
HAL Id: hal-01010575
https://hal.science/hal-01010575

Submitted on 20 Jun 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Using formal methods in safety-critical interactive
system design : from architecture-based approaches to

tool-based development
Patrick Girard, Mickaël Baron, Francis Jambon

To cite this version:
Patrick Girard, Mickaël Baron, Francis Jambon. Using formal methods in safety-critical interactive
system design : from architecture-based approaches to tool-based development. HCI International
2005, Jul 2005, Las Vegas, United States. pp.1-10. �hal-01010575�

https://hal.science/hal-01010575
https://hal.archives-ouvertes.fr

Using Formal Methods in Safety-Critical Interactive System Design:

from Architecture-based Approaches to Tool-based Development

Patrick GIRARD, Mickaël BARON

LISI/ENSMA

1 rue Clément Ader, Téléport 2, BP 40109

86961 Futuroscope Cedex

France

{girard,baron}@ensma.fr

Francis JAMBON

CLIPS-IMAG

271 rue de la bibliothèque, BP 53

38041 Grenoble cedex 9

France

Francis.Jambon@imag.fr

Abstract

Although formal methods are increasingly used by researchers in HCI, their usage in actual interactive

developments has not been put in practice. In this article, we describe our experience with a specific formal method

–the B method– from two viewpoints. On the one hand, we demonstrate how it is possible to use formal methods on

real development, from specification to actual code. Our case study concerns a real-time functional core. Doing so,

we notice that some HCI concepts, such as architecture models, may have to be adapted or recreated. On the other

hand, we show how it is possible to make formal methods easier to use by the way of a complete integration into

HCI tools. We conclude in eliciting the lessons learned from this experience.

1 Introduction

In this contribution, we would like to introduce our experience in designing interactive systems with the help of

formal methods –issued from software engineering. Doing so, we try to elicit the points that make all the difficulty

of actually realizing our goals. Our approach is based on the use of the B formal method (Abrial, 1996) in order to

address usability as well as security in critical interactive applications, such as avionics or chemical plants

supervision. We do not intend to focus on the use of this particular formal method. Adversely, we only use this

experience to illustrate the gap between software engineering and usability engineering practices while designing

real-world interactive systems.

In the next part –part 2– of this article we give a short list of formal approaches that have already been used in

usability engineering, and we give several points that explain their poor usage in that field. In part 3, we relate our

first attempts in applying the B method in interactive systems design. We particularly focus on architectural

problems, which might constitute a solid bridge between software engineering and usability engineering practices.

In part 4, we show how actual usability engineering tools might incorporate secure development methods by the way

of leaning on the formal semantics of software engineering tools. Last we conclude on discussing the lessons learned

in these experiences.

2 Formal approaches in HCI

Formal specification techniques become regularly used in the HCI area. On the one hand, user-centered design leans

on semi-formal but easy to use notations, such as MAD (Scapin & Pierret-Golbreich, 1990) and UAN (Hix &

Hartson, 1993) for requirements or specifications, or GOMS (Card, et al., 1983) for evaluation. These techniques

have an ability to express relevant user interactions but they lack clear semantics. So, neither dependability nor

usability properties can be formally proved.

On the other hand, adaptation of well-defined approaches, combined with interactive models, brings partial but

positive results. They are, for example, the interactors and related approaches (Duke & Harrison, 1993; Paternò,

1994), model-oriented approaches (Duke & Harrison, 1993), algebraic notations (Paternò & Faconti, 1992), Petri

nets (Palanque, 1992), Temporal Logic (Abowd, et al., 1995; Brun, 1997). Thanks to these techniques, some safety

as well as usability requirements may be proved.

However, these formal techniques are used in a limited way in the development process, mainly because of these

three points:• Few of them can lean on usable tools, which allow real scale developments. Case studies –mostly at the

specification level only– have been demonstrated, but no actual application has been completely designed

with these methods.• Formal notations are currently out of the scope of interactive systems designers. Their usage by non-

specialists it everything but easy.• Formal studies are currently disconnected from usual usability engineering tools. No commercial tool and

very few research ones really incorporates semantically well defined approaches.

In this paper, we relate our studies one model-oriented approach –the B method– whose one great advantage is to be

well instrumented. But we do not allege it is the best nor the perfect formal method to be used. Our claim is that this

model-oriented technique that uses proof obligations can be used with profit in an usability engineering context,

more, it might be used together with model checking techniques, where automatic proofs of properties can be

performed.

3 The B method and interactive systems design and development

This section presents the different steps that have been made in the attempt to use the B method in the design and

development of interactive systems. Starting from the reduced aspect of verifying software specifications, we show

how it has been possible to reach the implementation step in a complete formal development. Then, we focus on

architecture problems. Last, we conclude in analyzing the difficulty of this extreme approach.

3.1 Using B for HCI specifications

In (Aït-Ameur, et al., 1998b; Aït-Ameur, et al., 1998a), the authors use for the first time the B method for the

verification of interactive systems. Lying on a pure interactive case study –see below– these works suggest formally

based solutions which allow solving difficulties that are inherent to interactive systems specification, such as

reachability, observability or reliability. The case study is a co-operative version of a 3M™ Post-It® Note software.

With this case, it is possible to address highly interactive problems due to the direct manipulation style, such as drag

and drop, iconfication & de-iconification, resizing, and so on. A special attention is paid on mouse interaction and

window management.

This use of the B method on a non-trivial case study has illustrated the capability of B to handle different aspects of

the software life cycle in the area of interactive systems. The described approach demonstrates:• Complete formalization: the approach is completely formalized and most of the proof obligations are

automatically proved. The other ones need only few steps of manual proof.• Property checking: it is possible to check properties on specifications, thanks to the weakening of

preconditions.• Reverse engineering aspects can be handled with this approach and the specifications of already existing

programs can be used to develop new ones. Therefore, reusability issues appear.• Incremental design: the specifications are incrementally built. Indeed, programming in the large operator

allows to compose abstract machines and therefore to build more complex specifications. Yet, this process

needs to follow a given methodology issued from the area of interactive system design.

One can object that this case study is situated at a too low level for the interactive viewpoint. Properties such as

keeping the mouse pointer into the screen are not relevant in current graphical systems where this is ensured –or

supposed to be ensured– by the windowing system. In fact, this emphasizes the problem of using formal methods in

actual interactive environments. Is it acceptable to use formal techniques when we lean on graphical layers that are

not formally defined? One solution, as described in this work, might be to make a reengineering analysis of such

tools (Jambon, 2003).

The first step reached by this study is the one of a complete specification of an interactive system, with respect to

some interactive properties. As many works in the field of formal methods in interactive systems design, it is

possible to concentrate on some properties, but two drawbacks can be given:

• Because of the strong relation to the coding activities, interactive properties are not related to the user

activity.• Formally ensuring that specification are consistent, and respect properties, does not ensure that the actual

code will respect specification, without a link between implementation and specification.

One of our major goals in exploring the usage of formal methods in the context of interactive systems design and

development was to ensure that other people than pure formal methods specialists could use the method. So, with

help of B tools, we tried to realize the whole development of an interactive application, from high-level

specifications to running code. We first propose a architecture model to assist the designer (§3.2), and then define

heuristics to implement this model (§3.3).

3.2 Formal development versus software architecture models

3.2.1 Case study

The case study is here a control panel for a set of three rechargeable batteries. It is an elementary safety-critical

process-control system: the operator is in charge of selecting the live battery –via the switches– whereas the

hardware state –the batteries levels– is updated asynchronously (figure 1). Consequently, the functional core of this

case study –the batteries– is a real-time system.

Batteries

Load

Switches

ON

OFF

OFF

Figure 1: Case study electric diagram and user interface.

Both safety and usability properties have to be ensured. This required first step of the design process consists in

modelling the battery control panel requirements with the B language. Three kinds of requirements must be fulfilled:• The system must be safe, i.e., the system must avoid shortcuts and it must not be possible to switch on an

empty battery.• The system must be honest, i.e., the user interface widgets must display exactly the batteries levels and

switches positions.• The system must be insistent, i.e., the system must warn the operator when a battery is going to be empty.

3.2.2 Control-Abstraction-View software architecture model

Our first idea for designing such a system was to use a well-known multi-agent model, such as MVC (Goldberg,

1984) or PAC (Coutaz, 1987), because acceptability of formal methods is greatly influenced by using domain

standard methods. The interactive system specifications must however stay in the boundaries of the B language

constraints. We selected three kinds of constraints that relate to our purpose. These main constraints are:• Modularity in the B language is obtained from the inclusion of abstract machine instances –via the

INCLUDES clause– and, according to the language semantics, all these inclusions must build up a tree.• The substitutions used in the operations of abstract machines are achieved in parallel. So, two substitutions

–or operations– used in the same operation cannot rely on the side effects of each other.• Interface with the external world, i.e. the user actions as well as the updates of system state, must be

enclosed in the set of operations of a single abstract machine.

Classic software architecture models such as PAC or MVC are not compliant with these drastic B language

constraints. That is why we proposed a new hybrid model from MVC and PAC to solve this problem. The design of

this new software architecture model –CAV– cannot be detailed here. The reader should refer to (Jambon, et al.,

2001) for a more detailed description of the model design (see figure 2).

Briefly speaking, the CAV software architecture model uses the external strategy of MVC: the outputs of the system

are devoted to a specific abstract machine –the View– while inputs are concerned by another one –the Control– that

also manages symmetrical inputs from the reactive system which is directed by the third abstract machine –the

Abstraction. The Control machine synchronizes and activates both View and Abstraction machines in response to

both user and reactive system events.

Control

Abstraction View

data
ac

tio
ns

c
o

m
m

a
n

d
s

s
ta

tu
s

Figure 2: The three components of the Control-Abstraction-View

software architecture model.

3.2.3 Specification

Among the usability properties, the system is in charge of warning the user if a battery is going to be empty. This

usability requirement has to be specified as: if the battery switch is in position ON and the level is below or equal

10%, a warning message must be shown. This is specified in the INVARIANT clause of the View. As a

consequence, the operations of the View must be specified to fulfill this invariant whatever the way they are

computed. This insistence property specification is restricted to the View abstract machine. So, it is fairly easy to

handle. On the contrary, the Conformity property requires the Control mediation between Abstraction and View. Its

specification is similar to the specification of safety below.

Among the safety requirements, we detail now the prevention of user error: the operator must not be able to switch

on an empty battery. At first, this safety requirement deals with the functional core of the system, i.e., it must be

specified in the Abstraction. Moreover, this requirement is not a static but a dynamic property: the battery can

become empty while switched on, but an empty battery must not be switched on. This requirement is not static

predicate, so, it cannot be specified in the invariant clause of the abstract machine. In the B language semantics, this

category of requirement must be specified in a precondition substitution of operations.

In fact, we delegated to the Control abstract machine –that includes the Abstraction– this safety requirements, i.e.

the Control is in charge of the verification of the semantic validity of the parameters when it calls the operation of

the Abstraction abstract machine. We name this technique the delegation of safety. This generates two

consequences: (1) The operator cannot be aware of the fact that a battery could not be switched on ; (2) An action on

a pushbutton can be generated with a empty battery number as parameter, so some required proof obligations cannot

be proved.

The first consequence is easy to set up. We have to improve the interface layout and to update the state of the button:

enabled or disabled. Of course, if a button is disabled, it is well known that this button cannot emit any action event.

This assertion may seem to be sufficient to solve the second consequence above. That is not exact: the B semantics

cannot ensure that a disabled button cannot emit events because the graphic toolkit is not formally specified. So, the

Control abstract machine must filter the input events with the button states specified in the View abstract machine.

This is required by the formal specification. The benefit of this consequence is that our system is safe whether the

user interface is defective.

3.3 From formal specifications to implementation

The final program must be a set of software modules in which some of them are formally specified and

implemented, and some others are developed with classic software engineering methods. In order to dissociate these

two antagonist types of modules, interfaces have been inserted in between. So, at the implementation step, the CAV

architecture supports some add-ons as shown on figure 3. We now focus on these three types of modules: secure

code, interface and native modules.

NativeEvents

Events

CtrlBatt

AbstBatt ViewBatt

Batteries Graphics

NativeBatteries NativeGraphics

Manual code (unsecure)

Generated code (secure)

Manually modified code (unsecure)

CAV Model

Control

ViewAbstraction

Figure 3: The CAV software architecture with

interface and native modules.

3.3.1 Secure Code

The core of the interactive system has been specified in three B abstract machines. These machines specify the

minimum requirements of the system but do not give any implantation solution. To do so, the B method uses

implementation machines that refine abstract machines. The implementation machines are programmed in BØ

pseudo-code that shares the same syntax with the B language, and is close to a generic imperative programming

language. In implementation machines, the substitutions are executed in sequence. BØ pseudo-code can be

automatically translated into C code.

As implementation machines refine abstract machines, they must implement all the operations of the abstract

machines. Moreover, the B method and semantics ensure that the side effects on variables of the implementation

machine operations do respect the invariant as well as the abstract machine operations they refine. Providing the

proof obligations are actually proved, the implementation machines respect the safety and usability requirements.

So, the code is secure providing the specifications are adequate.

3.3.2 Native Code and Interfaces

A working program cannot be fully developed with formal methods because most of graphic widgets and hardware

drivers libraries are not yet developed with formal methods. As a consequence, the battery control panel uses three

native modules:

• The NativeGraphics software module controls the graphic layout of the user interface. It uses the GTk

library.• The NativeBatteries software module simulates the batteries with lightweight processes. It uses the POSIX

thread library.• The NativeEvents software module is in charge of merging the events coming from the user or the

hardware and formats them to the data structure used by the BØ translator.

These three modules are not secure. However, the modules can be tested with a reduced set of test sequences

because the procedures of these modules are only called by the secure code that does respect the formal

specification. For example, the bar graph widget of NativeGraphics module is to be tested with values from 0 to 100

only because the secure modules are proved to use values from 0 to 100 only. Abnormal states do not have to be

tested. The interfaces module roles are to make a syntactic filtering and translation between native modules and

secure code:• The Events software module receives integer data and translates them to 1..3 or 0..100 types. This module

is secure because it as been specified and fully implemented in BØ but is called by non-secure modules.• The Graphics and Batteries modules are specified in B and the skeleton of the modules is implemented in

BØ and then manually modified to call the native modules NativeBatteries and NativeGraphics

respectively.

3.3.3 Programming Philosophy

At last, the project outcome is a set of C source files. Some of these files are automatically generated from the BØ

implementation, while others are partially generated or manually designed. The formal specification and

implantation require about one thousand non-obvious proof obligations to be actually proved. All these proof

obligations can be proved thanks to the automatic prover in a few dozen of minutes with a standard workstation.

The core of the system is formally specified and developed. The programming philosophy used is called the

offensive programming, i.e., the programmer does not have to question about the validity of the operations calls.

The B method and semantics ensure that any operation is called with respect to the specifications. Most of the

dialogue controller as well as the logic of the View and the Abstraction are designed with this philosophy. As a

consequence, most of the dialog control of the system is secure.

On the opposite, the events coming from the real-word –user or hardware– have to be syntactically and semantically

filtered. This programming philosophy is defensive. On the one hand, the syntactic filtering is done by the Event

module that casts the parameter types –from integer to intervals. On the other hand, the semantic filtering is

achieved by the Control module, which can refuse events coming from disabled buttons. So, the system is resistant

to graphic library bugs or transient errors with sensors. This filtering is required by the proof obligations that force

upon the operation calls to be done with valid parameters.

There is no need to use the defensive programming philosophy in native modules. The procedures of these modules

are called only by secure modules, so the parameters must be valid anytime. Neither verification nor filtering is

necessary. The programming philosophy looks like the offensive philosophy except that the native modules are not

formally specified but must be tested, so we name this philosophy half-offensive. As a consequence the

development of high-quality native code can be performed with a reduced programming effort.

3.4 Formal method in interactive system design: what kind of user ?

As we write upper, one of our first goals was to ensure that other people than pure formal method specialists could

use the method. Did we succeed? We must admit that this goal is not fully reached today. In our first attempts on the

Post-It® case study, even if the B tool automatically demonstrated most proofs, it remained some of them to be

demonstrated by hand. This task cannot be made by non B specialists.

In the second case, for the battery case study, we obtained a fully automated process with the B tool. But it required

to pay strong attention on condition writing, more, despite of the smallness of the study, the number of generated

proof obligation let us think that a much more example might overcharge the tool. However, we demonstrate that,

thanks to a new software architecture model –CAV– and thanks to some specification heuristics, it is possible to

develop a working case study.

4 Incorporating formal methods in HCI tools

Another way to allow cooperation between SE and HCI is to lean on formal semantics while building a tool for HCI.

We describe in this section such an approach, and show how it can bring different solutions. In section 4.1, we

shortly review the area of HCI tools, mainly GUI-Builders1 and Model-Based tools2. Section 4.2 describes the

fundamentals of our proposal: connecting directly and interactively a GUI-Builder to a functional core, by the way

of formal semantics. Section 4.3 relates how to incorporate task-based analysis in this process.

4.1 HCI tools at a glance

Human computer interaction tools for building interactive software are numerous. On the one hand, GUI-Builders

and tools like Visual Basic® or JBuilder® do not support any kind of external model. Moreover they do not provide

any way to handle any kind of formal method. On the other hand, Model-Based tools (Puerta, 1996) deal with

models, but are not usable for actual software development. MBS are the evolution of primitive User Interface

Management Systems (UIMS). (Szekely, 1996) gives a generic overview of architectural description of MBS

components.

First, the model is the most important component of MBS environments. It represents all the different views of the

interactive application and may be decomposed into sub-models such as the domain, the dialog, and/or the

presentation models. Three abstraction layers are identified. (1) The higher layer is made of the domain and task

models. (2) The intermediate layer, the abstract specification layer, may involve abstract interaction objets and

abstract data. Finally, (3) the lower layer describes the concrete specification. Interaction objets are concrete widgets

that come from toolkits.

The second category of components of MBS environments is a set of tools able to manage the different models.

Modeling tools help the designer to edit the models as MASTERMIND (Szekely, et al., 1995), or more user-

centered, such as forms in MECANO (Puerta, 1996). Automatic design tools are able to complete and/or to

concretize some abstract specifications in order to produce new and more concrete specifications as JANUS

(Balzert, et al., 1996). Implementation tools allow direct production of code from the models as MOBI-D (Puerta &

Eisenstein, 1998). Validation tools are the really added value of MBS compared from non MBS approaches.

Reasoning upon model is easy, and enforcing properties through interactive systems is much more easy when

external models are available. A new tendency incorporates formal approaches into MBS in order to get the benefits

of formal validation. PETSHOP (Navarre, 2001) and our suggested approach push forward this tendency.

4.2 A semantic link between the functional core and the HCI tool

The basic idea of our approach is to build HCI tools that lean on formal semantics to ensure that properties are

maintained all along the development process. At the same time, we do not expect the user to become a formal

method specialist.

Our first step was to demonstrate how it is possible to build a tool that ensures a semantic formal link. We start from

a formally developed functional core. We assume that this functional core, which has been specified with the B

method, delivers services through an API. It is possible to automatically link such a functional core to a tool that

exploits function signatures and formal specifications to help building interactive software.

In figure 4, we can see a screen copy of the SUIDT (Safe User Interface Development Tool) environment (Baron &

Girard, 2002; Baron & Girard, 2004; Baron, 2003). On the left, the animator (tag 1) consists in fully generated

interface that allows to interactively run the functional core. Every function of the functional core is usable through

button activation. When parameters are required, a dialog box appears to allow the user to enter them. Functions are

1 Graphical User Interface Builders
2 currently called MBS for Model Based System

textually described, and current state of the functional core can be estimated through the result of all functions. It is

important to notice that all that part is fully automatically generated. It allows the user to “play” with his/her

functional core, and to be aware of functional core state. In the right part of the figure (tag 2), we can see the GUI-

Builder view, where widgets can be dropped to build the concrete user interface. In the center, as in any GUI-

Builder, we can see a property window, which allows the user to finalize the presentation. Below this window, the

last window permits associating events to functions from the functional core.

1 2

Figure 4: the SUIDT environment.

The great two originalities at this point are: first, at any time, we can switch from design mode to test mode where

functional core can be called from either the presentation or the animator (the context of the functional core remains

consistent); second, the system leans on formal specifications from the functional core to ensure that calls are

correct. This study demonstrates that it is possible to incorporate formal approaches in interactive tools. The benefit

is not very important at this stage, because interactive model is poor: we assume that the link between widgets and

functional core is direct. In the next part, we show how it is possible to enhance this model.

4.3 Linking task based analysis and formal semantics

The second step of our study consists in focusing on user validation. We incorporated task-based analysis into our

system by the way of two level task models (abstract and concrete task models) based on the CTT formalism

(Paternò, 2001). These two levels correspond to the intermediate and to the lower levels of the generic MBS

architecture. They allow to take into account the user needs and to realize a successive validation in two steps.

4.3.1 Functional Validation
The intermediate level of a task model allows to validate the user point of view on the functional core features. In

fact, in SUIDT, this validation level corresponds to higher level models and allows modelling the goals of the user

over the interactive application. More concretely, SUIDT links together the domain model and the task model. The

dynamics of the task model is based on precedence constraints (temporal operators), on the guards (playing the role

of pre-conditions) of the functional core functions and on the task post-conditions which permit to modify the state

of the functional core expressed at the leaves of the task model. At this intermediate level of the task model, two

main results are obtained. On the one hand, it is possible to test the functionalities of the functional core in order to

evaluate if the user needs are satisfied at any abstraction level of specification. On the other hand, it is possible to

record scenarios for further tests of integration.

4.3.2 User Interface Validation
In a second step, a graphical interface, designed thanks to a classical GUI-Builder, is associated with the

intermediate task model level in order to obtain a lower level model. This model is a refinement of the state of the

previous task model, where every interactive or application task of the CTT is described in terms of concrete

interaction or application objects. Refinement of a state consists in adding other state variables related to interaction.

Since we deal with a single environment, it becomes possible now to relate these interactive or application tasks of

the CTT to the concrete GUI level.

As result of the SUIDT approach, every model is an executable model since the functional core plays a central role.

In fact, every model is related to the functional core, which allows to run an actual program each time the task model

is run. Thus, the running context (during test phase) is not re-initialized or lost when the designer switches to the

design mode. So, it is easier for him/her to validate the prototype. Moreover, as for tools like MASTERMIND or

PETSHOP, our application allows to test the program under construction. In figure 5, we can see a view of the

simulation tool. On the tag 1, the simulator tool permits to animate the task model in concordance with the user

interface (tag 2). The designer can directly test the interactive application either by interaction on user interface (tag

2) or by animation of the task model (tag 1).

1

2

Figure 5: task-based aspects of SUIDT.

5 Conclusion and lessons learned

Our studies bring partial solutions in the field of formal methods use in interactive systems design. Two approaches

was studied and gave complementary findings. The first one use a new software architecture model –CAV– and

some heuristics to obtained a fully automated process with the B tool. This approach do not hide the complexity of

the formal development but gives patterns to lower it. On the opposite, the second solution embed in a GUI-builder

like tool the complexity of the formal development, and so, allows interactive systems designers to use the method

in a blink mode. So, no particular mathematical skills are required.

On the one hand, we demonstrate how formal methods can really be usable in interactive systems design. In the

meantime, their usage is restricted to specialists that come to grips with mathematical fundamental because

automatic proving is not always possible in real developments. On the other hand, we do not propose a global

method to build interactive systems with such tools. In both approaches we assumed that functional cores have to be

designed first. In many cases, this is not the best way to work because in some cases, early task analysis may turn up

new needs. Modifying the functional core and consequently its formal specifications to rebuild a new solution might

be difficult.

One of the strongest questions that have been raised by these studies is: what kind of user for formal methods in

usability engineering ? One the one hand, manipulating formal methods themselves is often hard. Complete formal

development is very difficult, and formal tools such as “Atelier B” are not really able to manage real scaled

applications. On the other hand, manipulating formal methods through GUI-Builder like tools seems very

interesting. But where is the place for formal development ? And who might make it ? All these points are to be

studied, and solutions to be bring by further work.

References
Abowd, G.D., Wang, H.-M. & Monk, A.F. (1995). A Formal Technique for Automated Dialogue Development,

Proceedings of the DIS'95, Design of Interactive Systems, 219-226. ACM Press.

Abrial, J.-R. (1996). The B Book: Assigning Programs to Meanings. Cambridge University Press.

Aït-Ameur, Y., Girard, P. & Jambon, F. (1998a). A Uniform approach for the Specification and Design of

Interactive Systems: the B method, Proceedings of the Eurographics Workshop on Design, Specification, and

Verification of Interactive Systems (DSV-IS'98), 333-352.

Aït-Ameur, Y., Girard, P. & Jambon, F. (1998b). Using the B formal approach for incremental specification design

of interactive systems, Proceedings of the Engineering for Human-Computer Interaction, 91-108. Kluwer Academic

Publishers.

Balzert, H., Hofmann, F., Kruschinski, V. & Niemann, C. (1996). The JANUS Application Development

Environment-Generating more than the User Interface, Proceedings of the Computer-Aided Design of User iterface

(CADUI'96), 183-206. Presse Universitaire de Namur.

Baron, M. & Girard, P. (2002). SUIDT : A task model based GUI-Builder, Proceedings of the TAMODIA : Task

MOdels and DIAgrams for user interface design, 64-71. Inforec Printing House.

