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ABSTRACT

Only a few studies have shown positive impacts of ecological compensation on species dynamics affected by 
human activities. We argue that this is due to inappropriate methods used to forecast required compensation in 
environmental impact assessments. These assessments are mostly descriptive and only valid at limited spatial and 
temporal scales. However, habitat suitability models developed to predict the impacts of environmental changes 
on potential species’ distributions should provide rigorous science-based tools for compensation planning. 
Here we describe the two main classes of predictive models: correlative models and individual-based mechanistic 
models. We show how these models can be used alone or synoptically to improve compensation planning. While 
correlative models are easier to implement, they tend to ignore underlying ecological processes and lack 
accuracy. On the contrary, individual-based mechanistic models can integrate biological interactions, dispersal 
ability and adaptation. Moreover, among mechanistic models, those considering animal energy balance are 
particularly efficient at predicting the impact of foraging habitat loss. However, mechanistic models require more 
field data compared to correlative models. Hence we present two approaches which com-bine both methods for 
compensation planning, especially in relation to the spatial scale considered. We show how the availability of 
biological databases and software enabling fast and accurate population projections could be advantageously 
used to assess ecological compensation requirement efficiently in environmental impact assessments.

Key words: animal spatial dynamics, biodiversity, compensation, conservation, energy expenditure, habitat loss, 
mitigation, offsets, stakeholders.
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I. INTRODUCTION

It is estimated that 83% of all land surface has been
affected by human activities (Sanderson et al., 2002).
Change in land use is an important driver of biodiver-
sity loss, and probably the most severe within terrestrial
ecosystems (Sala et al., 2000). Land-use change detri-
mental to biodiversity is mainly caused by land clearing
for agriculture and land transformation to infrastruc-
ture building such as urban and industrial sprawl, high-
way, harbour or airport building. In most regions of
the world, policies have been implemented to balance
anthropogenic alteration of biodiversity with land con-
servation or restoration in order to reach an objective of
‘no net loss’ of biodiversity, and if possible of ‘net gain’
(Slootweg et al., 2010).
Impacts of development projects affecting land use

are generally subject to Environmental Impact Assess-
ments (EIAs).Mitigation is at the core of the EIA process
(Wood, 2003) and is generally implemented sequen-
tially, first with attempts to avoid negative impacts, fol-
lowed by minimization of degradation, rectification of
negative impacts and, finally, compensation for unavoid-
able loss. Compensation consists in creating offset areas
by restoring, enhancing, and sometimes preserving
habitats harbouring equivalent biodiversity elsewhere.
Approximately 16000 mitigation programs (or EIAs)
are conducted across the European Union each year
(GHK for DG Environment, 2010) and the US mar-
ket for environmental mitigation is worth hundreds of
millions of US dollars (Burgin, 2010). Environmental
policy decisions widely influence natural systems and
compensation could be a major avenue for limiting
the negative impacts of human action on biodiversity
(Kiesecker et al., 2010), even though the very efficiency
of biodiversity trading may raise skepticism (e.g. Walker
et al., 2009).
The achievement of a ‘no net loss’ objective depends

on a sound estimation of project impacts upon species,
of the offset required to compensate for the predicted
loss, and of the restoration potential of the compensa-
tion area. This implies quantifying the size of the impact
and of the need for compensation. The exchangeability
between the two then is generally mediated by one or
several metrics (or currencies), such as the surface of
habitat affected by the project, the number of species
and the size of the impacted populations, or any popu-
lation traits that may be affected, such as body condition

or survival probability at different life stages. Estimating
how changes in habitat suitability will alter or improve
the status of targeted populations is thus at the heart of
the offset mechanism.
In principle, habitat suitability models (HSMs) devel-

oped to predict species distributions in the context
of environmental change allow an assessment of such
metrics in wild populations. HSMs have been devel-
oped along two main approaches. First, phenomeno-
logical or correlative models use species occurrences
to infer their environmental requirements and to iden-
tify suitable habitats. These models are usually applied
from worldwide- to landscape-scale predictions. Sec-
ond, mechanistic models establish a causal relationship
between species’ distributions and their environments.
This modelling approach is most often applied from
landscape to local scale (see Pearson & Dawson, 2003,
for definition of landscape domain). In theory, correla-
tive, mechanistic or hybrid HSMs could all offer a rele-
vant contribution to conservation and decision-making
within the process of ecological compensation. In prac-
tice however, despite major scientific achievements and
prestigious publications, one is often left wondering
how predictive modelling is actually being transferred
into environmental policy and practice (Braunisch et al.,
2012). As Meffe & Viederman (1995) pointed out,
advances in conservation biology research are worthless
if they are not translated into effective policy.
In this paper, we argue that HSMs could offer a way

to ground ecological compensation into a robust scien-
tific approach allowing a better-quantified assessment
of what may be impacted and of the need for com-
pensation. We thereby describe the relative pay-offs of
correlative and mechanistic approaches and propose to
combine these two classes of models to help implement
efficient compensation measures.

