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Nonequilibrium glassy dynamics of self-propelled hard disks
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We analyse the collective dynamics of self-propelled particles in the large density regime where
passive particles undergo a kinetic arrest to an amorphous glassy state. We capture the competition
between self-propulsion and crowding effects using a two-dimensional model of self-propelled hard
disks, which we study using Monte-Carlo simulations. Although the activity drives the system far
from equilibrium, self-propelled particles undergo a kinetic arrest, which we characterize in detail
and compare with its equilibrium counterpart. In particular, the critical density for dynamic arrest
continuously shifts to larger density with increasing activity, and the relaxation time is surprisingly
well described by an algebraic divergence resulting from the emergence of highly collective dynamics.
These results show that dense assemblies of active particles undergo a nonequilibrium glass transition
which is profoundly affected by self-propulsion mechanisms.

PACS numbers: 05.10.-a, 05.20.Jj, 64.70.Q-

The equilibrium physics of dense particle systems
is usually understood in the framework of statistical
mechanics because it stems from the competition be-
tween particle interactions and thermal fluctuations [1].
In particular, phase transitions towards crystalline or
amorphous structures are routinely observed at equilib-
rium [2]. This approach is challenged for particle as-
semblies that are not uniquely driven by thermal fluc-
tuations, but can also pump energy from their environ-
ment to self-propell themselves [3, 4]. Active particles
are presently the focus of a large interest, fueled by ex-
perimental developments allowing the study of both nat-
ural living systems (such as bacteria [5] and cells [6])
and synthetic colloidal [7] and granular [8] particles. It
is thus important to understand if and how equilibrium
phenomena are affected by this novel type of nonequilib-
rium driving and dissipation mechanisms.

We study the behaviour of self-propelled particles
when steric effects compete with self-propulsion [9–11].
Provided crystallization is suppressed (for instance by
size polydispersity), simple fluids at thermal equilibrium
display at large density a gradual transformation towards
an arrested disordered state [12]. While not yet sys-
tematically explored, this situation is of experimental
interest for several systems of active particles. For in-
stance, the complex mechanical properties of epithelium
tissues result from the influence of self-propulsion mech-
anisms for close-packed cells [6, 13], while dense bacte-
rial colonies are being studied experimentally [14]. Self-
propelled colloidal and granular assemblies can also be
compressed to large densities [15]. On the theoretical
side, it was recently suggested that active particles, de-
spite being far from equilibrium, could display kinetic
arrest with qualitative analogies, but also strong differ-
ences, with the equilibrium glass transition [11]. This
suggestion, obtained in the framework of mean-field ap-
proaches to driven glassy dynamics, is by no means obvi-
ous as slow dynamics is usually fully disrupted by driving

forces, such as a shear flow [16, 17]. Therefore, it is im-
portant to study whether the competition between par-
ticle scale driving forces and glassy dynamics can yield a
nonequilibrium phase transition even in a more realistic
situation, which is our central goal.

To this end, we seek a minimal model to study the im-
pact of self-propulsion on the dynamics of dense assem-
blies of self-propelled particles, allowing us to interpolate
smoothly between the well-known (but already complex)
equilibrium glassy dynamics, and the driven active case.
Therefore, by contrast with detailed numerical study of
active matter at moderate densities, our model incor-
porates active motion following the simplest models of
active matter, neglecting for instance hydrodynamic in-
teractions, particle anisotropy or aligning interactions.
We work in two spatial dimensions, which is experimen-
tally relevant [8, 13] and typically preferred in earlier
studies [4, 9, 18]. To capture crowding effects, we use a
50:50 binary mixture of hard disks with diameter ratio
σ1/σ2 = 1.4, which both suppresses crystallization and
displays realistic glassy dynamics at equilibrium. The
hard sphere model is also convenient because it does not
require the introduction of an energy (or a temperature)
scale. Instead it is uniquely controlled, at equilibrium, by
the packing fraction, ϕ = πN(σ2

1+σ2
2)/(2L

2) for N parti-
cles in a system of linear size L, using periodic boundary
conditions. We express lengthscales in units of σ1.

We use off-lattice Monte-Carlo simulations to study
the glassy dynamics of the model [19]. At equilibrium,
an elementary move proceeds as follows. At time t, a
particle is chosen at random, say particle i, and a small
random displacement ~δi(t) = δ0~ξi(t) is proposed, where

δ0 sets the typical amplitude of the moves, and ~ξi(t) is
a random vector drawn independently at each step from
a unit square centered around the origin with a flat dis-
tribution. The move is accepted provided it creates no
overlap with another hard disk. In equilibrium condi-
tions, it was established that Monte-Carlo simulations
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meaningfully and efficiently describe the slow dynam-
ics of glass-formers provided the jump length δ0 is ad-
justed by seeking a compromise between a small value
(where the method becomes equivalent to Langevin dy-
namics) and a large value (creating unphysical non-local
moves) [20]. We use δ0 = 0.1σ1, so that δ0 does not in-
fluence the physics, apart from a trivial rescaling of the
time. We have explicitely checked that our results are
not qualitatively affected by this choice. Timescales are
expressed in Monte-Carlo steps, such that one time unit
τMC represents N attempted particle moves. The equi-
librium dynamics of the hard disk system is thus charac-
terized by a unique control parameter, the packing frac-
tion ϕ.
Following previous work [9, 21], we introduce a self-

propulsion mechanism using a persistence timescale, τ ,
defined as a finite timescale governing rotational diffu-
sion so that our model falls into the class of ‘apolar ac-
tive particles’, characterized in particular by the absence
of any alignement rule. Rotational diffusion is easily im-
plemented in the Monte-Carlo algorithm by generating
time correlated random displacements. In practice, we
initialize ~δi(t = 0) as before, ~δi(0) = δ0~ξi(0), but intro-
duce temporal correlations between successive attempted
displacements at times t and t′:

~δi(t) = ~δi(t
′) + δ1~ξi(t), (1)

constraining |δi,α(t)| ≤ δ0, and δ1 ≤ δ0. As in equilib-
rium, the particle move is only accepted if it creates no
overlap between particles, but the random displacement
is updated as in Eq. (1) independently of the acceptance
condition, thus generating a fixed persistent time τ for
the orientation. Equation (1) means that particle dis-
placements have the same amplitude as in equilibrium,
but now keep a memory of previous displacements over a
finite timescale, τ = (δ0/δ1)

2 (expressed in Monte-Carlo
time units defined above). Equation (1) represents a
discrete-time analog of the Langevin dynamics studied in
Refs. [9, 21], which is recovered in the limits δ0, δ1 → 0,
keeping the persistence time fixed [19]. Self-propulsion is
thus uniquely characterized by τ , which reduces, in the
dilute limit, to the persistence time of a persistent ran-
dom walk motion. Equivalently, this control parameter
τ/τMC can be seen as an adimensional rotational Péclet
number [22]. Because thermal fluctuations only affect
rotational degrees of freedom, the translational Péclet
number is not a convenient control parameter in our
model [21].
While clearly minimal, the model efficiently captures

the competition between steric hindrance (controlled by
ϕ) and self-propulsion (controlled by τ). We performed
extensive simulations in the steady state varying (ϕ, τ)
over a broad range, typically using N = 103 particles.
Our longer simulations last 1010 steps. The model is
presented more extensively and compared to alternative
numerical models in Ref. [19], which shows in particular
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FIG. 1: Glassy dynamics for (a,c) equilibrium and (b,d) self-
propelled hard disks with persistence time τ = 102. Time
dependence of the mean-squared displacement, Eq. (2), and
the self-intermediate scattering function, Eq. (3) for increas-
ing packing fraction. From left to right in (a, c): ϕ = 0.607,
0.700, 0.754, 0.773, 0.785, 0.790, 0.795, 0.800, 0.802, and
0.803. From left to right in (b, d): ϕ = 0.607, 0.700, 0.743,
0.781, 0.806, 0.819, 0.823, 0.825, and 0.828. Note the change
of vertical scale between (a) and (b). Two-step, glassy dy-
namics emerge in both cases, suggesting that self-propelled
particles undergo a nonequilibrium glass transition.

that the system remains homogeneous at all densities,
in contrast with earlier numerical works [23–27]. Here
we concentrate on the large density regime, not explored
before.
We start our analysis with a brief description of the

glassy dynamics observed when ϕ increases in the absence
of self-propulsion, τ = 0. In Fig. 1(a) we show the time
dependence of the mean-squared displacement,

〈∆r2(t)〉 = 〈|~rj(t)− ~rj(0)|
2〉, (2)

where ~rj(t) denotes the position of particle j at time t
and brackets indicate an ensemble average performed in
steady state conditions. The average is specialized to
large particles, the slowest component of the binary mix-
ture. While particles diffuse rapidly for moderate pack-
ing fractions, diffusion slows down dramatically as ϕ in-
creases. We cannot observe long-time diffusion in the
time window explored by the simulation for ϕ > 0.803,
because it is too slow. Another signature of glassy dy-
namics is the emergence of the intermediate time plateau
in Fig. 1(a), indicating that particle dynamics is essen-
tially a ‘caged’ motion at intermediate times. This two-
step dynamics is confirmed in Fig. 1(c) by the time evo-
lution of the self-intermediate scattering function,

Fs(q, t) = 〈ei~q·[~rj(t)−~rj(0)]〉, (3)

which quantifies dynamics occurring over a length 2π/|~q|.
We perform a circular average over wavevectors corre-
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sponding to the typical interparticle distance, |~q| = 6.2,
corresponding to the first peak of the structure factor.
Turning to self-propelled particles with τ = 102 in

Figs. 1(b,d), we find that dynamics again becomes slower
as ϕ increases, with the development of complex time
dependences in both time correlators. Clear differences
with the equilibrium situation already emerge for moder-
ate densities and short-times, where active particles move
ballistically as a direct result of self-propulsion.

At larger density, the plateau in Fs(q, t) is less pro-
nounced for self-propelled than equilibrium particles.
Mean-squared displacements take lower values at short-
times, showing that cage dynamics is profoundly affected
by the particle activity. While a fast erratic exploration
of the cage results from thermal noise, persistent motion
is impossible within a cage. Instead, we observe that
self-propelled particles transiently ‘stick’ to the neighbor
found in the direction of motion for a duration τ , until
randomization of the direction of motion allows further
displacement. As a result, particles can be fully arrested
at short times, reducing 〈∆r2(t)〉 in this regime. The
cage exploration thus occurs over a broader distribution
of times, which produces a complex time dependence of
Fs(q, t) and 〈∆r2(t)〉 in the plateau regime. Physically,
thermal vibrations are suppressed by the persistent mo-
tion and occur over a time τ that may become decoupled
from the microscopic scale. This observation is crucial,
because the equilibrium physics of hard spheres is con-
trolled by entropic forces [1], which are then considerably
impacted by self-propulsion. Finally, although less mo-
bile at short times, self-propelled particles diffuse much
faster at long times. Diffusive motion is for instance still
observed for ϕ = 0.823 and τ = 102, while it is fully ar-
rested at this density at equilibrium. These observations
reveal that the nature of the glass transition is dramati-
cally modified for active particles.

We show in Fig. 2 a displacement map for self-propelled
particles with τ = 102 and large density ϕ = 0.823, mea-
sured over a time interval corresponding to structural
relaxation (see below for a definition). Clearly, the flow
of self-propelled particles at large density is spatially cor-
related over large distances, and thus displays large scale
dynamic heterogeneity [28, 29]. Spatially correlated dis-
placements represent a form of emergent collective mo-
tion arising from the competition between self-propulsion
and steric effects, which differs qualitatively from earlier
observations in active particle systems [30]. The analogy
between collective motion and dynamic heterogeneity in
epithelium tissues was noted [13].

We extract the long-time self-diffusion constant, Ds,
from its definition, Ds ≡ limt→∞〈∆r2(t)〉/(4t), and re-
port in Fig. 3 the density evolution of Ds for equilibrium
and self-propelled disks. These data confirm that in all
cases Ds decreases sharply upon increasing ϕ, as it varies
by nearly 6 orders of magnitude between the simple fluid
at ϕ ≈ 0.6 to the dense regime near ϕ ≈ 0.8 − 0.83.
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FIG. 2: Displacement map for self-propelled disks with ϕ =
0.823 and τ = 102 over a time t ≈ 1.5 · 107 corresponding
to structural relaxation. It shows the emergence of collective
motion correlated over large distance in dense assemblies of
active particles.
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FIG. 3: Density dependence of the diffusion constant for dif-
ferent persistence time. Inset: The critical density ϕc ob-
tained from Eq. (4), increases continuously with τ .

Increasing τ has two opposite effects, as demonstrated
by the non-monotonic evolution of Ds with τ at fixed ϕ.
First, increasing τ slows down diffusion as particles need
to wait at least a timescale τ to see their orientation dif-
fuse significantly. This effect dominates at moderate den-
sities, where Ds decreases with increasing τ , see Fig. 3.
However, self-propulsion has a less trivial effect at large
ϕ, where it accelerates the dynamics dramatically. For
ϕ = 0.8, Ds increases by 3 orders of magnitude between
τ = 0 (equilibrium) and τ = 10. Such an acceleration
of the dynamics could result from the complete disap-
pearance of the glass transition (as for shear flow [31]),
but the data in Fig. 3 suggest a different scenario. Al-
though dramatically affected, the density dependence of
the diffusion constant for τ > 0 remains very sharp, in-
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dicating that diffusion will cease above a density which
remains well-defined. In other words, our simple model of
self-propelled hard disks displays a nonequilibrium form
of dynamic arrest, despite the presence of driving forces
with finite amplitude. This finding is fully consistent
with the theoretical suggestion in Ref. [11].
We quantify the effect of the self-propulsion on the

location of the glass transition by extracting a critical
density ϕc using a power law description:

Ds ∼ (ϕc − ϕ)γ , (4)

where the exponent γ and the critical density ϕc might
depend on τ . Equation (4) is inspired by equilibrium
studies of the glass transition [32], and can be derived
in the framework of mode-coupling approaches [11]. The
evolution with τ of the fitted ϕc shown in Fig. 3 shows
that it increases continuously, departing from its equilib-
rium value as soon as a finite persistence time τ > 0 is
introduced. This confirms that the ‘reentrant’ evolution
of the diffusion constant with τ results from the competi-
tion between a growing ϕc (which accelerates dynamics at
constant ϕ) and suppressed short-time vibrations (which
slows down dynamics). The shift of ϕc with τ , although
small in absolute value, in fact represents a spectacular
effect. With thermal fluctuations, it is not possible to ob-
serve structural relaxation for ϕ ≈ 0.83, which is instead
observed when τ ≥ 10. This implies that by breaking de-
tailed balance and going out of equilibrium, the system
discovers dynamical pathways that are essentially closed
at equilibrium.
A tentative analogy with equilibrium systems suggests

a physical explanation to the observed shift of the glass
transition density with activity. Because hard disks can-
not cross, self-propulsion then generates an ‘effective’ at-
tractive force between particles moving towards one an-
other [33]. Equilibrium studies of adhesive hard spheres
showed that the glass transition density increases with
the strength of the attraction [34, 35], because the equi-
librium structure at short lengthscale is modified. Al-
though structural changes occur in our system, it remains
to be understood whether a mapping from self-propelled
hard spheres to equilibrium adhesive particles is mean-
ingful [33].
The relaxation dynamics in self-propelled hard disks

seems however fundamentally distinct from the equilib-
rium case. In the hard sphere fluid, the onset of dy-
namic slowdown is described by a mode-coupling regime
where Eq.(4) holds, followed by a crossover to another
regime controlled by activated relaxation events between
low-lying metastable states [12, 37]. Therefore, intro-
ducing self-propulsion could affect the relevance of such
activated dynamical processes. In Fig. 4 we confirm that
the domain of validity of the power law in Eq. (4) in-
creases from 2 to 4 decades between equilibrium and self-
propelled particles with τ > 10. This suggests that mean-
field, mode-coupling types of approaches might represent
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FIG. 4: Critical representation of the diffusion constant show-
ing that the range of validity of Eq. (4) increases with τ from
about 2 to 4 decades of slowing down.

a valuable theoretical starting point to describe the mi-
croscopic dynamics of dense assemblies of active parti-
cles [10, 11].

In conclusion, we found that self-propelled particles
undergo a nonequilibrium form of a glass transition at
large density that is distinct from its equilibrium counter-
part, and characterized by the emergence of a new form
of collective motion directly resulting from the interplay
between activity and steric effects.

While completing this manuscript, R. Ni kindly sent
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