In this case, we
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abuse of notation and say that S′ is a sub-MDP. We also say that a strategy σ is
compatible with a sub-MDP S′ if, when started in any state of S′, all actions
prescribed by σ surely lead to states in S′.

Lemma 41. Let M be any MDP with state space S, φ1, φ2 Büchi objectives. Let
Q ⊆ S be the largest sub-MDP satisfying the following two conditions:

i) for every q ∈ Q there exists a strategy σ1 compatible with Q such that φ1 is
satisfied surely in Q,

ii) for every q ∈ Q there exists a strategy σ2 compatible with Q such that φ2 is
satisfied almost-surely in Q.

Then Q is the set of all states of M from which there exists a strategy σ surely
satisfying φ1, and almost-surely satisfying φ2. Moreover, strategies with linear
memory are sufficient, and one can compute Q, and a winning strategy in
polynomial time.

Proof. Note that both strategies σ1 and σ2 can be assumed to be memoryless.
For any state q ∈ Q, let σ be the strategy defined as follows:

– apply σ1 until a state in φ1 is visited,
– apply σ2 for |S| steps,
– restart from scratch.

Let us show that σ satisfies φ1 surely and φ2 almost-surely from any state
in Q. We denote by Fi the Büchi states associated with the condition φi for
i ∈ {1, 2}. We start by showing that φ1 is satisfied surely. Because i) holds it
follows that from any state of q ∈ Q, any play compatible with σ1 visits a state
in F1 ∩Q in at most |S| steps. Since σ switches back to σ1 after a finite number
of time it follows that a state in F1 ∩Q is visited once every 2|S| steps. It follows
that φ1 is surely satisfied.

We show that φ2 is satisfied almost-surely. Denote by A the set of runs that
start from a state in Q and visits a state in F2∩Q after the |S| first steps. Thanks

to ii) we know that under σ2 we have: Pσ2

G (A) ≥ p
|S|
min , where pmin denotes the

least positive probability in M . Now since p
|S|
min is positive and since σ plays

according to σ2 for |S| steps infinitely many times it follows that in almost all
runs consistent with σ a state if F2 is visited infinitely many times. Thus φ2 is
satisfied almost-surely. Now notice that any set of states satisfying φ1 surely and
φ2 almost-surely satisfies i) and ii), thus Q is the set of all states in M satisfying
φ1 surely and φ2 almost-surely.

We exhibit now a procedure that computes the largest set of states satisfying
i) and ii). For any subset of states S′ ⊆ S inducing a sub-MDP, we write
Sure(S′, φ1) to denote an algorithm computing the set of sure winning states
for the objective φ1. We also write AlmostSure(S′, φ2) to denote an algorithm
computing set of almost-sure winning states for the objective φ2. Note that
both Sure(·, φ1) and AlmostSure(·, φ2) always return sets of states that induce
sub-MDPs. We define W1 = S, and Wi = AlmostSure(Sure(Wi−1, φ1), φ2). Define
W ∗ as the fixpoint of this sequence.

Let us show that from any state in W ∗ there exists a strategy σ surely
satisfying φ1, and almost-surely satisfying φ2. Notice that by definition of
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AlmostSure(·, φ2) and Sure(·, φ2) we know that AlmostSure(S′, φ2) ⊆ S′ and
Sure(S′, φ2) ⊆ S′ for any sub-MDP S′. It follows that AlmostSure(W ∗, φ2) = W ∗

and Sure(W ∗, φ1) = W ∗, thus W ∗ satisfies i) and ii) and from the first part of
the proof we obtain that all states in W ∗ satisfy φ1 surely and φ2 almost-surely.
This shows the correction of our procedure.

We now need to prove that W ∗ contains all states from which there exists a
strategy σ surely satisfying φ1, and almost-surely satisfying φ2. We show that
any state outside W ∗ is either not surely winning with respect to φ1 or not
almost-surely winning with respect to φ2.

We prove by induction on i > 0 that all states outside Wi are losing. This
is trivial for i = 1 since W1 = S. Let s be any state not in W ∗, and let
1 < i = min {j > 0 | s 6∈Wj}. We can write then that s ∈Wi−1 and s 6∈Wi, this
implies that either a) : s 6∈ Sure(Wi−1, φ1) or that b) : (s ∈ Sure(Wi−1, φ1)) ∧
(s 6∈ AlmostSure(Wi−1, φ2)). If a) holds then for any strategy σ, either σ is not
compatible with Wi when started from s, which means it leaves Wi, and it is
losing by induction; or σ is compatible with Wi and there exists an infinite run
consistent with σ in the sub-MDP Wi−1 and starting at s that is not surely
winning with respect to φ1. If b) holds, then any strategy σ compatible with
the sub-MDP Sure(Wi−1, φ1) is not almost-surely winning with respect to φ2.
Since strategies that are not compatible with Sure(Wi−1, φ1) are losing as we
showed in the case a), we get that no strategy from s satisfies φ1 surely and φ2

almost-surely.
Hence, W ∗ is exactly the set of states from which some strategy satisfies φ1

surely and φ2 almost surely.
Last, W ∗ can be computed in polynomial time since both AlmostSure(·, φ2)

and Sure(·, φ2) can be computed in polynomial time and at each iteration we
have |Wi| < |Wi−1|. ⊓⊔