II. ECOLOGICAL COMPENSATION: WHERE IS
SCIENCE?

Ecological compensation generally requires metrics to
define reference points (e.g. surface areas of habitats,
number of species or ecological functions impacted),
and to identify suitable replacement sites. Assessment
methods to estimate impacts are multiple. For instance,
a dozen assessmentmethods exist for wetlandmitigation
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alone (Bartoldus, 1999). Most of these methods aim at 
classifying the level of impacts on biodiversity, depend-
ing on the conservation status of the species impacted, 
the nature of the impact, the surface impacted, the 
species’ colonization ability, the ecological and geo-
graphical equivalence, and more rarely the uncertainty 
in the effectiveness of restoration actions. Offset ratios 
are then defined t o a chieve an appropriate exchange 
regarding the metrics used and to ensure no net loss in 
the long term. Ratios are set to reflect the number of 
offset units that must be provided to compensate one 
unit of loss at the project site (McKenney & Kiesecker, 
2010). For example, a ratio of 3:1 means that 3 ha of 
wetland must be restored for each ha of natural wetland 
impacted or lost. An abundant literature discusses how 
ratios should be defined a nd u sed ( see, f or instance, 
Robb, 2002; Moilanen et al., 2009), yet no agreement has 
been reached upon a standardized approach. In prac-
tice, ratios are often the result of negotiation between 
regional policy makers, project managers and conserva-
tionists.
Synthetic ecological indicators were proposed as a 

standardized approach to assess biodiversity richness in 
habitats where a project is planned, and then define 
required ratios to compensate for biodiversity loss. 
These indicators describe ecosystems in simple terms, 
while being sensitive to ecosystem functioning (Grif-
fith, 1997). They can be based on (i) the relative abun-
dance of species in a community, reflecting i ts even-
ness, richness or diversity (e.g. Ludwig & Reynolds, 
1988; Legendre & Legendre, 1998), (ii) the complex-
ity of an ecosystem via the number of trophic lev-
els (e.g. Kantoussan et al., 2010), (iii) the naturalness 
level of a patch as measured by comparing it with a 
long-undisturbed stand of the same plant community 
(Parkes, Newell & Cheal, 2003), or (iv) indicators based 
on remote-sensing, as for chlorophyll concentration 
reflecting biomass (e.g. Platt & Sathyendranath, 2008).
For example, levels of impacts and ratios chosen 

to compensate for the destruction of a 1800 ha 
wetland intended to become a new airport at 
Notre-Dame-des-Landes (near Nantes, Western France) 
were provided by experts of the Environmental Agency 
instructed to prepare the EIA. Levels of impact on a 1 ha 
surface area were converted to scores of compensation 
needs (e.g. major impact: score = 2 compensation units; 
moderate impact: score = 1; minor impact: score = 0.5) 
and were matched to units of response to the need 
for compensation (e.g. restoration of 1 ha of habi-
tat = 2 units of response to the compensation need; 
improvement of an already existing habitat = 1 unit;  
and so on) (Courtejoie, 2014). Such ratios were said 
to depend on the ecological importance of the patch 
of impacted wetland, with respect to its hydrological 
function and its biodiversity. However, no scientific 
method was provided to assess the real impact on biodi-
versity, in particular in terms of reduction in population

sizes of the species considered. Moreover, target sites
where restoration was planned were chosen by satellite
imagery crossing data from hydrographic systems and
topography, independently from any prospective mod-
elling of the potential carrying capacity of these sites
for impacted species.
Overall, the few studies that monitored the out-

come of compensation efforts demonstrated consider-
able variability in their success, and substantial room for
improvement. A recent review showed the weak perfor-
mance of wetland restoration both in terms of biodi-
versity and functionality (Moreno-Mateos et al., 2012).
Several other evaluations revealed failures of compen-
sation measures (Teels, Mazanti & Rewa, 2004; Wolters,
Garbutt & Bakker, 2005; Quigley & Harper, 2006; Reiss,
Hernandez & Brown, 2009; Maron et al., 2010; Tischew
et al., 2010; Curran, Hellweg & Beck, In Press).
Given this accumulating evidence that compensation

