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. In other words, the homogenization of such a Hamilton-Jacobi equation yields to supplement the expected homogenized Hamilton-Jacobi equation with a junction condition at the single discontinuous point of the effective Hamiltonian. We also illustrate possible applications of such a result by deriving, for a traffic flow problem, the effective flux limiter generated by the presence of a finite number of traffic lights on an ideal road. We also provide meaningful qualitative properties of the effective limiter.

1 Introduction

Setting of the general problem

This article is concerned with the study of the limit of the solution u ε (t, x) of the following equation

u ε t + H t ε , x ε , u ε x = 0 for (t, x) ∈ (0, T ) × R (1) 
submitted to the initial condition

u ε (0, x) = u 0 (x) for x ∈ R (2) 
for a Hamiltonian H satisfying the following assumptions:

(A0) (Continuity) H : R 3 → R is continuous.

(A1) (Time periodicity) For all k ∈ Z and (t, x, p) ∈ R 3 , H(t + k, x, p) = H(t, x, p).

(A2) (Uniform modulus of continuity in time) There exists a modulus of continuity ω such that for all t, s, x, p ∈ R, H(t, x, p) -H(s, x, p) ≤ ω(|t -s| (1 + max (H(s, x, p), 0))).

(A3) (Uniform coercivity) lim |q|→+∞ H(t, x, q) = +∞ uniformly with respect to (t, x).

(A4) (Quasi-convexity of H for large x's) There exists some ρ 0 > 0 such that for all x ∈ R \ (-ρ 0 , ρ 0 ), there exists a continuous map t → p 0 (t, x) such that H(t, x, •) is non-increasing in (-∞, p 0 (t, x)), H(t, x, •) is non-decreasing in (p 0 (t, x), +∞).

(A5) (Left and right Hamiltonians) There exist two Hamiltonians H α (t, x, p), α = L, R, such that H(t, x + k, p) -H L (t, x, p) → 0 as Z ∋ k → -∞ H(t, x + k, p) -H R (t, x, p) → 0 as Z ∋ k → +∞ uniformly with respect to (t, x, p) ∈ [0, 1] 2 × R, and for all k, j ∈ Z, (t, x, p) ∈ R 3 and α ∈ {L, R}, H α (t + k, x + j, p) = H α (t, x, p).

We have to impose some condition in order to ensure that effective Hamiltonians Hα are quasi-convex; indeed, we will see that the effective equation should be solved with flux-limited solutions recently introduced by the the second and third authors [START_REF] Imbert | Flux-limited solutions for quasi-convex Hamilton-Jacobi equations on networks[END_REF]; such a theory relies on the quasi-convexity of the Hamiltonians.

(B-i) (Quasi-convexity of the left and right Hamiltonians) For each α = L, R, H α does not depend on time and there exists p 0 α (independent on (t, x)) such that H α (x, •) is non-increasing on (-∞, p 0 α ), H α (x, •) is non-decreasing on (p 0 α , +∞).

(B-ii) (Convexity of the left and right Hamiltonians) For each α = L, R, and for all (t, x) ∈ R × R, the map p → H α (t, x, p) is convex.

Example 1.1. A simple example of such a Hamiltonian is

H(t, x, p) = |p| -f (t, x)
with a continuous function f satisfying f (t + 1, x) = f (t, x) and f (t, x) → 0 as |x| → +∞ uniformly with respect to t ∈ R.

Main results

Our main result is concerned with the limit of the solution u ε of (1)- [START_REF] Andreianov | Finite volume schemes for locally constrained conservation laws[END_REF]. It makes part of the huge literature dealing with homogenization of Hamilton-Jacobi equation, starting with the pioneering work of Lions, Papanicolaou and Varadhan [START_REF] Lions | Homogeneization of Hamilton-Jacobi Equations[END_REF]. In particular, we need to use the perturbed test function introduced by Evans [START_REF] Evans | The perturbed test function method for viscosity solutions of nonlinear PDE[END_REF]. As pointed out to us by the referee, there are few papers dealing with Hamiltonians that depend on time; it implies in particular that so-called correctors also depend on time. The reader is in particular referred to [START_REF] Barles | On the large time behavior of solutions of Hamilton-Jacobi equations[END_REF][START_REF] Bernard | Convergence to time-periodic solutions in time-periodic Hamilton-Jacobi equations on the circle[END_REF] for the large time behaviour and to [START_REF] Forcadel | Homogenization of fully overdamped Frenkel-Kontorova models[END_REF][START_REF] Forcadel | Homogenization of some particle systems with two-body interactions and of the dislocation dynamics[END_REF][START_REF] Forcadel | Homogenization of accelerated Frenkel-Kontorova models with n types of particles[END_REF]] for homogenization results. This limit satisfies an effective Hamilton-Jacobi equation posed on the real line whose Hamiltonian is discontinuous. More precisely, the effective Hamiltonian equals the one which is expected (see (A5)) in (-∞; 0) and (0; +∞); in particular, it is discontinuous in the space variable (piecewise constant in fact). In order to get a unique solution, a flux limiter should be identified [START_REF] Imbert | Flux-limited solutions for quasi-convex Hamilton-Jacobi equations on networks[END_REF].

Homogenized Hamiltonians and effective flux limiter

The homogenized left and right Hamiltonians are classically determined by the study of some "cell problems".

Proposition 1.2 (Homogenized left and right Hamiltonians). Assume (A0)-(A5), and either (B-i) or (B-ii). Then for every p ∈ R, and α = L, R, there exists a unique λ ∈ R such that there exists a bounded solution v α of

v α t + H α (t, x, p + v α x ) = λ in R × R, v α is Z 2 -periodic. (3) 
If Hα (p) denotes such a λ, then the map p → Hα (p) is continuous, coercive and quasiconvex.

Remark 1.3. We recall that a function Hα is quasi-convex if the sets { Hα ≤ λ} are convex for all λ ∈ R. If Hα is also coercive, then p0 α denotes in proofs some p ∈ argmin Hα . The effective flux limiter Ā is the smallest λ ∈ R for which there exists a solution w of the following global-in-time Hamilton-Jacobi equation

w t + H(t, x, w x ) = λ, (t, x) ∈ R × R, w is 1-periodic w.r.t. t. (4) 
Theorem 1.4 (Effective flux limiter). Assume (A0)-(A5) and either (B-i) or (B-ii).

The set E = {λ ∈ R : ∃w sub-solution of (4)}

is not empty and bounded from below. Moreover, if Ā denotes the infimum of E, then

Ā ≥ A 0 := max α=L,R min Hα . (5) 
Remark 1.5. We will see below (Theorem 4.6) that the infimum is in fact a minimum: there exists a global corrector which, in particular, can be rescaled properly.

We can now define the effective junction condition. 

The convergence result

Our main result is the following theorem.

Theorem 1.7 (Junction condition by homogenization). Assume (A0)-(A5) and either (B-i) or (B-ii). Assume that the initial datum u 0 is Lipschitz continuous and for ε > 0, let u ε be the solution of (1)- [START_REF] Andreianov | Finite volume schemes for locally constrained conservation laws[END_REF]. Then u ε converges locally uniformly to the unique flux-limited solution u 0 of   

u 0 t + HL (u 0 x ) = 0, t > 0, x < 0, u 0 t + HR (u 0 x ) = 0, t > 0, x > 0, u 0 t + F Ā(u 0 x (t, 0 -), u 0 x (t, 0 + )) = 0, t > 0, x = 0 (6)
submitted to the initial condition (2).