It follows that since R(A) has exponential size, the conditions of Lemma 40
can be decided in exponential time, and exponential-memory strategies exists
in (R(A),W ′), proving Lemma 16.

Proof of Correctness It remains to prove that these conditions are equivalent
with almost-sure winning in the MDP semantics, proving Proposition 15.

We first prove Lemma 42 which allows one to lift a strategy in the MDP
semantics to R(A).

Lemma 42. Let σ be any strategy in GMDP

δ (A). Let X be a measurable subset
of Runs(A, s) with positive probability. There exists a strategy σ̂ in R(A) such
that for any path h of R(A), Pσ̂

R(A),v0
(h) = P

σ
GMDP

δ
(A),s0

(proj−1(h) | X), where v0

(resp. s0) is the initial state of R(A) (resp. A).

Proof (of Lemma 42). For any history h, we define the strategy σ̂ by

σ̂((r, a) | h) = P
σ
A,s0

(proj−1(h(r, a)) | proj−1(h) ∩A),

if Pσ
A,s0

(h ∩A) > 0 and arbitrarily otherwise. We show the required property by
induction n ≥ 1, the length of h.

The base case n = 1 is trivial since P
σ̂
R(A),r0

(r) = P
σ
A,s0

(proj−1(r) | A), where

the value is 1 if r = r0 and 0 otherwise.
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Consider the property holds up to length n. Consider a path h(r, a) of R(A)
of length n+ 1. We write

P
σ̂
R(A),r0

(h(r, a)) = P
σ̂
R(A),r0

(h) · σ̂((r, a) | h)

= P
σ
A,s0

(proj−1(h) | A) · σ̂((r, a) | h)

Here the second line is by induction. Now, if Pσ
A,s0

(proj−1(h) ∩A) = 0, then we

also have P
σ
A,s0

(proj−1(h) | A) = 0. It follows that Pσ̂
R(A),r0

(h(r, a)) = 0 but also

P
σ
A,s0

(proj−1(h(r, a))) = 0, as required. Assuming P
σ
A,s0

(proj−1(h) ∩ A) > 0, we
get

P
σ̂
R(A),r0

(h(r, a)) = P
σ
A,s0

(proj−1(h) | A) · Pσ
A,s0

(proj−1(h(r, a)) | proj−1(h) ∩A)

= P
σ
A,s0

(proj−1(h(r, a)) | A),

which concludes the proof. ⊓⊔

Last, we need to construct a set of paths with nonzero measure which contain
infinitely many ε-far factors. We will then use ideas similar to the stochastic
game semantics case, once we condition on this event.

Lemma 43. There exists a subset Z of Runs(A, s0) and some η > 0 such that
under any strategy σ, P

σ
GMDP

δ
(A),s0

(Z) ≥ η. In addition, for every integer N1,

there exists N2 ≥ N1 such that for any run ρ ∈ Z, the run is ε-far during N
consecutive steps between positions N1 and N2.

Proof. Assuming the timed automaton A has C clocks, we let ε = δ
4(C+1) . In

any configuration (ℓ, ν) reached when playing according to Controller’s strategy
σ, there exists an interval I ⊆ [−δ, δ] such that |I| ≥ ε, and any perturbation d′

picked in I is such that the resulting valuation ν + d′ is ε-far. As a consequence,

with probability at least |I|
2δ ≥

1
8(C+1) > 0, Perturbator picks a delay resulting in

an ε-far valuation. Observe also that the selections of perturbations constitute
independent events.

We recall the following standard mathematical property on infinite products.

Lemma 44. Let us fix some real number α in the open interval (0, 1). We
consider the infinite product

∏∞
j=1(1− αj) which is known to be convergent to

some number f(α) in the open interval (0, 1).

Let us fix some positive natural integer N . Given an integer j ≥ 1, we
consider the following event Xj : the perturbations selected by Perturbator at
steps j ∗N +1, j ∗N +2, . . . , (j+1)∗N are such that the resulting valuations are
ε-far. By the above observations, the event Xj has probability at least ( 1

8(C+1) )
N

which is strictly positive, and the events (Xj)j are iid.
We let η = ( 1

8(C+1) )
N .