fails efficiently to offset biodiversity loss, concerns were
expressed regarding the importance of respecting the
mitigation hierarchy (Kiesecker et al., 2010; Quetier &
Lavorel, 2011) and calls were made for long-term moni-
toring of offset measures (Race & Fonseca, 1996; Walker
et al., 2009). Criticisms of current mitigation practices
also focused on the lack of scientific background in
decision-making (Harding et al., 2001; Rahn, Doremus
&Diffendorfer, 2006; Burgin, 2008). First, conservation-
ists generally rely on expert opinion to assess human
impacts and then to determine ratios (Sutherland &
Watkinson, 2001). Yet forecasted impacts are rarely
based on scientifically sound evaluation (Sutherland,
2006). Second, when an environmental expertise study
is carried out, it is usually mostly descriptive and valid
at restricted spatial and temporal scales, with no visibil-
ity over longer periods (e.g. Fero et al., 2008). Further,
a limited set of ecological criteria are considered and
little attention is paid to the dynamic character of natu-
ral areas and their role for far-ranging species (i.e. as
foraging area, breeding site or resting place) (Robb,
2002). Moreover, ecological indicators rarely match the
reality of biological systems (Turnhout, Hisschemoller
& Eijsackers, 2007), can seldom be used and compared
at different scales (Noss, 1990), and lack fixed quan-
titative reference values and methodological standards
(Tolkamp & Van Rooy, 1990). Finally, species may show
contrasting reactions to land-use changes due to differ-
ent physiological thresholds and niche characteristics.
Although this clearly makes the matter of compensation
far more complex than the simple use of indicators, this
issue is rarely considered (Morin & Thuiller, 2009).
Such high levels of uncertainty about the outcome of

compensation measures is largely explained by method-
ological difficulties in assessing the complex function-
ing of ecosystems at varying spatial and temporal scales
and the wide range of possible impacts. Hence, reliance
on a general method to determine offset ratios seems
inadequate. Offset calculation methods thus lack a
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Fig. 1. Comparison between correlative habitat suitability models (CHSMs) and individual-based mechanistic models
(IBMMs).

structured and transparent framework grounded in
up-to-date ecological knowledge. We argue here that
HSMs are efficient tools to predict how species’ suitable
habitat can be altered by anthropogenic changes, and
should therefore be considered an opportunity to meet
the requirements of compensation planning.

III. HABITAT SUITABILITY MODELS: RELATIVE
PAYOFFS OF CORRELATIVE AND
INDIVIDUAL-BASED MECHANISTIC APPROACHES

Gathering the relevant scientific data, generating
predictive scenarios, and ultimately maintaining the
functioning of natural systems or restoring areas to
offset losses are the three main challenges to managers
involved in mitigation implementation. Compensation
implementation should therefore include more quanti-
tative, model-based decision-making (Rahn et al., 2006),
ensuring well-articulated and standardized scientific
and legal standards. Predictive modelling could be
an essential tool within this process, integrating field
measurements and experiments, and supporting expert
judgment (Shugart, Smith & Post, 1992).

(1) Correlative approach

Correlative habitat suitability models (hereafter
CHSMs), also known as species distribution models,
bioclimatic envelope models, ecological niche models
or climatic envelope models (Elith & Graham, 2009),
are widely used in ecology to predict potential species’

distributions (mammals and birds: e.g. Peterson et al.,
2002; butterflies: e.g. Beaumont & Hughes, 2002;
amphibians and reptiles: e.g. Araujo & New, 2007;
plants: e.g. Thuiller et al., 2005; Meineri, Skarpaas &
Vandvik, 2012).
CHSMs are derived from Hutchinson’s (1957) niche

theory and the gradient analysis of Whittaker (1956).
They link current species observations with environ-
mental variables, to yield predictions on current, past
or future worldwide to landscape-scale species distri-
butions (Pearson & Dawson, 2003; Elith & Graham,
2009; Fig. 1). More precisely, these models rely on the
establishment of statistical relationships between envi-
ronmental predictors (most often climatic and land-use
variables) and observed species distributions (Pearson
& Dawson, 2003; Austin, 2007; Beaumont et al., 2009;
Elith & Graham, 2009) to infer species-specific envi-
ronmental requirements. CHSMs rely on two major
assumptions. First, species occurrences and explanatory
variables (e.g. climate) are in a steady state with the envi-
ronment, and second, niche is conserved through time
and space (Elith & Leathwick, 2009). CHSMs are gen-
erally species-specific, although several single-species
models can be combined to predict net biodiversity loss
(e.g. Thomas et al., 2004; Thuiller et al., 2005) or can be
coupled with ordination techniques to yield predictions
at the community level [see Ferrier & Guisan (2006)
and Baselga & Araujo (2009) for review on community
modelling].
CHSMs are often based on presence/absence data