Remark 1.8. We recall that the notion of flux-limited solution for ( 6) is introduced in [START_REF] Imbert | Flux-limited solutions for quasi-convex Hamilton-Jacobi equations on networks[END_REF].

This theorem asserts in particular that the slopes of the limit solution at the origin are characterized by the effective flux limiter Ā. Its proof relies on the construction of a global "corrector", i.e. a solution of (4), which is close to an appropriate V -shaped function after rescaling. This latter condition is necessary so that the slopes at infinity of the corrector fit the expected slopes of the solution of the limit problem at the origin. Here is a precise statement.

Theorem 1.9 (Existence of a global corrector for the junction). Assume (A0)-(A5) and either (B-i) or (B-ii). There exists a solution w of (4) with λ = Ā such that, the function

w ε (t, x) = εw(ε -1 t, ε -1 x)
converges locally uniformly (along a subsequence ε n → 0) towards a function W = W (x) which satisfies W (0) = 0 and

pR x1 {x>0} + pL x1 {x<0} ≥ W (x) ≥ pR x1 {x>0} + pL x1 {x<0} (7) 
where

pR = min E R pR = max E R with E R := p ∈ R, H+ R (p) = HR (p) = Ā (8) pL = max E L pL = min E L with E L := p ∈ R, H- L (p) = HL (p) = Ā . (9) 
The construction of this global corrector is the reason why homogenization is referred to as being "specified". See also Section 1.4 about related results. As a matter of fact, we will prove a stronger result, see Theorem 4.6.

Extension: application to traffic lights

The techniques developed to prove the Theorem 1.7 allow us to deal with a different situation inspired from traffic flow problems. As explained in [START_REF] Imbert | A Hamilton-Jacobi approach to junction problems and application to traffic flows[END_REF], such problems are related to the study of some Hamilton-Jacobi equations. The problem that we address in Theorem 1.12 below is motivated by its meaningful application to traffic lights. We aim at figuring out how the fraffic flow on an ideal (infinite, straight) road is modified by the presence of a finite number of traffic lights.

We can consider a Hamilton-Jacobi equation whose Hamiltonian does not depend on (t, x) for x outside a (small) interval of the form N ε = (b 1 ε, b N ε) and is piecewise constant with respect to x in (b 1 ε, b N ε). At space discontinuities, junction conditions are imposed with ε-time periodic flux limiters. The limit solution satifies the equation after the "neighbourhood" N ε disappeared. We will see that the equation keeps memory of what happened there through a flux limiter at the origin x = 0.

Let us be more precise now. For N ≥ 1, (a finite number of) junction points

-∞ = b 0 < b 1 < b 2 < • • • < b N < b N +1 = +∞ and (a finite number of) times 0 = τ 0 < τ 1 < • • • < τ K < 1 = τ K+1 , K ∈ N are given. For N ≥ 1 and α ∈ {0, . . . , N}, ℓ α denotes b α+1 -b α . Note that ℓ α = +∞ for α = 0, N.
We then consider the solution u ε of (1) where the Hamiltonian H satifies the following conditions.

(C1) The Hamiltonian is given by

H(t, x, p) = Hα (p) if b α < x < b α+1 max( H+ α-1 (p -), H- α (p + ), a α (t)) if x = b α , α = 0.
(C2) The Hamiltonians Hα , for α = 0, . . . , N, are continuous, coercive and quasi-convex.

(C3) The flux limiters a α , for α = 1, . . . , N and i = 0, . . . , K, satisfy

a α (s + 1) = a α (s) with a α (s) = A i α for all s ∈ [τ i , τ i+1 ) with (A i α ) i=0,...,K α=1,...,N satisfying A i α ≥ max β=α-1,α min Hβ .
Remark 1.10. The Hamiltonians outside N ε are denoted by Hα instead of H α in order to emphasize that they do not depend on time and space.

Remark 1.11. In view of the litterature in traffic modeling, the Hamiltonians could be assumed to be convex. But we prefer to stick to the quasi-convex framework since it seems to us that it is the natural one (in view of [START_REF] Imbert | Flux-limited solutions for quasi-convex Hamilton-Jacobi equations on networks[END_REF]).

The equation is supplemented with the following initial condition

u ε (0, x) = U ε 0 (x) for x ∈ R (10) 
with

U ε 0 is equi-Lipschitz continuous and U ε 0 → u 0 locally uniformly. ( 11 
)
Then the following convergence result holds true.

Theorem 1.12 (Time homogenization of traffic lights). Assume (C1)-(C3) and [START_REF] Forcadel | Homogenization of accelerated Frenkel-Kontorova models with n types of particles[END_REF]. Let u ε be the solution of (1)-( 10) for all ε > 0. Then: i) (Homogenization) There exists some Ā ∈ R such that u ε converges locally uniformly as ε tends to zero towards the unique viscosity solution u 0 of (6)-( 2) with HL := H0 , HR := HN .

ii) (Qualitative properties of Ā) For α = 1, . . . , N, a α denotes 1 0 a α (s) ds. The effective limiter Ā satisfies the following properties.

• For all α, Ā is non-increasing w.r.t. ℓ α .

• For

N = 1, Ā = a 1 . (12) 
•

For N ≥ 1, Ā ≥ max α=1,...,N a α . (13) 
• For N ≥ 2, there exists a critical distance d 0 ≥ 0 such that

Ā = max α=1,...,N a α if min α ℓ α ≥ d 0 ; ( 14 
)
this distance d 0 only depends on max α=1,...,N a α ∞ , max α=1,...,N a α and the Hα 's.

• We have Ā → ā as (ℓ 1 , . . . , ℓ N -1 ) → (0, . . . , 0) (15) 
where ā(τ ) = max α=1,...,N a α (τ ).

Remark 1.13. Since the function a(t) is piecewise constant, the way u ε satisfies (1) has to be made precise. An L 1 theory in time (following for instance the approach of [START_REF] Bourgoing | Viscosity solutions of fully nonlinear second order parabolic equations with L 1 dependence in time and Neumann boundary conditions[END_REF][START_REF] Bourgoing | Viscosity solutions of fully nonlinear second order parabolic equations with L 1 dependence in time and Neumann boundary conditions. Existence and applications to the level-set approach[END_REF]) could probably be developed for such a problem, but we will use here a different, elementary approach. The Cauchy problem is understood as the solution of successive Cauchy problems. This is the reason why we will first prove a global Lipschitz bound on the solution so that there indeed exists such a solution.

Remark 1.14. Note that the result of Theorem 1.4 still holds for equation (1) under Assumptions (C1)-(C3), with the set E defined for sub-solutions which are moreover assumed to be globally Lipschitz (without fixed bound on the Lipschitz constant). The reader can check that the proof is unchanged.

Remark 1.15. It is somewhat easy to get [START_REF] Forcadel | Homogenization of fully overdamped Frenkel-Kontorova models[END_REF] when the Hamiltonians Hα are convex by using the optimal control interpretation of the problem. In the more general case of quasiconvex Hamiltonians, the result still holds true but the proof is more involved.

Remark 1.16. We may have Ā > max α=1,...,N a α . It is possible to deduce it from [START_REF] Hamamuki | On large time behavior of Hamilton-Jacobi equations with discontinuous source terms[END_REF] in the case N = 2 by using the traffic light interpretation of the problem. If we have two traffic lights very close to each other (let us say that the distance in between is at most the place for only one car), and if the common period of the traffic lights are exactly in opposite phases (with for instance one minute for the green phase, and one minute for the red phase), then the effect of the two traffic lights together, gives a very low flux which is much lower than the effect of a single traffic light alone (i.e. here at most one car every two minutes will go through the two traffic lights).