We define an increasing sequence of natural numbers (nk)k∈N as follows

n0 = 0 nk = nk−1 + k

For all k ∈ N>0, we define the event Yk =
∨nk

j=nk−1+1 Xj . Observe that as

(Xj)j are iid, we have that (Yk)k are independent events as the intervals of
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natural numbers [nk−1 + 1, nk] are disjoint for distinct values of k. The following
computations give:

P
σ(Yk) = 1− P

σ(¬Yk)
= 1− P

σ(
∧nk

j=nk−1+1 ¬Xj)

= 1−
∏nk

j=nk−1+1 P
σ(¬Xj)

= 1−
∏nk

j=nk−1+1(1− P
σ(Xj))

= 1− (1− P
σ(X1))

k

≥ 1− (1− η)k

Then, we consider the event Z =
∧

k≥1 Yk. As events (Yk)k are independent,
we can easily prove, using Lemma 44:

P
σ(Z) =

∞
∏

k=1

P
σ(Yk) ≥

∞
∏

k=1

(1− (1− η)k) = f(1− η) > 0

⊓⊔

Proof (of Proposition 15). We first suppose that Controller wins the abstract
game (R(A),W ′). By Lemma 16, there exists a finite-memory winning strategy
σ̂. By definition ofW ′, every outcome of R(A)[σ̂] contains infinitely many factors
whose FOG is complete. Because condition C1 is satisfied, this entails that every
reachable cycle in R(A)[σ̂] has an aperiodic FOG. Then, we apply the results
of Section 5 to derive a positive value of δ and a concrete strategy σ which
surely ensures infinite runs, that is, against any choice of the perturbations and
the edges (in fact, condition CC holds if we consider a trivial Büchi condition).
However, we still need to show that σ satisfies φ almost surely. By construction,
the strategy σ ensures that for any path h of R(A) compatible with σ̂, all runs
of Gδ(A) compatible with σ are in proj−1(h), regardless whether the perturbations
are chosen randomly or adversarially. It follows that, in the MDP semantics, for
any path h, Pσ

GMDP

δ
(A),s0

(proj−1(h)) = P
σ
R(A),v0

(h). Now, because σ̂ almost surely

satisfies φ in R(A), strategy σ almost surely satisfies φ in GMDP

δ (A).
Conversely, suppose that Controller loses the game (R(A),W ′). We proceed

by contradiction, and suppose that there exists a winning strategy σ in the
concrete game GMDP

δ (A). Using Lemmas 42 and 43, we build a strategy σ̂ from
σ and Z. The property ensured by Lemma 42 and the fact that σ satisfies φ
almost-surely allows to show that σ̂ also does (in R(A)). As Controller loses
the game (R(A),W ′), this entails that there exist an infinite execution w in
R(A)[σ] and a bound N0 after which no factor of w has a complete FOG. Let
N ′ be the integer given by Lemma 43 and N0, and consider the prefix wN ′ of
w of length N ′. As Z has positive measure and by Lemma 42, we have that
P
σ
GMDP

δ
(A),s0

(proj−1(wN ′)∩Z) > 0. Moreover, as shown in Section 5, any run ε-far

during N consecutive steps along non-aperiodic cycles is necessarily blocking.
Thus, with positive probability, strategy σ is losing, contradiction. ⊓⊔

Algorithm for limit-sure winning We now show that the characterization
for the limit-sure winning is correct, namely: Controller wins limit-surely in the
MDP semantics iff Controller can satisfy W ′′ in R(A).
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First notice that for any MDP, the set of states satisfying a reachability
objective almost-surely can be computed in polynomial time. Thus, Lemma 18
follows.

The proof of Proposition 17 uses the notion of end component. An end-
component of an MDP is a strongly connected sub-MDP (see [6]). It is well-
known that there are finitely many end-components, and that almost-surely,
the set of states and actions seen infinitely often defines an end-component.
Because the union of two end-components with non-empty intersection is again
an end-component, one can define maximal end-components (MECs).

For any MDP M , and MEC D, we say that a run ρ enters D, if there
exists i > 0 such that ρi ∈ D. We say that ρ leaves D, if there exists j > i such
that ρj 6∈ D. A MEC D is bottom if no other MEC D′ is reachable from D. It
is easy to see that in all MDPs, there exists at least one bottom MEC, and for
all states s, and strategies σ, runs that leave all non-bottom MECs they enter
eventually enter a bottom MEC almost surely.

Proof (of Proposition 17). We first show that if Controller satisfies W ′′ in R(A)
from r0 then he wins in the MDP semantics limit-surely. Suppose that Controller
wins the game (R(A),W ′′). Then there exists a memoryless strategy σ̂1 such
that any play compatible with σ in R(A) that starts is r0 reaches almost-surely
the set Win′, and a finite-memory strategy σ̂2 satisfying W ′ from states in Win′.