[generalized linear model (GLM): Thuiller, 2003;
Araujo et al., 2005; generalized additive model (GAM):
Leathwick, Whitehead & McLeod, 1996; Midgley et al.,
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2003; multivariate adaptive regression splines (MARS): 
Munoz & Felicisimo, 2004; nonparametric multiplica-
tive regression for habitat Modelling (NPMR): McCune, 
2006)], but can also stem from presence-only data [e.g. 
BIOCLIM: Nix, 1986; Parra, Graham & Freile, 2004; 
Genetic Algorithm for Rule-set Production (GARP): 
Peterson, 2001; Anderson, Lew & Peterson, 2003; Maxi-
mum entropy (MAXENT): Phillips, Dudik & Schapire, 
2004] or from abundance data (Cawsey, Austin & Baker, 
2002; Huntley et al., 2012). Modelling methods can rely 
on basic logistic regressions (i.e. GLM), segmented 
logistic regression (i.e. GAM, MARS), tree analyses 
[Generalized Boosted Regression Models (GBM), 
regression tree analysis (RTA)], or on the principle of 
maximum entropy (e.g. MAXENT). As phenomeno-
logical models, the fit o f a  CHSM t o empirical data is 
generally assessed by P values indicating the probability 
of an effect compared to a null model, but greater 
emphasis is currently made on Akaike information 
criterion (AIC) and multimodel inference (Burnham 
& Anderson, 2002). Model evaluation often consists in 
comparing model predictions with a subset of species 
observations excluded from the modelling process 
or in cross-validation techniques (Jeschke & Strayer, 
2008). Model agreement is then assessed using area 
under the receiving operating curve (AUC), Kappa 
and/or true skill statistic (TSS) statistics. AUC has 
the advantage of directly comparing the probability 
of species occurrence predicted from the model with 
species observations. By contrast, predicted probabil-
ities of species occurrence need to be transformed to 
presence/absence values before Kappa or TSS can be 
applied (Elith & Leathwick, 2009). Liu et al. (2005) 
detailed and compared several strategies that can be 
applied to transforming the results of habitat suitability 
models to presence/absence data.
However, predicted distributions can differ according 

to the modelling technique used (Thuiller, 2003; Elith 
et al., 2006). Hence, the biodiversity modelling package 
BIOMOD (Thuiller, 2003) has been developed to cap-
italize on the most widely used modelling techniques 
and produce more reliable predictions. BIOMOD is 
currently one of the most widely used tools to imple-
ment CHSMs (e.g. Araujo et al., 2004; Ballesteros-Mejia, 
Kitching & Beck, 2011; Barbet-Massin et al., 2012). More 
recently, ENMTools (Warren, Glor & Turelli, 2010) and 
ModEco (Guo & Liu, 2010) have been proposed as 
user-friendly software packages to facilitate quantitative 
comparisons of different CHSMs.
Numerous criticisms have been raised regarding the 

validity of CHSMs (Pearson & Dawson, 2003; Guisan 
& Thuiller, 2005; Heikkinen et al., 2006; Dormann, 
2007). First, records of species absences which are often 
necessary to fit t he m odels c annot b e i nferred with 
certainty (Elith et al., 2006). In response, several meth-
ods have been proposed to infer ‘pseudo-absences’ 
(e.g. Lutolf, Kienast & Guisan, 2006), as well as the use

of modelling algorithms that do not require absence
data. Still, absence records remain problematic as
modelling algorithms often extract pseudo-absences
internally using one of the many strategies described
in the literature, therefore keeping uncertainty in the
predictions. Similarly, public data sources must be
used with caution for developing CHSMs, especially
for subspecies that are morphologically similar but
with distinct ecological requirements and geographic
distributions (Lozier, Aniello & Hickerson, 2009). Sec-
ond, CHSMs generally ignore spatial autocorrelation
(SAC). SAC can be caused by distance-related biolog-
ical processes, non-linear relationships modelled as
linear, or simply by the absence of spatially structured
environmental variables important for species distribu-
tions (Dutilleul, 2011). SAC can be problematic when
present in model residuals as it may inflate type I errors
or invert the slope of a response curve (Dormann
et al., 2007). Although Dormann et al. (2007) proposed
several solutions to account for SAC in correlative
species distribution models, SAC issues are ignored
in most recent publications. Third, because correla-
tions between species’ distributions and environmental
factors are obtained through presence/absence data,
CHSMs are assumed to provide a spatial representation
of the realized niche in space and time, and assume the
realized niche to represent a species’ distribution (i.e.
the environmental space where the species does occur;
Pulliam, 2000; Sillero, 2011). However, the realized
niche does not necessarily reflect the physiological
limits of a species’ range, as individuals can occur
across wider environmental ranges than have been
recorded during a particular area/time. By contrast,
species can be seen in areas which do not suit the
set of conditions and resources necessary for a viable
population (Pulliam, 2000). This can be explained
either by the presence of transient individuals, or by
artificial management allowing a species to be present
(for instance birds receiving supplementary food; Robb
et al., 2008). Source–sink dynamics can also contribute
to define erroneous ecological niches and generate
flawed CHSMs. Source–sink effects occur when some
habitats of good quality (habitat source) allow recruit-
ment that exceeds mortality, and export individuals to
‘sink’ areas where individual fitness is lower because
of suboptimal environmental conditions. This phe-
nomenon can greatly influence patterns of population
dynamics (see for instance Gill et al., 2001). Identifying
source and sink habitats is thus essential to define
adequate species niches for CHSM parameterization.
Until recently, most CHSMs did not explicitly con-

