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Abstract

This study presents a direct comparison of measured and predicted nonlinear vibrations of a
clamped-clamped steel beam with non-ideal boundary conditions. A multi-harmonic comparison of
simulations with measurements is performed in the vicinity of the primary resonance. First of
all, a nonlinear analytical model of the beam is developed taking into account non-ideal boundary
conditions. Three simulation methods are implemented to investigate the nonlinear behavior of the
clamped-clamped beam. The method of multiple scales is used to compute an analytical expression of
the frequency response which enables an easy updating of the model. Then, two numerical methods,
the Harmonic Balance Method and a time-integration method with shooting algorithm, are em-
ployed and compared one with each other. The Harmonic Balance Method enables to simulate the
vibrational stationary response of a nonlinear system projected on several harmonics. This study
then proposes a method to compare numerical simulations with measurements of all these harmon-
ics. A signal analysis tool is developed to extract the system harmonics’ frequency responses from
the temporal signal of a swept sine experiment. An evolutionary updating algorithm (Covariance
Matrix Adaptation Evolution Strategy), coupled with highly selective filters is used to identify both
fundamental frequency and harmonic amplitudes in the temporal signal, at every moment. This
tool enables to extract the harmonic amplitudes of the output signal as well as the input signal.
The input of the Harmonic Balance Method can then be either an ideal mono-harmonic signal or
a multi-harmonic experimental signal. Finally, the present work focuses on the comparison of ex-
perimental and simulated results. From experimental output harmonics and numerical simulations,
it is shown that it is possible to distinguish the nonlinearities of the clamped-clamped beam and the
effect of the non-ideal input signal.

1 Introduction

The frequency response of mechanical structures often exhibit nonlinear behaviors such as depen-
dency of eigenfrequencies and dissipation with input amplitude, discontinuities and hysteresis in the
frequency response, multi-harmonic response to a mono-harmonic excitation. The sources of these
nonlinearities are well known and various simulation methods have been developed to compute a
nonlinear frequency response [1],[2]. Yet the first applications of nonlinear simulation to industrial
structures are very recent. In particular Renson and Kerschen [3] applied a time-integration method
with a shooting algorithm [4] to compute the nonlinear vibrations of the SmallSat spacecraft, and
focused on internal resonances between linear modes. Sinou [5] applied a Harmonic Balance Method
to a nonlinear model of an industrial rotor and computed a multi-harmonic frequency response.
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Beams are among the few systems whose nonlinear vibrations have been studied both experimen-
tally and theoretically. Nayfeh and Mook [1] studied nonlinear vibrations of beams under several
boundary conditions and showed how these dynamical problems can be treated by the method of
multiple scales. Tabaddor [6] pointed out the importance of non-ideal boundary conditions in the
modeling of beams. Malatkar and Nayfeh [7] explained how the method of multiple scales enables
an easy identification of the nonlinear parameters. This identification method cannot be used on an
industrial complex system, but fits well the needs of this study. Kerschen and al. [8] have written an
extensive review of nonlinear system identification methods. The two nonlinear methods previously
introduced with their industrial applications have also been used for the study of clamped-clamped
beam nonlinear vibrations [9] [10] [11].

The main objective of this study is to propose a global strategy based on experiments and simu-
lations for identifying the non-ideal boundary conditions and for predicting the nonlinear vibrations
of the system that is subjected to multi-harmonic excitations. This global strategy consists in three
steps. First of all, the method of multiple scales is used to update the non-ideal boundary con-
ditions of the nonlinear beam with a mono-harmonic excitation. Secondly, the Harmonic Balance
Method is developed to compute easily the multi-harmonic frequency response of the system to multi-
harmonic excitations. Finally, the third step consists in comparing the multi-harmonic response with
experiments. Such a comparison needs an efficient signal processing tool to extract the experimental
multi-harmonic frequency response from a temporal signal. This paper proposes and presents a pro-
cess based on high-selective filtering and fitting to synthetic functions using the Covariance Matrix
Adaptation Evolutionary Strategy (CMAES) [12].

In addition, the Harmonic Balance Method is compared to the time-integration method with a
shooting algorithm [4], to demonstrate the efficiency of both methods, and complementary experi-
mental measures are performed to substantiate the model developed.

The next section of this article presents the clamped-clamped beam experiment with the method
used to compute the experimental multi-harmonic frequency response. Then the beam model with
non-ideal boundary conditions is detailed. The fourth section of this article focuses on the updating of
the non-ideal boundary conditions by the method of multiple scales. The two numerical methods are
explained in the fifth section. Finally, the multi-harmonic comparison between experimental measures
and simulations is presented and interpreted. The simulations are made both with an ideal mono-
harmonic input and with the experimental multi-harmonic input.

2 Experiments

2.1 Experimental setup

The experimental setup is presented in Figure 1. The system studied is a steel beam of dimension 470
x 20 x 5 mm. At both ends, the beam is bonded to a heavy steel block, of dimension 100 x 100 x 85
mm. The whole piece (beam and blocks) is manufactured from a unique bulk piece of steel. Hollows
between the beam and the blocks are designed to avoid stress concentration. The blocks are screwed
on a large circular aluminum plate, itself screwed on the shaker. The system is instrumented with a
strain gage and 3 three-dimensional accelerometers as depicted in Figure 1. Each signal is denoted by
the sensor name followed by the direction of the measurement. The entrance signal 1

2(P1Z+P2Z) is
the shaker’s feedback control signal. The reference frame of the study is the one of the blocks, where
P1 and P2 are fixed. The zero-point of this reference frame coincides with A1 when the system is
at rest. The response signal is the acceleration at the middle of the beam, in the reference frame of
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Figure 1: A schematic (a) and a picture (b) of the experimental setup which includes 3 accelerometers
(P1,P2,A1) and a strain gage (S1).

the blocks, that is A1Z −1
2(P1Z+P2Z). The horizontal displacement of the blocks is also measured

with the signal 1
2(P2X-P1X). The strain gage is used to evaluate the static constraints in the beam

(see Section 2.2). Increasing and decreasing swept sine experiments in the vicinity of the primary
resonance is realized.

2.2 Experimental results and discussion

Experimental results for three levels of excitation are plotted in Figure 2. The arrows indicate the
directions of sweep, which highlight the jump and hysteresis phenomena.

Beyond any nonlinear phenomenon, some variations of the fundamental frequency of the beam
(identified at low excitation level) are observed from one experiment to another. A strain gage is
placed on the beam (see figure 1) to understand the origin of this phenomenon. The frequency shifts
are well correlated with the static value of the strain gage. The static strain evolves a lot during
the screwing of the blocks, in a non-reproducible way. It is assumed that the frequency variations
come from the position of the blocks that evolve during screwing and from one experiment to another.
This movement induces static constraints in the beam. The fundamental frequency of the beam shall
be updated for each experiment. The updating of the eigenfrequency is made through an effective
half-length of the beam l (235 < l < 275), that takes into account the influence of both the hollows at
the ends of the beam and the constraints.

On the contrary, the experimental response shape, which characterizes the nonlinear phenomena
appears to be very reproducible from one experiment to another. This visual diagnosis is confirmed
by updating the model (see Section 4). The effective half-length l is the only parameter that does not
remain stable from one experiment to another.

2.3 Multi-harmonic response measurements

The vibrator is piloted with a logarithmic swept sine signal. The frequency evolves slowly enough
(0.1 octave/min in the vicinity of the resonance) to consider the response to be stationary. In the
vicinity of each time point, both input and output signals are periodic and can thus be developed
in Fourier series. The signal analysis tool developed in this study aims at identifying at each time
the fundamental frequency and the harmonics’ amplitudes of both input and output signals. It is
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Figure 2: Harmonic response of the beam to 3 levels of excitation signal: in blue 2 m.s−2, in green 4
m.s−2 and in red 6 m.s−2.

separated in four main steps; the windowing of the temporal signals, the identification of the mean
fundamental frequency of each time slot, the band-pass filtering of the signals around the harmonic
frequencies and finally the identification of the harmonic amplitudes. The overall process is summed
up in figure 3.

Band−pass
filtering

Time
windowing

for every time slot

Input
sample

sample
Output

Frequency
identification

identification
Amplitude

Fbeg,FendF

Hn
input

Hn
outputaround n.F

for every harmonic n

Temporal
signals

Figure 3: Harmonics’ extraction algorithm scheme.

The windowing step drives the frequency increment of the response curve. The temporal distance
between 2 time slots can be directly linked to a frequency increment through the logarithmic speed
of sweep. In this work, a constant distance of 0.5s between 2 time slots is chosen. Then the time
slot duration is chosen. There should be enough points to perform the identification steps but the
corresponding frequency length of the slot should be low enough to consider the harmonic amplitudes
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to be constant along the sample. In this work, a constant length corresponding to 5 periods of the
lowest excitation frequency of the swept sine experiment is chosen.

Frequency
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Input
sample
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Phase
estimation

Fitting with a

using CMAES

swept sine
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F

Figure 4: Frequency estimation block scheme.

The frequency identification step is detailed in Figure 4. The mean fundamental frequency of each
slot is first estimated from the pilot’s sweep profile. This prediction is then updated. In order to
cancel the higher order harmonic signals, the input signal is filtered by a band-pass filter around the
estimated fundamental frequency Fest. A band-pass Finite Impulse Response (FIR) filter between 0.9
Fest and 1.1 Fest is chosen because its effect on the signal phase can be corrected by a simple time
translation. The length of the FIR is a compromise between rejection of the higher order harmonics
and attenuation in the selected frequency band, a length of 1000 is chosen. In order to get rid of
the transient signal introduced by the filter, a larger sample of the input signal is filtered and the
original slot is then selected in this filtered sample. Once filtered, the input signal is mono-harmonic;
the fundamental frequency can then be identified by fitting a synthetic signal. The synthetic signal
chosen is a 4 parameter logarithmic swept sine function (”chirp” function). The four parameters are
the constant amplitude A, the frequency at the beginning and the end of the sample Fbeg, Fend and
the initial phase Φ0.

ϕchirp(t) = A sin



2π





(

Fend

Fbeg

)
t

tend

Fbeg



 t+Φ0



 (1)

This identification is treated as a nonlinear optimization problem. The optimization function is
the root mean square difference between the sample and the synthetic signal. The four parameters
are evaluated, bounded and then optimized using an evolutionary algorithm: the ”Covariance Matrix
Adaptation - Evolution Strategy” (CMAES) [12] which is chosen because of its quick convergence and
its weak noise sensitivity. The amplitude A is estimated by the maximal absolute value in the sample,
the estimated value of both Fbeg and Fend is Fest. As the phase Φ0 is a very sensitive parameter, it
is previously estimated by a zero-crossing scheme. The beginning of the synthetic signal is set at the
first point after zero crossing. There, the phase Φ0 is estimated by ± arccos( y

A
), where y is the value of

the first point, the sign depends on the direction of the zero crossing. Once estimated, the parameters
are bounded for the optimization algorithm. A, Fbeg and Fend are bounded to their estimation ±10%,
Φ0 is bounded to its estimation ±10 degrees. At the end of the optimization process, the fundamental
frequency F of the sample is defined as the logarithmic mean between Fbeg and Fend.

For each harmonic n computed, the samples of input and output signals are filtered around n.F

using the FIR filter described previously. Each filtered sample is then fitted to a two parameter swept
sine function, which is the same chirp function presented previously where the beginning and end
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frequencies are fixed as n.Fbeg and n.Fend. The amplitudes identified are the harmonic amplitudes
Hn

input and Hn
output. For the output signal, the acceleration amplitudes are translated into displacement

by dividing by (2.π.n.F )2. The experimental harmonic curves obtained by this process are plotted in
Figure 5. Note that this identification method also enables to extract harmonics’ phase information,
though this information is not studied in this work.

Other identification methods could have been used (for example methods based on Discrete Fourier
Transform or Auto-Regressive formulations [13]). The optimization algorithm measures the error be-
tween experimental and fitted data and thus ensures the precision of the whole identification process.
On synthetic multi-harmonic signals, this identification method provides errors < 0.1% for the fre-
quencies and < 1% for all harmonics amplitudes.

3 Modeling

The beam equations developed by Nayfeh [14] are used and the beam properties are assumed to be
constant along the length. The low thickness-length ratio of the beam and the boundary conditions
enable to neglect the inertial and curvature nonlinear terms pointed out by Nayfeh ([14], Equation
(14)). A linear viscous damping is added in order to take into account dissipation in the dynamical
differential equation:

ρA
∂2w

∂t2
+ µ

∂w

∂t
+ EI

∂4w

∂x4
= ρAaexcit cos(Ω t) + T (t)

∂2w

∂x2
(2)

The variables are defined as follows: ρ is the mass density, A is the cross-sectional area, µ is the
linear viscous damping coefficient, E is Young’s modulus, I is the cross-sectional moment of inertia,
aexcit is the acceleration of both clamped ends of the beam, t is time, x is the abscissa, w is the
transverse displacement in the reference frame of the clamped ends, u is the axial displacement and
T (t) is the tensile force in the beam, invariant along the length, that satisfies the relation:

T (t) = EA

(

∂u

∂x
+

1

2

(

∂w

∂x

)2
)

∀x ∈ [0, l] (3)

As the structure and its excitation are symmetric, the response w is symmetric and only half of the
beam shall be studied. The boundary conditions in x = 0 and x = l are detailed in equations (4) and
(5), and illustrated in Figure 6. These non-ideal boundary conditions are due to the deformable block
and hollow at each end of the beam. The springs krot and kbound, the viscous damping coefficient µ

and the effective half-length l are unknown parameters that are updated in Section 4. The values
of the other physical parameters are given in Table 1. The accelerometer A1 is not modeled as a
concentrated mass in order to simplify the modeling. Its influence on the dynamic behavior of the
beam is weak (mA1 = 5.7g << meff beam = 304g, where meff beam is the effective mass of the beam
fundamental mode) and is mainly taken into account through the effective half-length parameter l

during the model updating.

w(0) = 0, EI
∂3w

∂x3
(0) = krot

∂w

∂x
(0),

∂w

∂x
(l) = 0,

∂3w

∂x3
(l) = 0 (4)

T (t) = kbound u(0) and u(l) = 0 (5)
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Figure 5: Input (a) and output (b) experimental harmonics for an increasing-decreasing swept sine
experiment with a constant excitation level of 6 m.s−2. The arrows indicate the direction of sweep.
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ρ Mass density 7850 kg.m−3

E Young’s modulus 205.109 Pa

A Cross-sectional area 1.10−4 m2

I Cross-sectional moment of inertia 2.08.10−10m4

Table 1: Values of the physical parameters of the beam.

kbound
xl

w

0

u(0) symetry

∂w

∂x

krot

shearing force

Figure 6: Schematic of the modeling.

Considering Equations (3) and (5), we can express T as a function of w and write the transverse
dynamical equation (6), that defines the dynamical nonlinear problem once associated to the boundary
conditions (4).

ρA
∂2w

∂t2
+ µ

∂w

∂t
+ EI

∂4w

∂x4
= ρAaexcit cos(Ω t) +

EA

2l

(

1 +
EA

l kbound

)−1
(

∫ l

0

(

∂w

∂x

)2

dx

)

∂2w

∂x2
(6)

The numerical simulation methods, such as the Harmonic Balance Method used in this work, can
only solve a set of discrete differential equations. The continuous equation (6) is thus projected on
the modal basis of the associated homogeneous equation (7).

ρA
∂2w

∂t2
+ EI

∂4w

∂x4
= 0 (7)

The modal solution of (7) is:

Yi(x) = α sin

(

λi x

l

)

+ β cos

(

λi x

l

)

+ γ sinh

(

λi x

l

)

++δ cosh

(

λi x

l

)

(8)

with {α, β, γ, δ} solution of:











0 1 0 1

1 +
EIλ2

i

krotl2
0 1− EIλ2

i

krotl2
0

cos(λi) − sin(λi) cosh(λi) sinh(λi)
− cos(λi) sin(λi) cosh(λi) sinh(λi)





















α

β

γ

δ











=











0
0
0
0











(9)

and λi is the ith solution of the equation:
(

1− EIλ2
i

krotl2

)

cos(λi) sinh(λi) +

(

1 +
EIλ2

i

krotl2

)

sin(λi) cosh(λi) = 0 (10)
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Yi can be rewritten as:

Yi(x) = − tan(λi) sin

(

λi x

l

)

− cos

(

λi x

l

)

− tanh(λi) sinh

(

λi x

l

)

+ cosh

(

λi x

l

)

(11)
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Figure 7: First 2 modal shapes.

In the experiment, the transverse displacement is measured at the middle of the beam. The modal
projections are normalized at this point in order to get the simple relation w (l) =

∑

wi. The set of
indexes corresponding to the selected modes is named M . As only the first resonance is studied, the
set M = {1, 2} is chosen, the shapes of the selected modes are plotted in Figure 7. The projection
gives the set of equations (12).

d2wi

dt2
+

µ

ρA

dwi

dt
+Ω2

i wi = Γi aexcit cos(Ωt) +
∑

{j,k,m}∈M3

Γijkl . wj wk wm ∀i ∈ M (12)

where:

wi(t) =
Yi (l)

l

∫ l

0
w(x, t).Yi(x) dx; Ωi =

√

EI

ρA

λ2
i

l2
; Γi =

Yi(l)

l

∫ l

0
Yi(x) dx

Γijkm =
−E Yi(l)

2ρ l2 Yj(l)Yk(l)Ym(l)

(

1 +
EA

l kbound

)−1
(

∫ l

0

dYj

dx

dYk

dx
dx

)(

∫ l

0

dYm

dx

dYi

dx
dx

)

4 Updating via the method of multiple scales

The method of multiple scales, as described by Nayfeh and Mook [1], enables to solve analytically
the nonlinear problem (6) in the vicinity of the primary resonance. In this study, this approach is
used to update the non-ideal boundary conditions of the beam. As previously explained, the unknown
parameters are the effective half-length of the beam l, the viscous damping coefficient µ, the rotational
boundary spring krot and the longitudinal boundary spring kbound.

9



The variables are non-dimensionalised according to the following scheme:

t̃ =

√

EI

ρA

λ2

l2
t; Ω̃ =

√

ρA

EI

l2

λ2
Ω; x̃ =

x

l
; r =

√

I

A
(radius of gyration); w̃ =

w

r
;

ãexcit(t̃) =
ρAl4

EIλ4r
aexcit(t); µ̃ =

l2

λ2
√
ρAEI

µ; k̃bound =
l

EA
kbound; k̃rot =

l2

EIλ2
krot

(13)

An arbitrary non-dimensional small parameter ε is introduced, it represents the order of magnitude
of the small displacement w̃, then t̃ and w̃ are expanded as polynomials in ε:

t̃ = t̃0 + ε t̃1 + ε2t̃2 + ... and w̃ = ε w̃1 + ε2w̃2 + ε3w̃3 + ... (14)

As the nonlinear term of the dynamical equation (6) has the order of magnitude of w̃3 which is ε3,
the damping and the excitation terms are redefined in order to make their order be also ε3:

µ̃ =
µ̃

ε2
and ãexcit =

ãexcit

ε3
(15)

The method of multiple scales assumes that the various scales εi are independent so that the dynamical
equation (6) can be split to get the system (16).

1st order
∂2w̃1

∂t̃20
+

∂4w̃1

∂x̃4
= 0

2nd order
∂2w̃2

∂t̃20
+

∂4w̃2

∂x̃4
= −2

∂2w̃1

∂t̃0∂t̃1

3rd order
∂2w̃3

∂t̃20
+

∂4w̃3

∂x̃4
= −2

∂2w̃1

∂t̃0∂t̃2
− ∂2w̃1

∂t̃21
− 2

∂2w̃2

∂t̃0∂t̃1
− µ̃

∂w̃1

∂t̃0
+ ãexcit cos(Ω̃t̃)

+

(

1 +
1

k̃bound

)−1(
∫ 1

0

(

∂w̃1

∂x̃

)2

dx

)

∂2w̃1

∂x̃2

(16)

∀i ∈ {1, 2, 3}, w̃i(0) = 0;
∂3w̃i

∂x̃3
(0) = k̃rot

∂w̃i

∂x̃
(0); w̃i(1) = 0;

∂w̃i

∂x̃
(1) = 0

w̃1 is a solution of the homogeneous problem. As the problem is studied in the vicinity of the first
resonance, it is assumed that w̃1 is collinear to the first modal shape Ỹ1(x̃) = Y1(x).

w̃1(x̃, t̃0, t̃1, t̃2) = Ỹ1(x̃)A1(t̃1, t̃2)e
it̃0 + cc (complex conjugate) (17)

The independence between the scales wi and the uniformity of such an expansion rely on their or-
thogonality and on a solvability condition. As the problem is self-adjoint (which can be demonstrated
following the procedure outlined by Nayfeh [15]), the solvability condition at each order is the elim-
ination of the secular terms. At the second order the solvability condition is ∂A1

∂t̃1
= 0. Thus w̃2 is a

solution of the homogeneous problem and is orthogonal to w̃1. w̃2 is null. The detuning parameter σ
is introduced to measure the distance Ω− Ω1. It is defined by:

Ω̃t̃ = t̃0 + σt̃2 (18)

This definition is equivalent to its dimensional form:

σ =
Ω− Ω1

ε2Ω1
(19)
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The solvability condition at the third order, considering the expressions (17) and (18), gives the
equation:

−i
dA1

dt̃2
− i

µ̃

2
+

aexcit

2
eiσt̃2 − 3A2

1Ā1

(

1 +
1

k̃bound

)−1




∫ 1

0

(

dỸ1

dx̃

)2

dx





2

= 0 (20)

By introducing the amplitude a1 (such as A1 = a1
2 eiβ), splitting the real and imaginary parts of

Equation (20) and considering the stationary solution, the relation (21) between the amplitude of
vibration a1 and the frequential detuning σ is obtained.

σ = −3

4

(

1 +
1

k̃bound

)−1




∫ 1

0

(

dỸ1

dx̃

)2

dx̃





2

a21 ±
√

(

ãexcit

a1

∫ 1

0
Ỹ1dx̃

)2

−
(

µ̃

2

)2

(21)

In order to compare the simulation results with experiments, Equation (21) is rewritten into a dimen-
sional relation (22) between the frequency of excitation F and the amplitude of displacement at the
middle of the beam w. The corresponding curve is plotted in Figure 8.

F = F0



1 +Bw2 ±C

√

(

aexcit

Ω0
2w

)2

−D2



 (22)

where

F0 =
1

2π

√

EI

ρA

λ2
1

l2
; Ω0 = 2πF0; B =

− 3Al2

16IY1(l)
2λ4

1

(

∫ l

0

(

dY1

dx

)2

dx

)2(

1 +
EA

l kbound

)−1

C =
Y1(l)

l

(

∫ l

0
Y1(x)dx

)

; D =

(

∫ l

0
Y1(x)dx

)−1
l3

λ2
1 Y1(l)

√
ρAEI

µ

(23)

In the model presented in Section 3, four parameters have to be experimentally updated: the linear
damping coefficient µ, the effective half-length l and the boundary springs kbound and krot. To this
purpose, the following strategy is applied. Equation (22) gives a direct link between the frequency
response curve and the parameters. The physical terms F1, F2, Fmax and wmax, defined by Figure 8,
are identified in the experimental frequency response curve. The curve parameters F0, B, C and D
are deducted from relations (24) to (27).

F0 =
F1 + F2

2
(24)

B =
Fmax − F0

F0w2
max

(25)

D =
aexcit

wmaxΩ0
2 (26)

C =

(

(

aexcit

Ω0
2wlow

)2

−D2

)− 1

2
(

F2 − F1

2

)

(27)

The model parameters µ, l, krot and kbound are then computed using the relations (23). The de-
pendences are the following : C(krot), F0(krot, l), B(krot, l, kbound), D(krot, l, µ). Using the relation
C(krot), krot is firstly adjusted by a bisection method. l, kbound and µ are then directly computed
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FFmaxF2

F = F0(1 + Bw
2)

wlow

w

F1

wmax

F0

Figure 8: Parametric frequency response curve calculated by the method of multiple scales. wlow is
an arbitrary chosen low amplitude. wlow must be low enough to have Bw2

low << 1.

Parameter Exp 1 Exp 2 Exp 3
Excit = 2 m.s−2 Excit = 4 m.s−2 Excit = 6 m.s−2

l Effective half-length of the beam 0.2549 m 0.2552 m 0.2554 m

µ Viscous damping coefficient 2.4 kg.m−2.s−1

krot Rotational boundary spring 5.66.104 N.rad−1

kbound Longitudinal boundary spring 8.11.107 N.m−1

Table 2: Physical values of the updated parameters.

using the relations (23). Table 2 gives the values of four updated parameters for each experiments. It
can be noted that only l varies from one experiment to another.

The variations of l can be interpreted as variations of the static constraint in the beam from one
experiment to another and then correlated to the value of the strain gage during each experiment.
When an additional static longitudinal loading δP is added to the system, the fundamental frequency
is modified according to the following equation ([16], p144):

δF0

F0

=
1

2

δP

Pbuckling

(28)

where Pbuckling =
π2EI

l2
for a clamped-clamped beam experiment ([16], p149). From Equation (23),

this fundamental frequency variation δF0 can be translated into an effective half-length variation δl:

δF0

F0

= −2
δl

l
(29)
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Figure 9: Comparison of strain gage experimental data (circles) with strain (δε) induced by an updated
constant loading (thick straight lines). The comparison is made for the three increasing-decreasing
swept sine experiments with excitation levels of 2 m.s−2 (blue), 4 m.s−2 (green) and 6 m.s−2 (red).
The offset for the experimental strain values is chosen to set the mean value of the first experiment
to zero. Resonance phenomena appear at 100s (increasing sweep) and 480s (decreasing sweep).

The loading δP can be translated into a longitudinal strain δε:

δP = EAδε (30)

Finally, δl is related to the strain δε through the following equation:

δε = −4
Pbuckling

EA

δl

l
(31)

The updated δl are translated into δε and are compared to the experimental data in Figure 9. The
experimental data are the strain gage values, low-pass filtered and averaged. Note that in the vicinity
of the resonance phenomena, the static value of the gage increases, this is due to the longitudinal
movement u which is proportional to w2 cos2(Ωt) and thus have a static component. Away from these
resonances, as w2 is very low, the static value of the gage is not influenced by the dynamical response.
The strain evolves a lot during the experiment, so that it is very difficult to define precisely a constant
longitudinal loading. Anyway the updated values of such a loading, obtained via the method of
multiple scales, are compatible with the measures. This comparison substantiates the explanations of
Section 2.2 on the variability of the fundamental frequency and allows to update l at each experiment.
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5 Numerical Methods

As the method of multiple scales does not allow to simulate a frequency response on a large frequency
range, or the response of an industrial finite element model, two numerical methods are employed in
this study.

5.1 Harmonic Balance Method

The Harmonic Balance Method [5], enables to solve numerically the discrete problem (12), which can
be rewritten in the matrix form:

Ẅ +DẆ +KW = Fexcit + Fnl(W) (32)

where W = {wi}i∈M ; D =
µ

ρA
; K = Diag(Ω2

i )i∈M ; Fexcit = {Γi aexcit cos(Ωt)}i∈M
Fnl(W) =

{

∑

{j,k,m}∈M3 Γijkm . wj wk wm

}

i∈M
(33)

As the excitation term is periodic, it is assumed that the nonlinear dynamical response and the force
vector may be approximated by finite Fourier series with Ω as fundamental frequency.

W(t) = B0 +
p
∑

k=1

(Bk cos(kΩt) +Ak sin(kΩt)) (34)

Fnl(t) = C0 +
p
∑

k=1

(Ck cos(kΩt) + Sk sin(kΩt)) (35)

Fexcit(t) =
p
∑

k=1

(Ck, excit cos(kΩt) + Sk, excit sin(kΩt)) (36)

with C1, excit = {Γi aexcit}i∈M , Ck, excit = 0 ∀k 6= 1 and Sk, excit = 0 ∀k ∈ [1, p]

p, the order of the Fourier series is selected on the basis of the number of significant harmonics
expected in the nonlinear dynamical response. For our application, p = 5 is chosen. Equations (12)
are rewritten in the Fourier basis:

KB0 = C0 and

[

K− (kΩ)2Id −kΩD
−kΩD K− (kΩ)2Id

] [

Ak

Bk

]

=

[

Sk

Ck

]

+

[

Sk,excit

Ck,excit

]

∀k ∈ [1, p]

(37)
where Id is the identity matrix.

The coefficients C0, Sk and Ck are calculated by applying an Alternate Frequency Time domain
method (AFT-method) that was presented by Cameron and Griffin [17]. This method is summed up
by the following scheme, where DFT means Discrete Fourier Transform:

X = [B0A1B1 . . .ApBp]
DFT−1

→ W(t)
eq(33)→ F(t)

DFT→ [C0S1C1 . . .SpCp] (38)

This link between [C0S1C1 . . .SpCp] and X enables a nonlinear solving of problem (37) which can be
written as H(X,Ω) = 0.

In order to compute a continuous response curve in the frequency-amplitude domain, a pseudo-
arclength continuation method is used. The frequency Ω is considered as a variable as well as the
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Fourier coefficients X. The arc length between two consecutive points (X(i),Ω(i)) and (X(i+1),Ω(i+1))
is given by:

∆si+1 =
√

(

X(i+1) −X(i)
)2

+ α
(

Ω(i+1) − Ω(i)
)2

(39)

α is a numerical coefficient introduced in order to take into account the difference of magnitude between
Ω (∼ 103 s−1) and ‖X‖ (∼ 10−3 m). This coefficient plays a key role in the numerical convergence of
the algorithm, in particular in the vicinity of a singular point.

The continuation method is illustrated in Figure 10. It starts with a prediction step. Considering
that 3 points are already computed (Yi−2, Yi−1 and Yi, where Yi = [X(i),Ω(i)]), the next point is
extrapolated. A second degree Lagrangian polynomial prediction is chosen, so that the prediction
point at the abscissa si+1 is:

Y
(0)
i+1 =

i
∑

k=i−2





i
∏

l=i−2;l 6=k

(

si+1 − sl

sk − sl

)



Yk (40)

Then comes the correction step. Yi+1 needs to be a zero of the function H. The Newton algorithm

is used to move Y
(0)
i+1 closer to a zero of H. As Ω is considered as a variable, a path of research needs

to be defined. In the pseudo-arclength continuation method, the direction of research Yi+1 −Y
(0)
i+1 is

orthogonal to the direction of prediction Y
(0)
i+1 −Yi, as shown in Figure 10. The (j + 1)th iteration of

the correction algorithm is:

[

JYH(Y
(j)
i+1)

Y
(0)
i+1 −Yi

]

(

Y
(j+1)
i+1 −Y

(j)
i+1

)

=

[

−H(Y
(j)
i+1)

0

]

(41)

The calculation of the jacobian JYH is made by finite difference where the two values of H are
evaluated using the AFT-method.

Once the Fourier coefficients X calculated, the nth harmonic of w is given by the formula Hn =
√

||An||2 + ||Bn||2, so that the frequency response can be plotted for each harmonic.

5.2 Time-integration - Shooting Method

The last simulation method employed in this study is the one presented by Peeters and al. [4]. An
alternative shooting technique coupled with Newmark time marching and an arc length continuation
algorithm can also be found in [18].
Problem (32) is written in the following form:

Ż = g(Z) with Z = [W,Ẇ] and g(Z) = [Ẇ,−DẆ −KW + F(W) + Fexcit] (42)

The solution of System (42) with the initial conditions Z(t = 0) = z0 is written as Z(t, z0) in order
to exhibit the dependence on the initial conditions. Such a solution is stationary if it is periodic of
minimal period T = 1

Ω . A ”shooting method” is applied to find out an initial condition z0 that makes
Z(t, z0) to be periodic. Z(t, z0) is calculated by a time-integration method on a discrete time basis
of the interval [0, T ]. A fourth order Runge-Kutta integration scheme with an adaptative calculation
step control is used. A residual function H is introduced:

H(z0,Ω) = Z(T, z0)− z0 (43)
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i+1
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‖X‖

Figure 10: Schematic of the continuation process. The black curve is the solution. The dashed curve
leads to the polynomial prediction. The arrow represents the correction process.

The frequency response is then the branch of points (z0,Ω) satisfying H(z0,Ω) = 0. A pseudo-
arclength continuation scheme is introduced to compute this continuous branch. As presented in
Section 5.1, an arclength s is introduced:

∆si+1 =
√

‖z0(i+1) − z0(i)‖2 + α
(

Ω(i+1) − Ω(i)
)2

(44)

In reference [4] a tangent predictor is introduced, but a polynomial Lagrangian predictor may be
used analogously to Section 5.1. Replacing Y by (z0,Ω), the prediction step (40) and the correction
steps (41) can be used. The harmonic amplitudes Hn can then be computed using a Discrete Fourier
Transform algorithm.

6 Results

In this section, experiments and numerical simulations with ideal or real experimental input are
compared.

6.1 Simulation with ideal input

First of all, the numerical simulations are compared with experimental data in Figures 11 and 12. The
results from the two numerical simulation methods are compared for various harmonics. The harmonic
curves overlap and differences between each computed harmonic are less than 0.01%. This excellent
agreement between time-integration and harmonic balance substantiate the truncature in the Fourier
series (p=5) in the harmonic balance method. The computing times of the two methods are also
very close and are mainly driven by the continuation algorithm parameters. These simulations are in
excellent agreement with experimental data. Figure 11 highlights the differences between the method
of multiple scales and numerical methods. The perturbation method is very accurate in the vicinity
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of F0 but the accuracy decreases as the frequency distance increases. Focusing on the resonance
peak, the analytically calculated peak is higher than the numerically estimated one. The numerical
methods give a very accurate solution of the modeled problem thanks to the optimization process. At
the resonance peak, the distance between Fmax and F0 makes the perturbation method become less
accurate than the numerical ones. However, in Figure 11, the analytical results suit experiment better
at the resonance peak and could indicate that the perturbation method is the most accurate. This is
an artifact due to the updating method. The height of the simulated peak is related to the dissipation
parameter µ. This parameter is updated using the perturbation method (see Section 4) and is thus
estimated with a bias because of the distance between Fmax and F0. This bias is revealed when the
updated model is treated with numerical methods, the numerical results does not suit experiment
perfectly. µ is slightly overestimated by the updating method proposed.

Figure 12 presents the comparison of measurements with numerical simulation of the harmonic
response for various excitation levels. It is clearly seen that the hardening effect is well reproduced via
the numerical simulations. These results validate the modeling of the beam with non-ideal boundary
conditions and the global strategy proposed in this study, that is based on the coupling between an
updating process (using the method of multiple scales) and numerical simulations.
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Figure 11: Comparison of experimental data (red crosses) with simulation by the method of multiple
scales (blue dashed curve) and numerical simulations (green curve). The excitation level is 6 m.s−2.
The results of both numerical simulation methods overlap and thus only one curve is plotted.

In order to highlight the importance of identifying non-ideal boundary conditions, Figure 13
presents the frequency responses of a model with ideal clamps in the longitudinal direction (kbound →
∞, Figure 13 (a)) and a model with ideal clamps in rotation (krot → ∞, Figure 13 (a)). Frequency
responses with lower values of kbound and krot have also been plotted in Figure 13. It is clearly shown
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Figure 12: Experimental and simulated harmonic responses at 3 excitation levels. Experimental signal
is plotted with crosses. The dashed curves are the simulation results with an ideal mono-harmonic
input. The excitation levels are 2 (blue), 4 (green) and 6 (red) m.s−2.
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(b)

Figure 13: Influence of parameters kbound (a) and krot (b). Experimental data (red crosses) is compared
with numerical simulations. The simulation with updated parameters is plotted on both figures
(red thin curve). The blue thick curves represent the asymptotes kbound → ∞ (a) and krot → ∞
(b). The green dashed curves represent (a) simulation with kbound = 0 and (b) simulation with
krot =

1
2krot, updated.
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Figure 14: Longitudinal displacement at the clamped ends. u(0) is measured by 1
2(P2X-P1X) (red

crosses). This experimental data is compared with the model simulation (blue plain curve).
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that a correct estimation of krot and kbound is necessary to simulate the real structure response. It can
be observed that krot drives the modal participation factor while kbound drives the nonlinear curvature
of the frequency response.

The longitudinal displacement at the clamped ends u(0) is also measured during the experiment
in order to justify the introduction of the spring kbound. u(0) is computed according to Equation (45)
and then compared with experimental data. The experimental signal 1

2(P2X-P1X) measures u(0). As
predicted by Equation (45), this signal’s frequency is twice the excitation frequency and its amplitude
is compared with simulations in Figure 14. The good agreement illustrated by this figure substantiates
the introduction of kbound: the clamped ends shall not be modeled by the ideal condition u(0) = 0.

u(0) =
w2

2Y1(l)2

(

1 +
lkbound

EA

)−1 ∫ l

0

(

dY1

dx

)2

dx (45)

6.2 Simulation with experimental input

In the Harmonic Balance Method presented in Section 5.1, the excitation is assumed to be ideal
(Fexcit = {Γi aexcit}i∈M cos(Ωt)) so that it only contributes to C1,excit. Anyway, with the same
method, the response to a multi-harmonic excitation can be simulated by using coefficients Ck,excit 6=
0. The excitation can thus be the measured input signal, whose harmonic amplitudes are extracted
using the method presented in Section 2.3. Then the multi-harmonic response of the model to a
multi-harmonic input excitation is computed using Equation (46).

Ck,excit =
{

ΓiH
k
input

}

i∈M
and Sk,excit = 0 ∀k ∈ [1, p] (46)

Note that in this work only the amplitude of the input signal is used but through Sk,excit, the phase
information of the input signal can also be taken into account in the simulation. From the authors’
experience, changes in the input signal phases do not affect significantly the harmonic amplitudes of
the output.

The input signal is not independent from the structure response and hysteresis phenomena happen
as indicated in Figure 5. The input signal is not the same during the increasing and decreasing swept
experiments. For each point of simulation, there should be a choice of experimental input signal
(either increasing or decreasing experiment). In this work, simulations reproduce the increasing and
decreasing experiments until the jump phenomenon happens. That means that for the first calculation,
the continuation method starts from the minimum of the experimental frequency range and increases in
frequency until the jump phenomenon. This calculation takes the increasing swept sine experimental
data as an input. Analogously, the second calculation starts from the maximum of the frequency
range, decreasing in frequency until the second jump phenomenon. This second calculation takes
the decreasing swept sine experimental data as an input. The frequency response obtained is not
continuous. The continuation method with an ideal input enables to calculate a continuous frequency
response beyond singular points but the experimental input cannot be available in the branch beyond
singular points.

At the end, the simulation with experimental input can be compared to a simulation with ideal
mono-harmonic excitation. These two numerical multi-harmonic responses are then compared with the
experimental output, whose harmonic amplitude has also been extracted using the method presented
in Section 2.3. These three processes are summed up in Figure 15.

The comparison between experimental data, ideal input simulation and experimental multi-harmonic
input simulation is displayed in Figure 16 for the second and third harmonic responses at three levels
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Figure 15: Logical processes. From top to bottom; Experimental data treatment, Simulation with
ideal input and Simulation with experimental input.

of excitation. Simulations with the two distinct inputs help understanding the origins of each har-
monic response. For the reader’s comprehension, it can be noted that the first harmonic experimental
response corresponds to the system frequency response. It is predicted by the ideal input simulation,
as shown in Figure 12. In this study, the higher order harmonics in the input signal do not affect
the first harmonic response. On the contrary, the ideal input simulation does not predict any second
harmonic signal whereas it is measured. The experimental second harmonic signal must thus be due
to the non-ideal input signal, as previously seen in Section 2.3. As indicated in Figure 5 (a, c and e),
the simulations with experimental input confirm this hypothesis: the levels of response predicted are
in good agreement with the experimental data for the three levels of excitation. The third harmonic
experimental response is explained both by the nonlinearity of the system and by the non-ideal input
signal. The simulation with ideal input predicts the third harmonic response in the vicinity of the
resonance (see Figure 16, (b, d and f), around 110 Hz). Away from this resonance, the third harmonic
experimental response must be due to the non-ideal input. The very good agreement between mea-
surements and multi-harmonic input simulation results substantiates this diagnosis (see Figure 16, (b,
d and f), in the ranges [80-100] Hz and [120-160] Hz).

7 Conclusion

This clamped-clamped beam experiment is made to exhibit, model and simulate nonlinear behaviors of
the vibration response of a simple structure with non-ideal boundary conditions. Comparison between
experimental and simulation results reveal that the non-ideal boundary conditions are necessary for
the modeling. These hypothesis that increase the accuracy of the simulation results are substantiated
by complementary measurements that exhibit the predicted longitudinal movement at the boundaries.

In this study, three simulation methods adapted to nonlinear vibrations are compared. The method
of multiple scales enables to find an analytic equation of the frequency response and thus enables both
an easy updating of the model and a good understanding of the influences of each physical parameter
on the frequency response. This perturbation method is only accurate in the vicinity of the resonance.
Compared to other existing methods, this method could not be easily applied to a more complex
structure, such as a finite element model of an industrial assembly. The two numerical methods tested
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Figure 16: Second harmonic responses (a,c,e) and third harmonic responses (b,d,f). The results are
obtained with excitation levels of 2 (a,b), 4 (c,d) and 6 m.s−2 (d,e). Experimental signal is plotted
with crosses. The dashed curves are the simulation results with an ideal mono-harmonic input. The
plain curves are the simulation results with the multi-harmonic experimental input. For the second
harmonic, the ideal input simulation results are not plotted because they are < 10−19m.
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(i.e. Harmonic Balance Method and time-integration method with shooting algorithm) are adapted
to any discrete model. The results of the two methods are very similar and in very good agreement
with experiments, whatever the frequency and amplitude of excitation. Very similar computational
times are found.

Beyond the analysis of the harmonic frequency response, a multi-harmonic comparison of measure-
ments with simulation is performed. A signal processing tool is developed to extract the experimental
multi-harmonic frequency response of a structure from a swept-sine experiment. The Harmonic Bal-
ance Method enables to compute the multi-harmonic frequency response of a nonlinear model of the
structure. The input signal for this simulation can be either an ideal sinusoidal signal or the experi-
mental multi-harmonic input. The comparison between measurements and simulation with these two
different inputs enables to distinguish in the frequency response what is due to the system nonlinear
response and what is due to the non-ideal input signal.

This study thus outlines the accuracy of the Harmonic Balance Method to predict multi-harmonic
responses, and presents a way to interpret the origins of multi-harmonic signals that are often unex-
pected in the structural frequency responses.
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