Let ε > 0. There exists an integer N such that at step N , with probability at
least 1− ε, the N -th step of any play consistent with σ̂1 and starting in r0 is in
the set Win′. Consider the unfolding of R(A)[σ̂1] from the initial vertex of R(A),
and of depth N . As we are interested in paths of finite length, one can compute
shrinking matrices and an upper bound on δ such that the resulting shrunk zones
are non-empty (see Lemma 10). We can thus derive a concrete strategy σ1 along
this finite unfolding, which preserves the probabilities of σ̂1. In particular, with
probability at least 1− ε, the runs compatible with σ1 have reached the set Win′

after at most N steps. Using the construction done for the almost-sure case, we
know that there exists an upper bound on δ and a concrete strategy σ2 which
wins almost-surely the game GMDP

δ (A) w.r.t. the Büchi objective from states in
Win′. This yields the desired implication.

Let us assume that Controller wins in the MDP semantics limit-surely, and
prove that he satisfies W ′′ in R(A) from r0. By contradiction, suppose that it
is not the case. Consider the set of states of the MDP R(A) from which there
is no path to the set Win′, and denote this set Lose′ (observe that this set is
absorbing: once entered, one can not leave it). Because R(A) is a finite MDP,
and W ′′ is not satisfied almost surely from v0, there exists ν > 0 such that for
every strategy σ̂, the set Lose′ is reached with probability at least ν from v0.

Consider ε < ν, and fix some δ > 0 and some strategy σ for GMDP

δ (A) such
that Pσ

GMDP

δ
(A),s0

(φ) ≥ 1−ε, which exist by assumption. Let σ̂ given by Lemma 42.

By the above remark, it follows that P
σ
GMDP

δ
(A),v0

(proj−1(F Lose’)) ≥ ν where

the property F Lose’ means that a play compatible with σ̂ eventually enters the
set Lose’.

We will show that the set Lose’ is almost-surely losing w.r.t. objective φ
(recall that φ is a Büchi objective with accepting states B) in the MDP semantics,
which yields to a contradiction.
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Let us distinguish the end-components inside Lose’. We will define events
which lead to losing unless the end-component is left. For any MEC e,

1. if e ∩ B = ∅, then any run ρ ∈ proj−1(F Lose’) which enters e, if ρ stays
forever inside e, then ρ is losing w.r.t. objective φ. Let us call the set of such
runs Le. Thus, when a run enters e, either Le occurs, or e is eventually left.

2. If e ∩ B 6= ∅, then we define a set of runs Ze which are losing. We recall
that the second objective in the condition W ′ (abstract MDP in R(A)) is to
ensure that every outcome contains infinitely many disjoint factors whose
FOG is complete. This can be understood as a Büchi objective in the product
MDP R(A) ‖ B (the deterministic Büchi automaton B has been defined
before, see Lemma 20). We denote this objective by the set of states B′.
Let us denote by Lose(GF B’) the set of states in R(A) that are losing for
Controller in the two-player game (R(A) is now viewed as two-player game
and not as an MDP) restricted to e w.r.t. objective GF B′. Runs that stay
infinitely in e must visit infinitely often states of e∩Lose(GF B’) 6= ∅ since
otherwise we can show that e ⊆Win′ (combine σ̂ with a strategy winning
the objective GF B’, see Lemma 41).
Let q be such a state. As the above objective is considered in a two-player
finite-state (Büchi) game, q is losing implies that Perturbator has a finite-
memory strategy τ to ensure Controller is losing, i.e. a finite lasso whose
cycle contains no state in B′. In addition, the memory needed is bounded in
terms of the size of R(A) ‖ B. We can show as we did before that the cycle
reached is actually non-aperiodic. We can thus exhibit an integer Nf such
that the following this lasso during Nf steps is impossible if in addition the
valuations are always α-far, with α = δ

4(C+1) .

Consider now runs in the MDP semantics compatible with σ which belong to
proj−1(F Lose’). Now, when some state in proj−1(q) is reached, unless e is
left before Nf steps, with probability at least pNf , the (stochastic) resolutions
of non-determinism are compatible with τ , and the run is α-far for Nf steps.8

Let us call Ze the set of such runs. We saw earlier that all runs in Ze are
losing (c.f. proof of Proposition 15). Since states of Lose(GF B’) are visited
infinitely often, it follows that when any run enters e, either Ze occurs or e
is eventually left.

It follows from the above case by case analysis that non-losing runs almost
surely reach bottom end-components. But because a bottom end-component
cannot be left, such runs are also losing.

This shows that any run entering Lose’ is almost surely losing, as required
and yield the completeness of the characterization. ⊓⊔
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