sider biotic interactions, evolutionary processes and dis-
persal ability (Pearson & Dawson, 2003; Hampe, 2004;
Araujo & Guisan, 2006; Thuiller et al., 2008; Engler &
Guisan, 2009; Huey et al., 2012). However, some recent
CHSMs included dispersal ability through modelling
packages which combine correlations with mechanistic

5



A
c
c
e
p
te

d
 M

a
n
u
s
c
ri
p
t

cellular automatons based on dispersal kernels (Engler
& Guisan, 2009; Engler et al., 2009; Carvalho et al., 2010;
Midgley et al., 2010; Pagel & Schurr, 2012). It can also
be argued that because CHSMs predict the realized
niche, biotic interactions may be implicitly accounted
for within the abiotic predictor of the model. Yet, biotic
interactions may differ in another environmental con-
text and individual species responses to environmental
change may be expected (Lenoir et al., 2008). Hence,
such correlations may not apply in the future, especially
as interspecies relationships may change (Prentice &
Solomon, 1991; Woodward & Rochefort, 1991; Prentice
et al., 1992; Pearson & Dawson, 2003). Recent improve-
ments have been made in this regard and some stud-
ies have now explicitly included biotic interactions into
regional- and landscape-scale models (see for instance
Leathwick et al., 1996; Araujo & Luoto, 2007; Preston
et al., 2008; Pellissier et al., 2010; Harris et al., 2012;
Meineri et al., 2012). Yet, none of these studies man-
aged to account for potential non-analogue biotic inter-
actions when performing model projections in another
spatio-temporal context.
Remote-sensing scientists designed accurate tech-

niques to describe ecosystems (Horning et al., 2010).
Combining remote-sensing parameters with species
occurrence has been proved to be useful to define
species’ niches more accurately, and to predict habitat
suitability in the context of ecological compensation.
This approach could become common following the
model of other conservation-planning activities, such
as the identification of suitable habitats for rare species
(Gaubert, Papes & Peterson, 2006) and the design of
reserves (Brito et al., 2009). For instance, incorporating
primary production [Normalized Difference Vegetation
Index (NDVI)] within a CHSM improved the assess-
ment of habitat quality required for an endangered
population of brown bears (Ursus arctos) in Spain (Wie-
gand et al., 2008). Also, a CHSM considering the wide
dynamic range vegetation index (WDRVI) has been
shown to constitute a suitable tool for characterizing
giant panda (Ailuropoda melanoleuca) habitat and mon-
itoring its temporal dynamics (Tuanmu et al., 2011).
Finally, Brito et al. (2009) used remote sensing and pres-
ence data to identify biogeographic patterns for three
species of North African canids in the Sahara. This work
allowed the mapping of species distribution, highlight-
ing suitable refuges for these endangered species.
Despite numerous recent improvements, CHSMs are

still criticized for their rationale which relies on the link
between species occurrence and environmental data
without taking underlying mechanisms into account.
They are nonetheless useful, easy to use and provide
fairly good predictions at regional spatial scales (Pear-
son & Dawson, 2003; Austin, 2007). The required
information is often freely available from museum and
climate databases, so that they do not necessarily require
time-consuming fieldwork.

(2) Individual-based mechanistic approach

(a) Description of models

Correlative models are at one extreme of a correl-
ative/process model continuum, whilst mechanistic
models are at the other extreme. In purely correlative
models, processes are implicit. They remain unknown
but are thought to cause the observed correlation. By
contrast, mechanistic models rely on established causal
relationships between species distributions and envi-
ronmental variables, independently of data on species
distributions (Kearney & Porter, 2004, 2009; Kearney
et al., 2008; see also Fig. 1). These models are therefore
described as ‘process-based’. Thus, mechanistic models
do not use environmental variables as predictors to infer
forthcoming distributions or processes. Rather, environ-
mental variables are used as proximate information and
input values. Such mechanistic models are bottom-up
models since they aim at inferring the emergent proper-
ties of a system (population, community and ecosystem)
from interactions among the individual components of
this system (Grimm, 1999). This contrasts with correl-
ative approaches, within which the modeller applies a
correlative framework to any particular species or com-
munity, without explicitly taking into account processes
underlying the causal relationship between species dis-
tributions and environmental variables. Mechanistic
models thus provide a spatial and temporal representa-
tion of fundamental species niche (Sillero, 2011). More
precisely, they attempt to simulate the mechanisms con-
sidered to underlie observed correlations with environ-
mental attributes (Beerling, Huntley & Bailey, 1995),
by using detailed knowledge of the ecophysiological
responses of target species to environmental variables
(Stephenson, 1998). Mechanistic models have also been
referred to as ecophysiological models (Stephenson,
1998), process-oriented models (Carpenter, Gillison &
Winter, 1993), process-based models (Morin & Thuiller,
2009), agent-based models (McLane et al., 2011), or
thermodynamicmodels (Fort, Porter &Gremillet, 2009;
Kearney et al., 2013). Indeed, studying behavioural and
physiological adaptations of organisms to environmen-
tal conditions (e.g. thermoregulation and homeostasis)
is fundamental in a changing world, to determine limi-
tations to adaptive processes and conditions favourable
to species maintenance (Le Maho, 2002). Mechanistic
models were shown to deliver more accurate distribu-
tion predictions than CHSMs (Yates, Kittel & Cannon,
2000), and to offer great potential for improving their
flexibility and performance (Buckley et al., 2010). How-
ever, these models are usually applied to smaller areas
(extent and grain) than CHSMs, making them more
local- to landscape-scale models (but see Yates et al.,
2000).
Early mechanistic models had two major weaknesses,

which have been addressed inmore elaborated versions.
First, they used to consider all individuals as identical
in their behaviour and physiology. Second, individuals
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Fig. 2. Basic principles of an individual-based mechanistic model.

were not spatially distributed in the environment. This
means that all individuals had the same probability to
interact, independently of the distance separating them.
Such shortcomings ledHuston, Deangelis & Post (1988)
to propose an individual-based approach. Compared
to CHSMs, such individual-based mechanistic models
(hereafter IBMMs) present the fundamental advantage
of including individual learning, adaptation and evolu-
tion (Grimm, 1999). Indeed, individual learning is a key
component influencing individual fitness, which evolves
as a function of habitat characteristics and inter- or
intraspecific relationships. Each individual is informed
on its local environment (e.g. resources, competitors).
Information is processed by a set of decision rules, to
produce an action thatmay in turn impact other individ-
uals and/or the local environment. Hence, IBMMs may
include game theory (e.g. Broom & Ruxton, 1998), as
well as genetic aspects, to allow selective and/or stochas-
tic population processes. IBMMs therefore allow individ-
uals to vary in competitive ability, and to maximize their
fitness. In this context, individuals use optimal decision
rules, which means that they are likely to respond to
environmental changes in the same way as ‘real’ organ-
isms. Finally, IBMMs account for source–sink processes
by estimating species range dynamics in both areas
(Schurr et al., 2012). They are therefore expected to
provide a reliablemeans of predicting how animal popu-
lations will be influenced by environmental change (see
also Fig. 2). These models could be very useful to advise

managers and policy makers in the context of ecological
compensation, as they provide quantitative predictions
on the effects of a project on biodiversity.
Because of these many advantages and of the improve-

ment of computing facilities, IBMMs have generated
increasing interest in recent years (Fig. 3) and have
been subject to important developments. Nevertheless,
IBMMs require abundant input data, sometimes diffi-
cult to obtain at regional scales. Fortunately, long-term
studies have now accumulated vast amounts of infor-
mation on species ecology. Table 1 describes the most
widely used IBMMs, their main domain of use and avail-
ability (we do not present a similar table for CHSMs as
this has been provided previously in numerous reviews,
see e.g. Guisan&Zimmermann, 2000; Jeschke& Strayer,
2008).

(b) How individual-based mechanistic models can combine
animal energetics, metapopulation processes and demography
with environmental information to yield compensation
planning

‘Energy is the common currency of life, as it fuels bio-
logical processes at every level of organization’ (Careau
et al., 2008, p. 641). Hence, understanding foraging
habitat selection as a function of animal energy require-
ments is a major goal in a world strongly and rapidly
modified by human activities. We therefore argue that
animal energetics should be taken into account when
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‘agent-based model’ or ‘ecophysiological model’ or ‘process-based model’, since 1980. The research was done within
all fields of biology and ecology; Web of Knowledge, accessed March 2014.

establishing compensation measures. Mechanistic mod-
els including energy requirements and food availability
as key input values are thus particularly relevant in the
context of foraging habitat loss (Conover & Caudell,
2009; Sibly et al., 2013). On the basis of these two
key parameters, IBMMs can predict habitat suitability
and population parameters (e.g. survival rates, breed-
ing rates), allowing the assessment of the impacts of a
project before an offset area can truly meet compensa-
tion objectives.
Three main methods, reviewed in Fort, Porter &

Gremillet (2010), are currently used to assess energy
requirements in animals. First, time–energy budgets,
combining time budgets with the energetic costs of
each activity, are the most accurate method. However,
they require extensive field data and time-consuming
observations. Second, allometric equations are based on
the relationship between field metabolic rates (FMRs)
and body mass. This method requires very few field
data. Yet allometric equations are not species-specific
and do not integrate environmental factors which can
strongly affect energy budgets. Third, thermodynamic
models assess the theoretical energy requirements of
animals through calculations based on the fundamental
principles of thermodynamics (Kearney, 2012; Kearney
et al., 2013). Such thermodynamic equations present
three main advantages: (i) they are species-specific;
(ii) they include environmental factors, such as wind
or temperature; and (iii) they allow the assessment
of energy expenditure with no or limited need for
time-consuming observations or manipulations. Hence,
thermodynamic equations represent the best trade-off
when field data are scarce (Fort et al., 2009, 2010).
Another crucial advantage of IBMMs in the context

of compensation implementation is that they allow
forecasting impacts on the different individual com-
ponents of an animal population. This proves useful

when compensation measures can only focus on iden-
tified key stages of a population, such as reproductive
adults or juveniles. For instance, Piou & Prevost (2012)
developed an individual-based demo-genetic model to
simulate population dynamics of the Atlantic salmon
(Salmo salar) within southern European populations
(individual-based Atlantic salmon model, IBASAM; see
also Table 1). This model highlighted the importance
of parameters related to juvenile growth in structuring
the population, which is crucial to the assessment of
extinction risk of the species, as well as the efficiency
of mitigation strategies.
Finally, IBMMs may also incorporate habitat spatial

configuration, and the impact of metapopulation pro-
cesses on species dynamics, which are crucial features
in conservation and for the management of patchy envi-
ronments (Van Teeffelen, Vos & Opdam, 2012). This is
an important point as EIAs generally only study direct
on-site effects and neglect possible negative effects off
the impacted site (Lenzen et al., 2003). For instance, dis-
turbance is often an indirect negative impact influenc-
ing species at nearby sites (e.g. Summers, Cunnington
& Fahrig, 2011). Considering nearby sites is also fun-
damental when defining an offset area. An offset area
can contain appropriate food resources or appropri-
ate resting places, but be inappropriate because of its
configuration, for instance because it is surrounded by
dense physical boundaries preventing dispersal or vigi-
lant behaviour. Crucially, IBMMs take into account both
the quality and the location of the disturbed site or the
offset area, which are the two key elements conditioning
species survival.
Several mechanistic models have been developed to

study and forecast animal species’ distributions in the
context of habitat changes (Table 1). For instance,
Porter & Mitchell (2006) have established a spatially
explicit state-of-the-art model (NicheMapperTM) that
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Fig. 4. Example of the successful use of an individual-based mechanistic model (IBMM) to implement mitigation
measures.

incorporates principles from heat and mass transfer,
engineering, physiology, morphology, and behaviour
within a geographical information system (GIS) inter-
face, to allow predictions across real landscapes. This
model computes heat and water mass balances for
required animal expenditures (Porter, Budaraju & Stew-
art, 2000; Porter et al., 2002).
Concomitantly, Stillman (2008) developed an

individual-based modelling approach (MORPH) with
an emphasis on foraging behaviour, to assess the
effect of anthropogenic and environmental change
on animals. MORPH’s key assumptions are that indi-
viduals behave in order to maximize their perceived
fitness, but that perceived fitness may not always be
positively related to the actual chances of survival and
reproduction (i.e. individuals may make sub-optimal
decisions; see Battin, 2004; Kokko & Lopez-Sepulcre,
2006). MORPH was initially used in waterbirds (see for
instance Durell et al., 2006), but it is extremely flexible
and potentially applicable to a wider range of species.
The model does not calculate the energy requirements
of the species, but this could be efficiently dealt with
using the aforementioned NicheMapperTM model. Fur-
thermore, West et al. (2011) developed a user-friendly
interface which is a simplified version of MORPH used
to assess the effects of mitigation measures for shore-
birds (WaderMORPH). This IBMM is accessible online
to non-specialists with a direct interest in coastal issues.
To our knowledge, this is currently the only open-access
tool for advising coastal management and policy.

Despite their obvious importance and their significant
development (see Fig. 3), very little has been published
on the successful use of IBMMs for implementing
mitigation measures, or to assess their efficiency. One
rare case study concerns the effects of an harbour
extension in Le Havre (France) on shorebirds (Durell
et al., 2005; Fig. 4). In this case, authorities proposed
mitigationmeasures based on presumednegative effects
while the project was already well underway. Durell
et al. (2005) then used an IBMM to assess the efficiency
of proposed mitigation measures, and advise harbour
authorities on possible improvements. Specifically, the
authors demonstrated an important negative effect of
the forthcoming harbour extensions on the mortality
rates and body condition of dunlins (Calidris alpina)
from this area, and the necessity to create an additional
buffer area to avoid disturbance to the birds (Fig. 4).