Traffic flow interpretation of Theorem 1.12

We mentioned above that there are some connections between our problem and traffic flows. Inequality [START_REF] Forcadel | Homogenization of some particle systems with two-body interactions and of the dislocation dynamics[END_REF] has a natural traffic interpretation, saying that the average limitation on the traffic flow created by several traffic lights on a single road is higher or equal to the one created by the traffic light which creates the highest limitation. Moreover this average limitation is smaller if the distances between traffic lights are bigger, as says the monotonicity of Ā with respect to the distances ℓ α .

Property [START_REF] Giga | Hamilton-Jacobi equations with discontinuous source terms[END_REF] says that the minimal limitation is reached if the distances between the traffic lights are bigger than a critical distance d 0 . The proof of this result is quite involved and is reflected in the fact that the bounds that we have on d 0 are not continuous on the data ( max α=1,...,N a α ∞ , max α=1,...,N a α and the Hα 's).

Finally property [START_REF] Hamamuki | On large time behavior of Hamilton-Jacobi equations with discontinuous source terms[END_REF] is very natural from the point of view of traffic, since it corresponds to the case where all the traffic lights would be at the same position.

Related results

Achdou and Tchou [START_REF] Achdou | Hamilton-Jacobi Equations on Networks as Limits of Singularly Perturbed Problems in Optimal Control: Dimension Reduction[END_REF] studied a singular perturbation problem which has the same flavor as the one we are looking at in the present paper. More precisely, they consider the simplest network (a so-called junction) embedded in a star-shaped domain. They prove that the value function of an infinite horizon control problem converges, as the star-shaped domain "shrinks" to the junction, to the value function of a control problem posed on the junction. We borrow from them the idea of studying the cell problem on truncated domains with state constraints. We provide a different approach, which is also in some sense more general because it can be applied to problems outside the framework of optimal control theory. Our approach relies in an essential way on the general theory developed in [START_REF] Imbert | Flux-limited solutions for quasi-convex Hamilton-Jacobi equations on networks[END_REF].

The general theme of Lions's 2013-2014 lectures at Collège de France [START_REF] Lions | Lectures at Collège de France[END_REF] is "Elliptic or parabolic equations and specified homogenization". As far as first order Hamilton-Jacobi equations are concerned, the term "specified homogenization" refers to the problem of constructing correctors to cell problems associated with Hamiltonians that are typically the sum of a periodic one H and a compactly supported function f depending only on x, say. Lions exhibits sufficient conditions on f such that the effective Hamilton-Jacobi equation is not perturbed. In terms of flux limiters [START_REF] Imbert | Flux-limited solutions for quasi-convex Hamilton-Jacobi equations on networks[END_REF], it corresponds to look for sufficient conditions such that the effective flux limiter Ā given by Theorem 1.4 is (less than or) equal to A 0 = min H.

Barles, Briani and Chasseigne [5, Theorem 6.1] considered the case

H(x, p) = ϕ x ε H R (p) + 1 -ϕ x ε H L (p)
for some continuous increasing function ϕ : R → R such that lim s→-∞ ϕ(s) = 0 and lim s→+∞ ϕ(s) = 1.

They prove that u ε converges towards a value function denoted by U -, that they characterize as the solution to a particular optimal control problem. It is proved in [START_REF] Imbert | Flux-limited solutions for quasi-convex Hamilton-Jacobi equations on networks[END_REF] that U - is the solution of ( 6) with Hα = H α and Ā replaced with

A + I = max(A 0 , A * ) with A 0 = max(min H R , min H L ) and A * = max q∈[min(p 0 R ,p 0 L ),max(p 0 R ,p 0 L )]
(min(H R (q), H L (q))).

In [START_REF] Giga | Hamilton-Jacobi equations with discontinuous source terms[END_REF], Giga and Hamamuki develop a theory which allows in particular to prove existence and uniqueness for the following Hamilton-Jacobi equation (changing

u in -u) in R d , ∂ t u + |∇u| = 0 for x = 0 ∂ t u + |∇u| + c = 0 at x = 0.
The solutions of [START_REF] Giga | Hamilton-Jacobi equations with discontinuous source terms[END_REF] are constructed as limits of the following equation

∂ t u ε + |∇u ε | + c(1 -|x|/ε) + = 0.
In the monodimensional case (d = 1), Theorem 1.7 implies that u ε converges towards

∂ t u + |∇u| = 0 for x = 0 ∂ t u + max(A, |∇u|) = 0 at x = 0 for some A ∈ R. In view of Theorem 1.4, it is not difficult to prove that A = max(0, c).
The Hamiltonian max(c, |∇u|) is identified in [START_REF] Giga | Hamilton-Jacobi equations with discontinuous source terms[END_REF] and is referred to as the relaxed one.

It is known that homogenization of Hamilton-Jacobi equations is closely related to the study of the large time behaviour of solutions. In [START_REF] Hamamuki | On large time behavior of Hamilton-Jacobi equations with discontinuous source terms[END_REF], the large time behaviour of Hamilton-Jacobi equations with discontinuous source terms is discussed in two cases: for compactly supported ones and periodic ones. Remark that in our setting, we can adress both and even the sum of a periodic source term and of a compactly supported one. It would be interesting to adress such a problem in the case of traffic lights. In [START_REF] Jin | Asymptotic solution and effective Hamiltonian of a Hamilton-Jacobi equation in the modeling of traffic flow on a homogeneous signalized road[END_REF], the authors study the large time behaviour of the solutions of a Hamilton-Jacobi equations with an x-periodic Hamiltonian and what can be interpreted as a flux-limiter depending periodically in time.

Further extensions

It is also possible to adress the time homogenization problem of Theorem 1.12 with any finite number of junctions (with limiter functions a α (t) piecewise constants -or continuous -and 1-periodic), either separated with distance of order O(1) or with distance of order O(ε), or mixing both, and even on a complicated network. See also [START_REF] Jin | Asymptotic solution and effective Hamiltonian of a Hamilton-Jacobi equation in the modeling of traffic flow on a homogeneous signalized road[END_REF] for other connexions between Hamilton-Jacobi equations and traffic light problems and [START_REF] Andreianov | Finite volume schemes for locally constrained conservation laws[END_REF] for green waves modelling.

Note that the method presented in this paper can be readily applied (without modifying proofs) to the study of homogeneization on a finite number of branches and not only two branches; the theory developed in [START_REF] Imbert | Flux-limited solutions for quasi-convex Hamilton-Jacobi equations on networks[END_REF] should also be used for the limit problem.

Similar questions in higher dimensions with point defects of other co-dimensions will be addressed in future works.

Organization of the article

Section 2 is devoted to the proof of the convergence result (Theorem 1.7). Section 3 is devoted to the construction of correctors far from the junction point (Proposition 1.2) while the junction case, i.e. the proof of Theorem 4.6, is addressed in Section 4. We recall that Theorem 1.9 is a straightforward corollary of this stronger result. The proof of Theorem 4.6 makes use of a comparison principle which is expected but not completely standard. This is the reason why a proof is sketched in Appendix, together with two other ones that are rather standard but included for the reader's convenience.

Notation. A ball centered at x of radius r is denoted by B r (x). If {u ε } ε is locally bounded, the upper and lower relaxed limits are defined as

   lim sup ε * u ε (X) = lim sup Y →X,ε→0 u ε (Y ), lim inf ε * u ε (X) = lim inf Y →X,ε→0 u ε (Y ).
In our proofs, constants may change from line to line.

Proof of convergence

This section is devoted to the proof of Theorem 1.7. We first construct barriers.

Lemma 2.1 (Barriers).

There exists a nonnegative constant C such that for any ε > 0

|u ε (t, x) -u 0 (x)| ≤ Ct for (t, x) ∈ (0, T ) × R . ( 16 
)
Proof. Let L 0 be the Lipschitz constant of the initial datum u 0 . Taking

C = sup (t,x)∈R×R |p|≤L 0 |H(t, x, p)| < +∞
owing to (A0) and (A5), the functions u ± (t, x) = u 0 (x) ± Ct are a super-and a subsolution of ( 1)-( 2) respectively and ( 16) follows via comparison principle.

We can now prove the convergence theorem.

Proof of Theorem 1.7. We classically consider the upper and lower relaxed semi-limits

   u = lim sup ε * u ε , u = lim inf ε * u ε .
Notice that these functions are well defined because of Lemma 2.1. In order to prove convergence of u ε towards u 0 , it is sufficient to prove that u and u are a sub-and a supersolution of ( 6)-( 2) respectively. The initial condition immediately follows from [START_REF] Han | On the continuum approximation of the on-and-off signal control on dynamic traffic networks[END_REF]. We focus our attention on the sub-solution case since the super-solution one can be handled similarly.

We first check that

u(t, 0) = lim sup (s,y)→(t,0),y>0 u(s, y) = lim sup (s,y)→(t,0),y<0 u(s, y). (17) 
This is a consequence of the stability of such a "weak continuity" condition, see [START_REF] Imbert | Flux-limited solutions for quasi-convex Hamilton-Jacobi equations on networks[END_REF]. Indeed, it is shown in [START_REF] Imbert | Flux-limited solutions for quasi-convex Hamilton-Jacobi equations on networks[END_REF] that classical viscosity solution can be viewed as flux-limited one; in particular, u ε solves

u ε t + H -t ε , 0 ε , u ε x (t, 0 + ) ∨ H + t ε , 0 ε , u ε x (t, 0 -)) = 0 for t > 0.
Since these ε-Hamiltonians are uniformly coercive and u ε is continuous, we conclude that (17) holds true.

Let ϕ be a test function such that

(u -ϕ)(t, x) < (u -ϕ)(t, x) = 0 ∀(t, x) ∈ B r (t, x) \ (t, x) . (18) 
We argue by contradiction by assuming that

ϕ t (t, x) + H x, ϕ x (t, x) = θ > 0, (19) 
where

H x, ϕ x (t, x) :=    HR (ϕ x (t, x)) if x > 0, HL (ϕ x (t, x)) if x < 0, F Ā(ϕ x (t, 0 -), ϕ x (t, 0 + )) if x = 0.
We only treat the case where x = 0 since the case x = 0 is somewhat classical. This latter case is detailed in Appendix for the reader's convenience. Using [18, Proposition 2.8], we may suppose that

ϕ(t, x) = φ(t) + pL x1 {x<0} + pR x1 {x>0} (20) 
where φ is a C 1 function defined in (0, +∞). In this case, Eq. ( 19) becomes

φ ′ ( t) + F Ā (p L , pR ) = φ ′ ( t) + Ā = θ > 0. ( 21 
)
Let us consider a solution w of the equation

w t + H(t, x, w x ) = Ā ( 22 
)
provided by Theorem 1.9, which is in particular 1-periodic with respect to time. We recall that the function W is the limit of w ε = εw(•/ε) as ε → 0. We claim that, if ε > 0 is small enough, the perturbed test function ϕ ε (t, x) = φ(t) + w ε (t, x) [START_REF] Evans | The perturbed test function method for viscosity solutions of nonlinear PDE[END_REF] is a viscosity super-solution of

ϕ ε t + H t ε , x ε , ϕ ε x = θ 2 in B r (t, 0)
for some sufficiently small r > 0. In order to justify this fact, let ψ(t, x) be a test function touching ϕ ε from below at (t 1 , x 1 ) ∈ B r (t, 0). In this way

w t 1 ε , x 1 ε = 1 ε (ψ(t 1 , x 1 ) -φ(t 1 )) and w (s, y) ≥ 1 ε (ψ(εs, εy) -φ(εs))
for (s, y) in a neighborhood of t 1 ε , x 1 ε . Hence from ( 21)-( 22)

ψ t (t 1 , x 1 ) + H t 1 ε , x 1 ε , ψ x (t 1 , x 1 ) ≥ Ā + φ ′ (t 1 ) ≥ Ā + φ ′ (t) - θ 2 ≥ θ 2
provided r is small enough. Hence, the claim is proved. Combining (7) from Theorem 1.9 with ( 18) and ( 20), we can fix κ r > 0 and ε > 0 small enough so that

u ε + κ r ≤ ϕ ε on ∂B r (t, 0).
By comparison principle the previous inequality holds in B r (t, 0). Passing to the limit as ε → 0 and (t, x) → ( t, x), we get the following contradiction

u(t, 0) + κ r ≤ ϕ(t, 0) = u(t, 0).
The proof of convergence is now complete.

Remark 2.2. For the super-solution property, ϕ in (20) should be replaced with

ϕ(t, x) = φ(t) + pL x1 {x<0} + pR x1 {x>0} .

Homogenized Hamiltonians

In order to prove Proposition 1.2, we first prove the following lemma. Even if the proof is standard, we give it in full details since we will adapt it when constructing global correctors for the junction.

Lemma 3.1 (Existence of a corrector).

There exists λ ∈ R and a bounded (discontinuous) viscosity solution of (3).

Remark 3.2. If H α does not depend on t, then it is possible to construct a corrector which does not depend on time either. We leave details to the reader.

Proof. For any δ > 0, it is possible to construct a (possibly discontinuous) viscosity solution

v δ of δv δ + v δ t + H α (t, x, p + v δ x ) = 0 in R × R, v δ is Z 2 -periodic.
First, the comparison principle implies

|δv δ | ≤ C α ( 23 
)
where

C α = sup (t,x)∈[0,1] 2 |H α (t, x, p)|.
Second, the function

m δ (x) = sup t∈R (v δ ) * (t, x)
is a sub-solution of H α (t(x), x, p + m δ x ) ≤ C α (for some function t(x)). Assumptions (A3) and (A5) imply in particular that there exists C > 0 independent of δ such that |m δ x | ≤ C and v δ t ≤ C. In particular, the comparison principle implies that for all t ∈ R and x ∈ R and h ≥ 0,

v δ (t + h, x) ≤ v δ (t, x) + Ch.
Combining this inequality with the time-periodicity of v δ yields

|v δ (t, x) -m δ (x)| ≤ C; in particular, |v δ (t, x) -v δ (0, 0)| ≤ C. (24) 
Hence, the half relaxed limits

v = lim sup δ→0 * (v δ -v δ (0, 0)) and v = lim inf δ→0 * (v δ -v δ (0, 0))
are finite. Moreover, [START_REF] Lions | Lectures at Collège de France[END_REF] implies that δv δ (0, 0) → -λ (at least along a subsequence). Hence, discontinuous stability of viscosity solutions implies that v is a Z 2 -periodic subsolution of (3) and v is a Z 2 -periodic super-solution of the same equation. Perron's method then allows us to construct a corrector between v and v + C with C = sup(v -v). The proof of the lemma is now complete.

The following lemma is completely standard; the proof is given in Appendix for the reader's convenience. Proof. In view of the uniform coercivity in p of H α with respect to (t, x) (see (A3)), for any R > 0 there exists a positive constant C R such that

|p| ≥ C R ⇒ ∀(t, x) ∈ R × R, H α (t, x, p) ≥ R. ( 25 
)
Let v α be the discontinuous corrector given by Lemma 3.1 and ( t, x) be point of supremum of its upper semi-continuous envelope (v α ) * . Then we have

H α ( t, x, p) ≤ Hα (p) which implies Hα (p) ≥ R for |p| ≥ C R . (26) 
The proof of the lemma is now complete.

We first prove the quasi-convexity of Hα under assumption (B-ii). We prove in fact more: the effective Hamiltonian is convex in this case. Proof. For p, q ∈ R, let v p , v q be solutions of (3) with λ = Hα (p) and Hα (q) respectively. We also set

u p (t, x) = v p (t, x) + px -t Hα (p)
and define similarly u q .

Step 1: u p and u q are locally Lipschitz continuous. In this case, we have almost everywhere:

(u p ) t + H α (t, x, (u p ) x ) = 0, (u q ) t + H α (t, x, (u q ) x ) = 0. For µ ∈ [0, 1], let ū = µu p + (1 -µ)u q .
By convexity, we get almost everywhere

ūt + H α (t, x, ūx ) ≤ 0. ( 27 
)
We claim that the convexity of H α (in the gradient variable) implies that ū is a viscosity sub-solution. To see it, we use an argument of [3, Proposition 5.1]. For P = (t, x), we define a mollifier ρ δ (P ) = δ -2 ρ(δ -1 P ) and set ūδ = ū ⋆ ρ δ

Then by convexity, we get with Q = (s, y):

(ū δ ) t + H α (P, (ū δ ) x ) ≤ dQ {H α (P, ūx (Q)) -H α (Q, ūx (Q)} ρ δ (P -Q).
The fact that ūx is locally bounded and the fact that H α is continuous imply that the right hand side goes to zero as δ → 0. We deduce (by stability of viscosity sub-solutions) that (27) holds true in the viscosity sense. Then the comparison principle implies that µ Hα (p) + (1 -µ) Hα (q) ≥ Hα (µp + (1 -µ)q).

(28)

Step 2: u p and u q are continuous. We proceed in two (sub)steps.

Step 2.1: the case of a single function u. We first want to show that if u = u p is continuous and satisfies (27) almost everywhere, then u is a viscosity sub-solution. To this end, we will use the structural assumptions satisfied by the Hamiltonian. The ones that were useful to prove the comparison principle will be also useful to prove the result we want. Indeed, we will revisit the proof of the comparison principle. We also use the fact that u(t, x) -px + t Hα (p) is bounded.

For ν > 0, we set

u ν (t, x) = sup s∈R u(s, x) - (t -s) 2 2ν = u(s ν , x) - (t -s ν ) 2 2ν .
As usual, we get from (29) that

|t -s ν | ≤ C √ ν with C = C(p, T ) (30) 
for t ∈ (-T, T ). In particular s ν → t locally uniformly. If a test function ϕ touches u ν from above at some point (t, x), then we have ϕ t (t, x) = -t -s ν ν and

ϕ t (t, x) + H α (t, x, ϕ x (t, x)) ≤ H α (t, x, ϕ x (t, x)) -H α (s ν , x, ϕ x (t, x)) ≤ ω(|t -s ν | (1 + max(0, H α (s ν , x, ϕ x (t, x))))) ≤ ω (t -s ν ) 2 ν + |t -s ν | (31) 
where we have used (A2) in the third line. The right hand side goes to zero as ν goes to zero since (t -s ν ) 2 ν → 0 locally uniformly w.r.t. (t, x) (recall u is continuous). Indeed, this can be checked for (t, x) replaced by (t ν , x ν ) because for any sequence (t ν , s ν , x ν ) → (t, t, x), we have

u(t ν , x ν ) ≤ u ν (t ν , x ν ) = u(s ν , x ν ) - (t ν -s ν ) 2 2ν
where the continuity of u implies the result. For a given ν > 0, we see that (30) and (31) imply that

|ϕ t | , |ϕ x | ≤ C ν,p .
This implies in particular that u ν is Lipschitz continuous, and then

u ν t + H(t, x, u ν x ) ≤ o ν (1) a.e.
where o ν (1) is locally uniform with respect to (t, x).

Step 2.2: application. Applying Step 2.1, we get for z = p, q

(u ν z ) t + H(t, x, (u ν z ) x ) ≤ o ν (1) a.e.
where o ν (1) is locally uniform with respect to (t, x).

Step 1 implies that ūν := µu ν p + (1 -µ)u ν q is a viscosity sub-solution of

(ū ν ) t + H α (t, x, (ū ν ) x ) ≤ o ν (1)
where o ν (1) is locally uniform with respect to (t, x). In the limit ν → 0, we recover (by stability of sub-solutions) that ū is a viscosity sub-solution, i.e. satisfies (27) in the viscosity sense. This gives then the same conclusion as in Step 1.

Step 3: the general case. To cover the general case, we simply replace u p by ũp which is the solution to the Cauchy problem

(ũ p ) t + H α (t, x, (ũ p ) x ) = 0, for (t, x) ∈ (0, +∞) × R ũp (0, x) = px,
Then ũp is continuous and satisfies |ũ p -u p | ≤ C. Proceeding similarly with ũq and using

Step 2, we deduce the desired inequality (28). The proof is now complete.

We finally prove the quasi-convexity of Hα under assumption (B-i).

Lemma 3.6 (Quasi-convexity of Hα under (B-i)). Assume (A0)-(A5) and (B-i). Then the function Hα is quasi-convex.

Proof. We reduce quasi-convexity to convexity by composing with an increasing function γ; notice that such a reduction was already used in optimization and in partial differential equations, see for instance [START_REF] Lions | Two geometrical properties of solutions of semilinear problems[END_REF][START_REF] Kawohl | Rearrangements and convexity of level sets in PDE[END_REF]. We first assume that

H α satisfies            H α ∈ C 2 , D 2 pp H α (x, p 0 α ) > 0, D p H α (x, p) < 0 for p ∈ (-∞, p 0 α ), D p H α (x, p) > 0 for p ∈ (p 0 α , +∞), H α (x, p) → +∞ as |p| → +∞ uniformly w.r.t. x ∈ R. ( 32 
)
For a function γ such that

γ is convex, γ ∈ C 2 (R) and γ ′ ≥ δ 0 > 0 we have D 2 pp (γ • H α ) > 0 if and only if (ln γ ′ ) ′ (λ) > - D 2 pp H α (x, p) (D p H α (x, p)) 2 for p = π ± α (x, λ) and λ ≥ H α (x, p) (33) 
where π ± α (x, λ) is the only real number r such that ±r ≥ 0 and

H α (x, r) = λ. Because D 2
pp H α (x, p 0 α ) > 0, we see that the right hand side is negative for λ close enough to H α (x, p 0 α ) and it is indeed possible to construct such a function γ.

In view of Remark 3.2, we can construct a solution of δv δ + γ • H α (x, p + v δ x ) = 0 with -δv δ → γ • H α (p) as δ → 0, and a solution of

γ • H α (x, p + v x ) = γ • H α (p) This shows that Hα = γ -1 • γ • H α .
Thanks to Lemmas 3.4 and 3.5, we know that γ • H α is coercive and convex. Hence Hα is quasi-convex.

If now H α does not satisfies (32), then for all ε > 0, there exists Moreover, the previous case implies that Hε α is quasi-convex. Hence, so is Hα . The proof of the lemma is now complete.

H ε α ∈ C 2 such that          (D 2 pp H ε α )(x, p 0 α ) > 0 D p H ε α (x, p) < 0 for p ∈ (-∞, p 0 α ), D p H ε α (x, p) > 0 for p ∈ (p 0 α , +∞), |H ε α -H α | < ε.
Proof of Proposition 1.2. Combine Lemmas 3.1, 3.3, 3.4, 3.5 and 3.6.

Truncated cell problems

We consider the following problem: find λ ρ ∈ R and w such that

         w t + H(t, x, w x ) = λ ρ , (t, x) ∈ R × (-ρ, ρ), w t + H -(t, x, w x ) = λ ρ , (t, x) ∈ R × {-ρ} , w t + H + (t, x, w x ) = λ ρ , (t, x) ∈ R × {ρ} , w is 1-periodic w.r.t. t. (34) 
Even if our approach is different, we borrow here an idea from [START_REF] Achdou | Hamilton-Jacobi Equations on Networks as Limits of Singularly Perturbed Problems in Optimal Control: Dimension Reduction[END_REF] by truncating the domain and by considering correctors in [-ρ, ρ] with ρ → +∞. 

A comparison principle

         v t + H(t, x, v x ) ≥ λ for (t, x) ∈ R × (ρ 1 , ρ 2 ), v t + H + (t, x, v x ) ≥ λ for (t, x) ∈ R × {ρ 2 } , v(t, x) ≥ U 0 (t) for (t, x) ∈ R × {ρ 1 } , v is 1-periodic w.r.t. t (35) 
where U 0 is continuous and for ε 0 > 0 and u be a sub-solution of the following one

         u t + H(t, x, u x ) ≤ λ -ε 0 for (t, x) ∈ R × (ρ 1 , ρ 2 ), u t + H + (t, x, u x ) ≤ λ -ε 0 for (t, x) ∈ R × {ρ 2 } , u(t, x) ≤ U 0 (t) for (t, x) ∈ R × {ρ 1 } , u is 1-periodic w.r.t. t. ( 36 
)
Then u ≤ v in R × [ρ 1 , ρ 2 ].
Remark 4.2. A similar result holds true if the Dirichlet condition is imposed at x = ρ 2 and junction conditions

v t + H -(t, x, v x ) ≥ λ at x = ρ 1 u t + H -(t, x, u x ) ≤ λ -ε 0 at x = ρ 1 are imposed at x = ρ 1 .
The proof of Proposition 4.1 is very similar to (in fact simpler than) the proof of the comparison principle for Hamilton-Jacobi equations on networks contained in [START_REF] Imbert | Flux-limited solutions for quasi-convex Hamilton-Jacobi equations on networks[END_REF]. The main difference lies in the fact that in our case, u and v are global in time and the space domain is bounded. A sketch of the proof is provided in Appendix shedding some light on the main differences. Here the parameter ε 0 > 0 in (36) is used in place of the standard correction term -η/(T -t) for a Cauchy problem.

Correctors on truncated domains

Proposition 4.3 (Existence and properties of a corrector on a truncated domain). There exists a unique λ ρ ∈ R such that there exists a solution w ρ = w of (34). Moreover, there exists a constant C > 0 independent of ρ ∈ (ρ 0 , +∞) and a function

m ρ : [-ρ, ρ] → R such that    |λ ρ | ≤ C, |m ρ (x) -m ρ (y)| ≤ C |x -y| for x, y ∈ [-ρ, ρ], |w ρ (t, x) -m ρ (x)| ≤ C for (t, x) ∈ R × [-ρ, ρ]. (37) 
Proof. In order to construct a corrector on the truncated domain, we proceed classically by considering

         δw δ + w δ t + H(t, x, w δ x ) = 0, (t, x) ∈ R × (-ρ, ρ) , δw δ + w δ t + H -(t, x, w δ x ) = 0, (t, x) ∈ R × {-ρ} , δw δ + w δ t + H + (t, x, w δ x ) = 0, (t, x) ∈ R × {ρ} , w δ is 1-periodic w.r.t. t. (38) 
A discontinuous viscosity solution of (38) is constructed by Perron's method (in the class of 1-periodic functions with respect to time) since ±δ -1 C are trivial super-/sub-solutions if C is chosen as follows

C = sup t∈R, x∈R |H(t, x, 0)|.
In particular, the solution w δ satisfies by construction

|w δ | ≤ C δ . (39) 
We next consider m δ (x) = sup t∈R (w δ ) * (t, x).

We remark that the supremum is reached since w δ is periodic with respect to time; we also remark that m δ is a viscosity sub-solution of ρ,ρ) (for some function t(x)). In view of (A3), we conclude that m δ is globally Lipschitz continuous and

H(t(x), x, m δ x ) ≤ C, x ∈ (-
|m δ x | ≤ C (40) 
for some constant C which still only depends on H. Assumption (A3) also implies that, w δ t ≤ C (with C only depending on H). In particular, the comparison principle implies that for all t ∈ R, x ∈ (-ρ, ρ) and h ≥ 0,

w δ (t + h, x) ≤ w δ (t, x) + Ch.
Combining this information with the periodicity of w δ with respect to t, we conclude that for t ∈ R and x ∈ (-ρ, ρ),

|w δ (t, x) -m δ (x)| ≤ C.
In particular, |w δ (t, x) -w δ (0, 0)| ≤ C.

We then consider w = lim sup δ * (w δ -w δ (0, 0)) and w = lim inf δ * (w δ -w δ (0, 0)).

We next remark that (39) and (40) imply that there exists δ n → 0 such that m δn -m δn (0) → m ρ as n → +∞ δ n w δn (0, 0) → -λ ρ as n → +∞ (the first convergence being locally uniform). In particular, λ, w, w and m ρ satisfies

|λ ρ | ≤ C |w -m ρ | ≤ C |w -m ρ | ≤ C |m ρ x | ≤ C.
Discontinuous stability of viscosity solutions of Hamilton-Jacobi equations imply that w -2C and w are respectively a sub-solution and a super-solution of (34) and

w -2C ≤ w.
Perron's method is used once again in order to construct a solution w ρ of (34) which is 1-periodic with respect to time. In view of the previous estimates, λ ρ , m ρ and w ρ satisfy (37). Proving the uniqueness of λ ρ is classical so we skip it. The proof of the proposition is now complete. Proof. For ρ ′ > ρ > 0, we see that the restriction of w ρ ′ to [-ρ, ρ] is a sub-solution, as a consequence of [START_REF] Imbert | Flux-limited solutions for quasi-convex Hamilton-Jacobi equations on networks[END_REF]Proposition 2.19]. The boundedness of the map follows from Proposition 4.3. The proof is thus complete.

We next prove that we can control w ρ from below under appropriate assumptions on Ā.

Proposition 4.5 (Control of slopes on a truncated domain). Assume first that Ā > min HR . Then for all δ > 0, there exists ρ δ > 0 and C δ > 0 (independent on ρ) such that for x ≥ ρ δ and h ≥ 0,

w ρ (t, x + h) -w ρ (t, x) ≥ (p R -δ)h -C δ . ( 41 
)
If now we assume that Ā > min HL , then for x ≤ -ρ δ and h ≥ 0,

w ρ (t, x -h) -w ρ (t, x) ≥ (-p L -δ)h -C δ ( 42 
)
for some ρ δ > 0 and C δ > 0 as above.

Proof. We only prove (41) since the proof of (42) follows along the same lines. Let δ > 0.

In view of (A5), we know that there exists ρ δ such that

|H(t, x, p) -H R (t, x, p)| ≤ δ for x ≥ ρ δ . ( 43 
)
Assume that Ā > min HR . Then Proposition 1.2 implies that we can pick

p δ R such that HR (p δ R ) = H+ R (p δ R ) = λ ρ -2δ
for ρ ≥ ρ 0 and δ ≤ δ 0 , by choosing ρ 0 large enough and δ 0 small enough. We now fix ρ ≥ ρ δ and x 0 ∈ [ρ δ , ρ]. In view of Proposition 1.2 applied to p = p δ R , we know that there exists a corrector v R solving [START_REF] Bardi | Optimal control and viscosity solutions of Hamilton-Jacobi-Bellman equations[END_REF] 

with α = R. Since it is Z 2 -periodic, it is bounded and w R = p δ R x + v R (t, x) solves (w R ) t + H R (t, x, (w R ) x ) = λ ρ -2δ, (t, x) ∈ R × R.
In particular, the restriction of w R to [ρ δ , ρ] satisfies (see [START_REF] Imbert | Flux-limited solutions for quasi-convex Hamilton-Jacobi equations on networks[END_REF]Proposition 2.19]),

(w R ) t + H R (t, x, (w R ) x ) ≤ λ ρ -2δ for (t, x) ∈ R × (ρ δ , ρ), (w R ) t + H + R (t, x, (w R ) x ) ≤ λ ρ -2δ for (t, x) ∈ R × {ρ} . In view of (43), this implies (w R ) t + H(t, x, (w R ) x ) ≤ λ ρ -δ for (t, x) ∈ R × (ρ δ , ρ), (w R ) t + H + (t, x, (w R ) x ) ≤ λ ρ -δ for (t, x) ∈ R × {ρ} . Now we remark that v = w ρ -w ρ (0, x 0 ) and u = w R -w R (0, x 0 ) -2C -2 v R ∞ satisfies v(t, x 0 ) ≥ -2C ≥ u(t, x 0 )
where C is given by (37). Thanks to the comparison principle from Proposition 4.1, we thus get for x ∈ [x 0 , ρ],

w ρ (t, x) -w ρ (t, x 0 ) ≥ p δ R (x -x 0 ) -C δ
where C δ is a large constant which does not depend on ρ. In particular, we get (41), reducing δ if necessary.

Construction of global correctors

We now state and prove a result which implies Theorem 1.9 stated in the introduction. i) (General properties) There exists a solution w of (4) with λ = Ā such that for all

(t, x) ∈ R 2 , |w(t, x) -m(x)| ≤ C ( 44 
)
for some globally Lipschitz continuous function m, and

Ā ≥ A 0 .
ii) (Bound from below at infinity) If Ā > max α=L,R min Hα , then there exists δ 0 > 0 such that for every δ ∈ (0, δ 0 ), there exists ρ δ > ρ 0 such that w satisfies

w(t, x + h) -w(t, x) ≥ (p R -δ)h -C δ for x ≥ ρ δ and h ≥ 0, w(t, x -h) -w(t, x) ≥ (-p L -δ)h -C δ for x ≤ -ρ δ and h ≥ 0. ( 45 
)
The first line of (45) also holds if we have only Ā > min HR , while the second line of (45) also holds if we have only Ā > min HL .

iii) (Rescaling w) For ε > 0, we set

w ε (t, x) = εw(ε -1 t, ε -1 x).
Then (along a subsequence ε n → 0), we have that w ε converges locally uniformly towards a function

W = W (x) which satisfies    |W (x) -W (y)| ≤ C |x -y| for all x, y ∈ R, HR (W x ) = Ā and pR ≥ W x ≥ pR for x ∈ (0, +∞), HL (W x ) = Ā and pL ≤ W x ≤ pL for x ∈ (-∞, 0). ( 46 
)
In particular, we have W (0) = 0 and

pR x1 {x>0} + pL x1 {x<0} ≥ W (x) ≥ pR x1 {x>0} + pL x1 {x<0} . ( 47 
)
Proof. We consider (up to some subsequence)

w = lim sup ρ→+∞ * (w ρ -w ρ (0, 0)), w = lim inf ρ→+∞ * (w ρ -w ρ (0, 0)) and m = lim ρ→+∞ (m ρ -m ρ (0)).
We derive from (37) that w and w are finite and

m -C ≤ w ≤ w ≤ m + C.
Moreover, discontinuous stability of viscosity solutions imply that w -2C and w are respectively a sub-solution and a super-solution of ( 4) with λ = Ā (recall Proposition 4.4). Hence, a discontinuous viscosity solution w of ( 4) can be constructed by Perron's method (in the class of functions that are 1-periodic with respect to time). Using again (37), w and m satisfy (44). We also get (45) from Proposition 4.5 (use (37) and pass to the limit with m instead of w if necessary).

We now study w ε (t, x) = εw(ε -1 t, ε -1 x). Remark that (37) implies in particular that

w ε (t, x) = εm(ε -1 x) + O(ε).
In particular, we can find a sequence ε n → 0 such that w εn (t, x) → W (x) locally uniformly as n → +∞, with W (0) = 0. Arguing as in the proof of convergence away from the junction point (see the case x = 0 in Appendix), we deduce that W satisfies

HR (W x ) = Ā for x > 0, HL (W x ) = Ā for x < 0.
We also deduce from ( 45) that for all δ > 0 and x > 0,

W x ≥ pR -δ
in the case where Ā > min HR . Assume now that Ā = min HR . This implies that pR ≤ W x ≤ pR and, in all cases, we thus get (47) for x > 0. Similarly, we can prove for x < 0 that pL ≤ W x ≤ pL and the proof of (46) of is achieved. This implies (47). The proof of Theorem 4.6 is now complete.

Proof of Theorem 1.4

Proof of Theorem 1.4. Let Ā denote the limit of A ρ (see Proposition 4.4). We want to prove that Ā = inf E where we recall that E = {λ ∈ R : ∃w sub-solution of (4)}.

In view of (4), sub-solutions are assumed to be periodic with respect to time; we will see that they also automatically satisfy some growth conditions at infinity, see (48) below.

We argue by contradiction by assuming that there exist λ < Ā and a sub-solution w λ of (4). The function

m λ (x) = sup t∈R (w λ ) * (t, x) satisfies H(t(x), x, (m λ ) x ) ≤ C
(for some function t(x)). Assumption (A3) implies that m λ is globally Lipschitz continuous. Moreover, since w λ is 1-periodic w.r.t. time and (w λ ) t ≤ C, then

|w λ (t, x) -m λ (x)| ≤ C. Hence w ε λ (t, x) = εw λ (ε -1 t, ε -1 x) has a limit W λ which satisfies HR (W λ x ) ≤ λ for x > 0.
In particular, for x > 0,

W λ x ≤ pλ R := max{p ∈ R : HR (p) = λ} < pR
where pR is defined in [START_REF] Bourgoing | Viscosity solutions of fully nonlinear second order parabolic equations with L 1 dependence in time and Neumann boundary conditions. Existence and applications to the level-set approach[END_REF]. Similarly,

W λ x ≥ pλ L := min{p ∈ R : HL (p) = λ} > pL
with pL defined in [START_REF] Evans | The perturbed test function method for viscosity solutions of nonlinear PDE[END_REF]. Those two inequalities imply in particular that for all δ > 0, there exists Cδ such that

w λ (t, x) ≤ (p λ R + δ)x + Cδ for x > 0, (p λ L + δ)x + Cδ for x < 0. (48) 
In particular, w λ < w for |x| ≥ R if δ is small enough and R is large enough. In particular,

w λ < w + C R for x ∈ R.
Remark finally that u(t, x) = w(t, x) + C R -Āt is a solution and u λ (t, x) = w λ (t, x) -λt is a sub-solution of (1) with ε = 1 and u λ (0, x) ≤ u(0, x). Hence the comparison principle implies that

w λ (t, x) -λt ≤ w(t, x) -Āt + C R .
Dividing by t and letting t go to +∞, we get the following contradiction

Ā ≤ λ.
The proof is now complete.

Proof of Theorem 1.12

This section is devoted to the proof of Theorem 1.12. As pointed out in Remark 1.13 above, the notion of solutions for (1) has to be first made precise because the Hamiltonian is discontinuous with respect to time.

Notion of solutions for (1). For ε = 1, a function u is a solution of (1) if it is globally Lipschitz continuous (in space and time) and if it solves successively the Cauchy problems on time intervals [τ i + k, τ i+1 + k) for i = 0, . . . , K and k ∈ N.

Because of this definition (approach), we have to show that if the initial datum u 0 is globally Lipschitz continuous, then the solution to the successive Cauchy problems is also globally Lipschitz continuous (which of course insures its uniqueness from the classical comparison principle). See Lemma 5.1 below.

Proof of Theorem 1.12 i). In view of the proof of Theorem 1.7, the reader can check that it is enough to get a global Lipschitz bound on the solution u ε and to construct a global corrector in this new framework. The proof of these two facts is postponed, see Lemmas 5.1 and 5.2 following this proof. Notice that half-relaxed limits are not necessary anymore and that the reasoning can be completed by considering locally converging subsequences of {u ε } ε . Notice also that the perturbed test function method of Evans [START_REF] Evans | The perturbed test function method for viscosity solutions of nonlinear PDE[END_REF] still works. As usual, if the viscosity sub-solution inequality is not satisfied at the limit, this implies that the perturbed test function is a super-solution except at times ε (Z + {τ 0 , . . . , τ K }). Still a localized comparison principle in each slice of times for each Cauchy problem is sufficient to conclude. Lemma 5.1 (Global Lipschitz bound). The function u ε is equi-Lipschitz continuous with respect to time and space.

Proof. Remark that it is enough to get the result for ε = 1 since u(t, x) = ε -1 u ε (εt, εx) satisfies the equation with ε = 1 and the initial condition

u ε 0 (x) = 1 ε U ε 0 (εx)
is equi-Lipschitz continuous. For the sake of clarity, we drop the ε superscript in u ε 0 and simply write u 0 .

We first derive bounds on the time interval [τ 0 , τ 1 ) = [0, τ 1 ). In order to do so, we assume that the initial data satisfies |(u 0 ) x | ≤ L. Then as usual, there is a constant C > 0 such that u ± (t, x) = u 0 (x) ± Ct are super-/sub-solutions of ( 1)-( 10) with H given by (C1) with for instance

C := max max α=1,...,N a α ∞ , max α=0,...,N max |p|≤L | Hα (p)| . ( 49 
)
Let u be the standard (continuous) viscosity solution of (1) on the time interval (0, τ 1 ) with initial data given by u 0 (recall that ε = 1). Then for any h > 0 small enough, we have -Ch ≤ u(h, x) -u(0, x) ≤ Ch. The comparison principle implies for t ∈ (0, τ 1 -h)

-Ch ≤ u(t + h, x) -u(t, x) ≤ Ch
which shows the Lipschitz bound in time, on the time interval [0, τ 1 ):

|u t | ≤ C. (50) 
From the Hamilton-Jacobi equation, we now deduce the following Lipschitz bound in space on the time interval (0, τ 1 ):

| Hα (u x (t, •))| L ∞ (bα,b α+1 ) ≤ C for α = 0, . . . , N. (51) 
We can now derive bounds on the time interval [τ 1 , τ 2 ) as follows. We deduce first that (51) still holds true at time t = τ 1 . Combined with our definition (49) of the constant C, we also deduce that

v ± (t, x) = u(τ 1 , x) ± C(t -τ 1 )
are sub/super-solutions of (6) for t ∈ (τ 1 , τ 2 ) where H is given by (C1). Reasoning as above, we get bounds ( 50) and (51) on the time interval [τ 1 , τ 2 ). Such a reasoning can be used iteratively to get the Lipschitz bounds (50) and (51) for t ∈ [0, +∞). The proof of the lemma is now complete.

Lemma 5.2. The conclusion of Theorem 4.6 still holds true in this new framework.

Proof. The proof proceeds in several steps.

Step 1. Construction of a time periodic corrector w ρ on [-ρ, ρ]. We first construct a Lipschitz corrector on a truncated domain. In order to do so, we proceed in several steps.

Step 1.1. First Cauchy problem on (0, +∞). The method presented in the proof of Proposition 4.3, using a term δw δ has the inconvenience that it would not clearly provide a Lipschitz solution. In order to stick to our notion of globally Lipschitz solutions, we simply solve the Cauchy problem for ρ > ρ 0 := max α=1,...,N |b α |:

       w ρ t + H(t, x, w ρ x ) = 0 on (0, +∞) × (-ρ, ρ) , w ρ t + H- N (w ρ x ) = 0 on (0, +∞) × {-ρ} , w ρ t + H+ 0 (w ρ x ) = 0 on (0, +∞) × {ρ} , w ρ (0, x) = 0 for x ∈ [-ρ, ρ] . (52) 
As in the proof of the previous lemma, we get global Lipschitz bounds with a constant C (independent on ρ > 0 and independent on the distances ℓ α = b α+1 -b α ):

|w ρ t |, | Hα (w ρ x (t, •))| L ∞ ((bα,b α+1 )∩(-ρ,ρ)) ≤ C, for α = 0, . . . , N. (53) 
Step Proof of (12) from Theorem 1.12. We recall that HL = H0 and HR = H1 and set a = a 1 and (up to translation) b 1 = 0.

Step 1: The convex case: identification of Ā.

Step 1.1: A convex subcase. We first work in the particular case where both Hα for α = L, R are convex and given by the Legendre-Fenchel transform of convex Lagrangians L α which satisfy for some compact interval I α :

L α (p) = finite if q ∈ I α , +∞ if q ∈ I α . ( 56 
)
Then it is known (see for instance the section on optimal control in [START_REF] Imbert | Flux-limited solutions for quasi-convex Hamilton-Jacobi equations on networks[END_REF]) that the solution of (1) on the time interval [0, ετ 1 ), is given by

u ε (t, x) = inf y∈R inf X∈S 0,y;t,x u ε (0, X(0)) + t 0 L ε (s, X(s), Ẋ(s)) ds (57) 
with

L ε (s, x, p) =      H * L (p) if x < 0, H * R (p) if x > 0, min(-a(ε -1 s), min α=L,R L α (0)) if x = 0,
and for s < t, the following set of trajectories:

S s,y;t,x = {X ∈ Lip((s, t); R), X(s) = y, X(t) = x} .
Combining this formula with the other one on the time interval [ετ 1 , ετ 2 ), and iterating on all necessary intervals, we get that (57) is a representation formula of the solution u ε of (1) for all t > 0. We also know (see the section on optimal control in [START_REF] Imbert | Flux-limited solutions for quasi-convex Hamilton-Jacobi equations on networks[END_REF]), that the optimal trajectories from (0, y) to (t 0 , x 0 ) intersect the axis x = 0 at most on a time interval [t ε 1 , t ε 2 ] with 0 ≤ t ε 1 ≤ t ε 2 ≤ t 0 . If this interval is not empty, then we have t ε i → t 0 i for i = 1, 2 and we can easily pass to the limit in (57). In general, u ε converges to u 0 given by the formula

u 0 (t, x) = inf y∈R inf X∈S 0,y;t,x u 0 (0, X(0)) + t x L 0 (s, X(s), Ