Multiplicity of Polynomials on Trajectories of Polynomials Vector Fields in C3 - Archive ouverte HAL Access content directly
Journal Articles Banach Center Publications Year : 1998

Multiplicity of Polynomials on Trajectories of Polynomials Vector Fields in C3

Andrei Gabrielov
  • Function : Author
Frédéric Jean
Jean-Jacques Risler
  • Function : Author

Abstract

Let ξ be a polynomial vector field on n with coefficients of degree d and P be a polynomial of degree p. We are interested in bounding the multiplicity of a zero of a restriction of P to a non-singular trajectory of ξ, when P does not vanish identically on this trajectory. Bounds doubly exponential in terms of n are already known ([9,5,10]). In this paper, we prove that, when n=3, there is a bound of the form p + 2 p ( p + d - 1 ) 2 . In Control Theory, such a bound can be used to give an estimate of the degree of nonholonomy for a system of polynomial vector fields (this degree expresses the level of Lie-bracketing needed to generate the tangent space at each point).
No file

Dates and versions

hal-01010760 , version 1 (20-06-2014)

Identifiers

  • HAL Id : hal-01010760 , version 1

Cite

Andrei Gabrielov, Frédéric Jean, Jean-Jacques Risler. Multiplicity of Polynomials on Trajectories of Polynomials Vector Fields in C3. Banach Center Publications, 1998, 44 (1), pp.109-121. ⟨hal-01010760⟩

Collections

ENSTA UMA_ENSTA
77 View
0 Download

Share

Gmail Facebook X LinkedIn More