IV. HOW TO MAKE THE BEST USE OF
CORRELATIVE AND MECHANISTIC MODELS TO
IMPLEMENT COMPENSATION

The simplicity of CHSMs has led to their popularity
but also to extensive criticism (Guisan & Thuiller, 2005;
Heikkinen et al., 2006; Dormann, 2007). Despite poten-
tial limitations, the importance of bioclimatic model
predictions should not be underestimated (Araujo &
Peterson, 2012). Following Pearson & Dawson (2003),
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CHSMs predictions should rather be viewed and used as 
first approximations indicating the potential magnitude 
and broad pattern of future impacts, rather than as accu-
rate simulations of future species distributions. Specif-
ically, CHSMs lack of precision seems more critical at 
local scales (Pearson & Dawson, 2003; Austin, 2007) 
which is generally the scale used when implementing 
compensation (generally from a few ha, such as in infras-
tructure building, up to 10000 ha, such as in oil fields). 
Hence, the use of CHSMs alone does not seem appropri-
ate to implement compensation measures. Conversely, 
the use of IBMMs can be time-consuming, especially at 
large scales where abundant data are required.
The dichotomy between CHSMs and IBMMs should 

be seen as the two ends of a continuum with respect 
to the explicit inclusion of processes (Dormann et al., 
2012). For instance, only a few IBMMs are entirely devel-
oped ‘forward’, i.e. only based on known, sound, ecolog-
ical knowledge. Indeed, many IBMMs use distributional 
data to evaluate model structure or to calibrate unmea-
surable input parameters and are also correlative to a 
certain degree. Along the same lines, although CHSMs 
may suffer from spurious correlations, they generally 
rely on explanatory variables that are expected to rep-
resent causal mechanisms (Dormann et al., 2012), and 
can incorporate a few mechanistic processes to produce 
improved and informed predictions (Helmuth, 2009; 
Kearney & Porter, 2009; La Sorte & Jetz, 2010).
For instance, a new class of spatial models describe 

population growth rates by combining occurrence/
abundance data with processes such as adaptation and 
competition, but also fecundity and survival probabili-
ties (see for instance Schurr et al., 2012; Pagel & Schurr, 
2012). These models were initially developed for plants 
(e.g. BioMove; Midgley et al., 2010), and are currently 
being adapted to animals, or even to the study of 
plant–animal interactions (Merow et al., 2011).
IBMMs and CHSMs could also be used sequentially 

and not necessarily through a hybrid approach. Indeed, 
CHSMs perform well at making broad predictions over 
regional scales and can be implemented more rapidly, 
whereas IBMMs are more difficult t o i mplement at 
such large scales because of the wide range of required 
information and the extent of necessary computing 
resources. Thus CHSMs may help to identify a suitable 
geographic zone for a species or a set of species at cur-
rent and future time periods. These zones can be used 
as offsets within a compensation process. IBMMs can 
be used thereafter to implement accurate compensation 
measures at higher spatio-temporal scales.

V. CONCLUSIONS

(1) Although ecological compensation has been imple-
mented for more than 30 years on a worldwide scale, 
its objective of ‘no net loss’ has rarely been met,

compromising biodiversity conservation. This may be
due to lax environmental policies (Quétier, Regnery &
Levrel, 2014), but is also strongly linked to methodologi-
cal difficulties in assessing the impact of land-use change,
and in proposing sound compensation measures.
(2) Habitat suitability models (HSMs) appear as an
adapted and objective tool to advise compensation pol-
icy, since they allow predictions of potential species dis-
tributions following land-use changes. Moreover, in con-
trast to the current use of compensation ratios which
use ad hoc assessment charts, HSMs provide a scien-
tific approach which can be implemented to assess
site-specific and long-term impacts.
(3) The broad types of HSMs (CHSMs and IBMMs)
constitute two research avenues with ongoing develop-
ment.We believe that thesemodels should not be looked
at in isolation, but rather in tandem. Overall, the use
of HSMs needs to be adapted to the different stages of
the compensation process, and to the particular aspect
being tackled (e.g. spatial and temporal scale, target
species to conserve, key stage within a population). At
a fine spatial scale, IBMMs incorporating animal ener-
getics are particularly relevant when the area to be lost
is a foraging habitat, and combinations of models such
as MORPH and NicheMapperTM appear to be extremely
powerful.
(4) Although the use of HSMs is currently restricted
to the scientific community, we posit that the recent
development of user-friendly interfaces will contribute
significantly to making them available to the much
larger community involved in operative ecological
compensation.
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