Baron, M. & Girard, P. (2004). SUIDT : Safe User Interface Design Tool (Demo), Proceedings of the International

Conference on Intelligent User Interfaces Computer-Aided Design of User Interfaces, 350-351. ACM Press.

Baron, M. (2003). Vers une approche sûre du développement des Interfaces Homme-Machine (Thesis). Doctoral

dissertation, Université de Poitiers.

Brun, P. (1997). XTL: a temporal logic for the formal development of interactive systems. In P. Palanque & F.

Paternò (Eds.), Formal Methods for Human-Computer Interaction (pp. 121-139). Springer-Verlag.

Card, S., Moran, T. & Newell, A. (1983). The Psychology of Human-Computer Interaction. Lawrence Erlbaum

Associates.

Coutaz, J. (1987). PAC, an Implementation Model for the User Interface, Proceedings of the IFIP TC13 Human-

Computer Interaction (INTERACT'87), 431-436. North-Holland.

Duke, D.J. & Harrison, M.D. (1993). Abstract Interaction Objects.

Goldberg, A. (1984). Smalltalk-80: The Interactive Programming Environment. Addison-Wesley.

Hix, D. & Hartson, H.R. (1993). Developping user interfaces: Ensuring usability through product & process.

Newyork, USA: John Wiley & Sons, inc.

Jambon, F. (2003). Premiers pas vers la rétro-conception en langage B d’une bibliothèque de composants

graphiques, Proceedings of the 15e conférence francophone sur l'Interaction Homme-Machine (IHM'03), 118-125.

ACM press.

Jambon, F., Girard, P. & Aït-Ameur, Y. (2001). Interactive System Safety and Usability enforced with the

development process, Proceedings of the Engineering for Human-Computer Interaction (8th IFIP International

Conference, EHCI'01, Toronto, Canada, May 2001), 39-55. Springer.

Navarre, D. (2001). Contribution à l'ingénierie en Interaction Homme-Machine. Doctoral dissertation, Université

Toulouse 3.

Palanque, P. (1992). Modélisation par Objets Coopératifs Interactifs d'interfaces homme-machine dirigées par

l'utilisateur. Doctoral dissertation, Université de Toulouse I.

Paternò, F. (1994). A Theory of User-Interaction Objects.

Paternò, F. (2001). Model-Based Design and Evaluation of Interactive Applications. Springer.

Paternò, F. & Faconti, G.P. (1992). On the LOTOS use to describe graphical interaction. In (pp. 155-173).

Cambridge University Press.

Paternò, F., Mori, G. & Galimberti, R. (2001). CTTE: An Environment for Analysis and Development of Task

Models of Cooperative Applications, Proceedings of the ACM CHI 2001, ACM Press.

Puerta, A. (1996). The MECANO project : comprehensive and integrated support for Model-Based Interface

development, Proceedings of the Computer-Aided Design of User interface (CADUI'96), 19-35. Presse Universitaire

de Namur.

Puerta, A. & Eisenstein, J. (1998). Interactively Mapping Task Model to Interfaces in Mobi-D, Proceedings of the

Eurographics Workshop on Design, Specification and Validation of Interactive Systems (DSV-IS'98), 261-274.

Puerta, A.R., Cheng, E., Ou, T. & Min, J. (1999). MOBILE : User-Centered Interface Building, Proceedings of the

426-433. ACM/SIGCHI.

Scapin, D.L. & Pierret-Golbreich, C. (1990). Towards a method for task description : MAD. In L. Berliguet & D.

Berthelette (Eds.), Working with display units (pp. 371-380). Elsevier Science Publishers, North-Holland.

Szekely, P., Sukaviriya, P., Castells, P., Muthukumarasamy, J. & E. Salcher. (1995). Declarative interface models

for user interface construction tools : the MASTERMIND approach, Proceedings of the IFIP TC2/WG2.7 Working

Conference on Engineering for Human-Computer Interaction (EHCI'95), 120-150. Chapman & Hall.

Szekely, P. (1996). Retrospective and challenge for Model Based Interface Development. In F. Bodart & J.

Vanderdonckt (Eds.), Eurographics Workshop on Design, Specification, and Verification of Interactive Systems

(DSV-IS'96) (pp. 1-27). Namur, Belgium: Springer-Verlag.

