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è Abstract

In this article we desire to explore the capability of conceiving  new kinds of turbomachinery, and to estimate their perfor-
mance and their application domain.
We need to extend the classical Euler equation for turbomachinery for non relative stationary flow and non permanent fluid 
boundaries. 
To obtain reasonably tractable relations for exploratory purposes, we limit our study to incompressible non viscous flow.
The simplifying chosen boundaries conditions lead to hydraulic turbomachinery type and we focus on turbines.
It is possible to establish a chart of performance in the cases of limited  effects of gravity on rotor flow and the domain of use 
is compared to classical hydraulic turbines.
In other cases the model can be applied and leads to turbomachines which appear more as water wheels but it offers another 
way to apprehend and design them.

 

è Key Words

Internal Flow, Turbomachinery, Unsteady Flow, Water Turbine, Water Wheel

 

è Nomenclature

Bi axial length Rradius or rotor domain

C constant Ssurface or area

D diameter or fluid domain U frame velocity

H head V absolute velocity

L length with fluid in passage W relative velocity

P power

∑ x limit of open domainx pstatic pressure

e internal energy qvolumetric flow rate

f scalar quantity r radius

g gravitational acceleration scurvilinear abscissa

gH g x H t time or unit vector tangent to a curve

i incidence zaltitudeHfrom axisL
l length

n rotational speed RPM

nq specific speed

a angle between meridional plane and absolute velocity q0 Initial injection azimuthal position

b angle between meridional plane and relative velocity s constraint

d increment or derivative t time or tangential constraint

h efficiency w rotor angular velocity

q angular position counterclockwise from horizontal axes r fluid density
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è Subscripts

aambient 0 time : beginning of injection

c control surface 1 time : end of injection beginning of centripetal path

ci canal inlet 2 time : end of centripetal path beginning of centrifugal path

i inlet 3 time : end of centrifugal path beginning of ejection

li limit of fluid Hlast enteredL 4 time : end of ejection

lo limit of fluid Hfirst enteredL M êF Exerted by the rotor on fluid

mmaterial surface + after inlet

ooutlet - before inlet

uperipheral velocity direction

overbar is used for dimensionless quantities                                tilde is used for characteristic units

 

1. Introduction

Dean [1] gives a necessary condition for turbomachinery to exchange energy with fluid but no way to obtain geometries apart
of already well known.

To explore the possibility of conceiving turbomachinery different of the ones we currently use, we try to follow an intuitive
approach based on a geometrical induction of their principle of action.

Axial,  mixed,  radial,  Banki,  Pelton,  centripetal  or  centrifugal,  open  or  closed,  full  or  partial  admission  turbomachines  base
concept can be inferred by considering an absolute free path  viewed in the relative frame then bending it to generate appropri-
ate force on fluid to obtain desired energy transfer  between fluid and  rotor.

The most evident case is the one of an absolute linear free path with constant velocity parallel to the axis, the relative free path
is an helix, no tangential force is applied to the fluid. We can modify the relative path with blades to obtain tangential force
and so axial compressor or turbine.

There is multiple variants and arrangements of these turbomachines. Is it possible to imagine something notably different ? So
arises the question: what all of these machines have in common ? A possible response is all of this machines are characterized
by the fact that the outlet section is different of the inlet section (in the relative frame), so we will  try to determine a type of
turbomachine were the outlet section is the same as the inlet one (in the relative frame, preserving continuous flow at a  fixed
inlet).

2. One-dimensional approach

We use Euler equations for incompressible flow in relative frame.

(1)divHWL = 0

(2)
∑W

∑ t
r

+ rotW µ W + 2 w µ W = -grad
p

r
+

W
2

2
-

U
2

2
+ g

(3)
W2

2
-

U2

2
=

V2

2
- U VU

A more tractable form for discussing about the feasibility is the one - dimensional form along the flow passage.

(4)
∑Wli

∑ t r
‡

li

lo Sli

S
„ s =

p

r
+

W2

2
-

U2

2 li

-
p

r
+

W2

2
-

U2

2 lo

+ ‡
li

lo

g.t
”
„ s

Four phases: Injection, deceleration, opposite acceleration , ejection, will be necessary in the passage . 

Ignoring gravity effect for the moment, and if the pressure is considered as constant pa = 0 on fluid limits apart of injection, a
simplification which is permitted for example if the exit is in an ambient fluid of density ra such that ra ` r, it is necessary to
have deceleration near velocity inversion than Rlo < Rli .

 The  simplest configuration model is when the entrance is the one of a centripetal machine and so the exit is of centrifugal
type.

3. Moment of momentum equation derivation

We search for an equivalent to Euler formula for turbomachine which link moment of momentum to flow properties on inlet
and outlet fixed control surfaces Si and So. We can write:
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(5)M = ‡
V

r r
∑

∑ t
r

H Wq L „v + ‡
Si ‹ So

r r Vq IW.nM „S

Generally in turbomachinery field we rely on relative stationary flow to eliminate volume integration term and axisymmetric
hub and shroud to restrict surface integration to inlet and outlet (at least as a first approximation), the steadiness hypothesis of
the relative flow can be replaced by the one of relative time periodicity to eliminate the volume integration term.

In our case we admit  flow periodicity in the absolute frame (induced by the rotor rotation) but a priori not in the relative
frame. We examine the reasons why strategies to obtain classical Euler equation fail in our case.

In absolute frame the flow is periodic in time but not in space, the integration volume vary, and the surface integrand does not
reduce to  fixed Si  and So integrand. 

In relative frame the flow is not periodic in time nor in space, the integration volume vary, and the surface integrand does not
reduce to Si  and So integrand.

The same difficulties are valid for the mass conservation (in case of compressible flow) and energy equation derivation. 

So willing to avoid prematurely recourse to infinite number of blade hypothesis we turn to another approach.

4. Evolution of a scalar quantity in the rotor

4.1. Mean value over a time period

One considers a rotor which the   material free volume  R  is limited by ∑R composed of an  immaterial axisymmetric control
surface ∑Rc and of the material surface ∑Rm. The flow in the absolute frame has a periodicity dt .  

The fluid volume D limited by ∑D flows in R during a time interval  containing   [ 0, dt ].

Given f a continuous scalar function with continuous derivatives in  D ‹ ∑D   we are interested in:  

‡
D› R

f „v its convective derivative
d

d t
‡

D› R
f „v and its mean value overaperiod :

1

dt
‡

0

dt d

d t
‡

D› R
f „v „t

These quantities are continuous with time.

(6)
d

d t
‡

D› R
f „v= ‡

D› R

∑ f

∑ t
„v + ‡

∑HD› RL
f V .n „S

We will note
d

d t
the time derivative of‡

D› R
f „v to distinguish from convective derivative.

(7)
d

d t
‡

D › R
f „v= ‡

D› R

∑ f

∑ t
„v + ‡

∑HD › RL
f X . n „S

Where X is the velocity of the surface∑ HD › RL .

One haveX . n = V .n except on∑Rc where X . n = 0 this leads to :

(8)
d

d t
‡

D› R
f „v=

d

d t
‡

D › R
f „v + ‡

∑Rc ›D
f V .n „S

d

d t
‡

D › R
f „v can be discontinuous with time but as‡

D › R
f „v is continuous we can integrate it and :

(9)
1

dt
‡

0

dt d

d t
‡

D› R
f „v „t =

1

dt
‡

0

dt d

d t
‡

DH tL › RH tL
f „v „t + ‡

0

dt

‡
∑Rc ›DHtL

f V .n „S „t

(10)
1

dt
‡

0

dt d

d t
‡

D› R
f „v „t =

1

dt
‡

D HdtL› RH dtL
f „v - ‡

DH0L › RH 0L
f „v+ ‡

0

dt

‡
∑Rc ›DHtL
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From periodicity :

(11)
1

dt
‡

0

dt d

d t
‡

D› R
f „v „t =

1

dt
‡

0

dt

‡
∑Rc ›DHtL

f V .n „S „t
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4.2. Application to Mass flow conservation equation

Making f = r leads to mass flow conservation over a time period (even in case of compressible flow).

(12)‡
0

dt

‡
∑Rc ›DHtL

r V .n „S „t = 0

4.3. Application to moment of momentum equation

The mean value of the torque applied to the fluid will be given with f = r r Vq .

(13)MMêF =
1

dt
‡

0

dt

‡
∑Rc ›DHtL

r r Vq V . n „S „t

4.4. Application to energy equation

(14)‡
D› R

r g . V „v = -‡
D› R

r g
d z

d t
„v = -

d

d t
‡

D› R
r g z „v

(15)∑ HD › RL = H∑R› DL ‹ H ∑D › RL ‹ H∑R › ∑DL

(16)‡
∑HD › RL

s. V „S= ‡
∑Rm› ∑D

s. V „S + ‡
∑Rc›D

s. V „S + ‡
∑D›R

s. V „S

(17)s = -p n + t

Following classical assumption we neglect viscous forces on∑Rc.

(18)t = 0 on ∑Rc › D

As ra`r :       

(19)s = 0 on ∑D › R

And: 

(20)‡
∑Rm› ∑D

s. V „S = PMêF

(21)‡
∑HD › RL

s. V „S= ‡
∑Rc›D

H-p nL . V „S + PMêF

Making  f = e + 
V2

2
 first principle can be written:

(22)
1

dt
‡

0

dt

‡
∑Rc›DHtL

r
p

r
+

V2

2
+ g z V . n „S „t =

1

dt
‡

0

dt

PMêFHtL „t

The disappearance of instationnary term in absolute frame but only for mean value over a time period is consistent with the
conclusions of Dean[1].

We now turn to more practical aspect of conception and we will use the previous relations later.
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5. Velocity triangles

To continue simply we focus on pure 2D radial flow. We define velocity triangles examples supposing inlet and exit radial
velocities are about the same magnitude and ignoring inlet incidence and exit slip. The triangles are drawn on figures 1 and 2 ,
blue color is for absolute velocity, red for frame velocity and green for relative velocity. 

5.1. Pump case

To realize suitable energy exchange we have to add kinetic energy to the fluid. Consequently at inlet  the peripheral velocity
will be chosen such that to subtract to the relative tangential velocity and add  to it at exit. 

Figure 1: Velocity triangles examples for pump case

5.2. Turbine case

To realize suitable energy exchange we have to subtract kinetic energy to the fluid. Consequently at inlet  the peripheral
velocity will be chosen such that to add to the relative tangential velocity and subtract to it at exit. 

Figure 2: Velocity triangles examples for turbine case

We focus now on turbine case.

6. Illustration of turbine case flow path 

We illustrate now the path of fluid in a 2D rotor. After entering in a flow passage it travels to the axes, reverses and then exits.
Colored  regions  red,  green,  blue  and  magenta  correspond to  injection,  centripetal  path,  centrifugal  path,  and  ejection
respectively.
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Figure 3:Illustration of fluid motion for turbine case.

7. Flow calculation

7.1. Inlet conditions

We suppose the inlet conditions are such that the fluid entrance takes place on a short distance and that the flow direction is
such that the inlet losses are small so that we can write:

(23)
p

r
+

W2

2
-

U2

2 +

=
p

r
+

W2

2
-

U2

2 -

Which can be written:

(24)
p

r
+

W2

2 +

=
p

r
+

V2

2 -

+
Ui

2

2
- Ui W+ cosb+ tga-

p

r
+

V2

2 -

is supposed constant at inlet, and we adjusta- such thatW+ tga- be constant at inlet.

(25)cosb+ W+ tga- = Ct

J p

r
+

W2

2
N
+
 is then a constant, we will verify that our hypothesis does not lead to too hight incidence at leading edge and we

define:

(26)
Wci 0

2

2
=

p

r
+

w2

2 +

(27)
p

r
+

V2

2 -

=
Wci 0

2

2
-

Ui
2

2
+ Ui Ct

7.2. Injection

In a flow passage in the case of a high number of infinitely thin blades the area for a unit axial length is given by:

(28)S= r cosb dq

(29)r cosb = C

If C is a constant W is constant and so the length of passage with fluid after injection and before ejection. In that case we have:

(30)Rli
2 - Rlo

2 = 2C L

For analytically obtained solutions we restrict to cases where the b=0 radius is not crossed.

(31)
∑Wli

∑ t r

L =
p

r
+

W2

2
-

U2

2 li

-
W2

2
-

U2

2 lo

As W is constant along the passage we can write the first order ordinary differential system:

(32)

d W

d t
L =

Wci 0
2

2
-

W2

2
- w2 C L

d L

d t
= W
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As L Ht = 0L = 0 :

(33)WHt = 0L = Wci 0

Deriving  the system we get:

(34)
d2 W

d t 2
L = - 2

d W

d t
+ w2 C W

Which is verified  in particular if:

(35)
d2 W

d t 2
= 0 2

d W

d t
+ w2 C = 0 " t

One verifies that a solution is:

(36)
W = Wci 0 -

w2 C

2
t

L = Wci 0 t -
w 2 C

4
t 2

To ensure inward velocity we suppose injection stops at timet1 such that :

(37)WHt1L ¥ 0 ï t1 
2 Wci 0

w2 C

7.3. Centripetal and centrifugal path

Centripetal part begins at timet1 , ends at time t2 when relative velocity is zero, whereas centrifugal part begins at time t2 and

ends at time t3 when external radius is reached.

(38)
d W

d t
= -w2 C

(39)W = W1 - w2 C Ht - t1L

(40)t2 =
Wci 0

w2 C
+

t1

2

t3 is defined by :

(41)‡
t1

t3
W „ t = 0

(42)t3 =
2Wci 0

w2 C

(43)W3 = - W1

7.4. Ejection

(44)

d W

d t
= -w2 C

d L

d t
= W

(45)W = W3 - w2 C Ht - t3L
Ejection ends at timet4 such that :

(46)‡
t3

t4
W „ t = -L1

7.5. Pressure

The mean pressure can be calculated when velocity is known.

Up  to  now  for  clarity  we  have  used  dimensional  variables.  However  this  leads  to  relations  with  inutile  complexity  for
exploratory purposes. So we use now nondimensional variables to involve  fewer ones.
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8. Nondimensional form of Equations

As characteristic units we take:

(47)L
è
= Ri

(48)t
è
=

1

w

(49)M
è

= r L
è 3

These has the advantage of equalling time and angular wheel rotation, the lengths are divided by Ri  and the velocities are
divided by Ui.

Overbars will be used for nondimensional variables.   

(50)t1 
2Wci 0

C

(51)t2 =
t1

2
+

Wci 0

C

(52)t3 =
2Wci 0

C

(53)t4 =
1

2C
C t1 + 2Wci 0 + 4 Wci 0

2
- C

2
t1

2 + 4C t1 Wci 0

So if bi  Wci 0 and t1 are chosen the entire flow is determined, q0  has no effect.

The maximum for the s abscissa is obtained at time t2 and its value is:

(54)s2 =
1

8
-C t1

2 + 4 t1 Wci 0 +
4Wci 0

2

C

The angle b is zero for the sM  abscissa and we have:

(55)sM =
1

2C
I1- C

2M

To have s2 < sM  it is necessary to have Wci 0
2

< 1- C
2
 and if Wci 0

2
>

1-C
2

2
 the duration of injection must be such that:

(56)t1 < 2
Wci 0 - C

2
+ 2 Wci 0

2
- 1

C

In practice for rotors with blades such that  C  is constant, s2 < sM and g = 0 we use analytical solution  for finding the

relative velocity and numerical integration for finding the absolute path, in all others cases we use numerical integration.
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9. Examples

All the shown examples will be for C constant, that is C=cos bi  . On figure 4 flow path and velocity triangles are drawn for

bi =70°  Wci 0=0.6  t1=90° and for bi =65°  Wci 0=0.8  t1=45° on figure 5. Colored regions belong to D›R.  Colors are the
same as for figures 1, 2 and 3.

For illustration the rotors are drawn with 20 blades. Inner circle figures b=0 radius.

                                   Figure 4: Absolute flow path                                      Figure 5: Absolute flow path   

10. Global Characteristics

We calculate now volume flow and power in the case of infinite number of blades.

10.1. Volume Flow

(57)qv = Ri Bi ‡
0

q1

W cosbi „q or qv = -Ri Bi ‡
q3

q4

W cosbi „q

If one defines:

(58)qv =
qv

Ui Bi Ri

(59)qv = C‡
0

t1
W „ t

(60)qv = C t1 Wci 0 -
C

4
t1

10.2. Power

If we apply moment of momentum equation to the calculated fluid flow :

(61)PMêF = w MMêF

(62)PFêM = w r Ri
2 Bi ‡

0

q1

W cosbi VU „q + ‡
q3

q4

W cosbi VU „q

If one defines :

(63)P=
PFêM

r Bi Ri Ui
3

(64)P= -
sin bi

24
J8Wci 0

3
- 3C t1 IC 2

t1
2 - 6 IC t1 - 2Wci 0M Wci 0M - I-C

2
t1

2 + 4C t1 Wci 0 + 4Wci 0
2 M3ê2N

It is clear as our incompressibility hypothesis and so ra << r to obtained simplified model for exploratory purpose has led to
hydraulic turbomachinery type so we will calculate head efficiency  and specific speed as it is usual for that type of turboma-
chine. 
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10.3. Head

We define H0 such that:

(65)g H0 =
p

r
+

V2

2 -

(66)g H0 =
Wci 0

2

2
-

Ui
2

2
+ Ui Ct

(67)gH0 =
Wci 0

2

2
-

1

2
+ Ct

The conservation of moment of momentum across ∑Rc at inlet determines Ct.

(68)Ct =
Ÿ 0

t1 V R VU „ t

qv

10.4. Efficiency

If one defines efficiency  as the ratio of the turbine power to the input.

(69)h =
PFêM

r qv g H0

(70)h =
P

qv gH0

10.5. Specific Speed

(71)nq = n
qv

1ê2

H0
3ê4

(72)nq = 30
g3ê4

p

Bi

Ri

1ê2 qv
1ê2

gH0
3ê4

10.6. Chart

As we are able to calculate efficiency and specific speed given inlet relative angle, inlet relative velocity at t=0 and t1 we can
draw the following chart.

Maximum value of t1 such that    a  <  85 °        t4 <  315 °     and  minimum radius is not crossed is chosen. For all the domain
we found 30° < t1 < 120°  and extreme values for i is about ±10°.               

            Figure 6: Specific speed and efficiency as function of bi  and  Wci 0   ( 
Bi

Ri
 = 1     g = 0 )
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10.7. Operation Domain

With the same constraints we can estimate the utilisation domain of  the actual turbine compared to others type.

Figure 7: Specific speed  domain ( 
Bi

Ri
 = 1     g = 0 )

This utilisation domain can be extended by modifying 
Bi

Ri
. We have:

(73)g = gH0

Ri

H0

As we neglect gravity effect in the rotor the previous results can only be used if 
Ri

H0
 is small. We now try to extend the validity

to other cases.

11. Evaluation of gravity effects

If the gravity effect is not negligible in the rotor we will take it into account.

11.1. Inlet

(74)
p

r
+

V2

2
+ g z

-

= g H0

(75)tga- =
Ct - g z

W
+

cosb+

The conservation of moment of momentum across ∑Rc at inlet determines Ct, in that case.

(76)Ct =
Ÿ 0

t1 V R VU „ t

qv

+ g
Ÿ 0

t1 V R z „ t

qv

(77)gH0 =
Wci 0

2

2
-

1

2
+ Ct

11.2. Outlet

(78)gHo =
Ÿt3t4 V R

V
2

2
„ t

qv

+ g
Ÿt3t4V R z „ t

qv

(79)g zo = g
Ÿt3t4V R z „ t

qv

11.3. Efficiency

(80)h =
gH0 - gHo

gH0 - g zo

(81)H 0 =
gH0

g
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12. Examples with gravity effects  inside the rotor

The first injection point position q0 play now an important role. We recall that in these cases we used numerical integration for
relative and absolute flow path, also for global characteristics evaluation.

bi = 70 ° g = 0.4 Wci 0 = 0.4 q0 = 135 ° t1 = 90 °  h =0.96       nq = 16   H 0 = 3.1

Figure 8: Absolute flow path  with gravity effects

Due to gravity acceleration it was necessary to diminishWci 0 , here
H0

R
= 3.1 , we tend to overshot water wheel. The  difference

with habitual overshot water wheel is that the fluid is always in motion in relative frame, there is no bucket but blades even if
the flow reverses. 

bi = 45 ° g = 1 Wci 0 = 0.81 q0 = -60 °  t 1 = 30 °   h =0.73          nq = 25    H 0 = 0.345

Figure 9: Absolute flow path  with gravity effects.

In that case we increaseWci 0 , here
H0

R
= 0.345 , we tend to breast or undershot water wheel.
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13. Discussion

It is clear that familiar criteria in turbomachinery field (velocity ratio, blade loading, etc.) should be used with caution in our
case, as they were developed mostly for stationary relative flow.

About Hypothesis:

A one-dimensional form of the unsteady energy equation has been used by Fukutomi [2] to calculate fluid forces in a Banki
turbine but with measured flow velocities as input, calculated and measured fluid forces agree well.

The particular choice of blade form (which leads to constant onedimensional velocity along blade at a given time) and the
infinitely thin blades hypothesis can be  easily changed especially if numerical integration is used.

The absolute angle distribution at inlet could be replaced by a coupling between flow calculation in rotor and upstream flow
with the help of numerical resolution.

Deviation angle or slip factor should be taken into account to remove no slip hypothesis at exit.   

The blades velocity distribution could be obtained from simplified method such as given by Stanitz [3] to estimate finite blade
number effect, but with the additional complexity of relative unstationary flow.    

Effect of flow viscosity can be estimated by losses models but  this will be difficult because of the unsteadiness and differences
with classical machines. Experimental or CFD investigation is possible but with considerable less commodity for exploratory
purposes.  

About possible others use :

Pure radial flow is not strictly necessary as such as a radius difference impart centrifugal force. 

Thera << r and open exit hypothesis which lead tos = 0 on ∑D › R, or incompressibility could be removed for others use.

14. Conclusions

A possibility of completing the existing variety of turbomachinery types is proposed. 

Classical relationship for turbomachinery are still valid even in the case of absolute and relative unsteadiness and non perma-
nent fluid volume but in the sense of mean value over an absolute time period if this period exists.

A simplified evaluation of the performances for hydraulic turbine application in case of negligible effects of gravity in the rotor
flow  is given. 

In case of noticeable gravity effects on the rotor flow, injection position must and can be taken into account, but it is not
possible to establish a simple 2D chart of the performances.

The simple 2D blade geometry can be attractive.

Others possibilities although not explored are possible. 
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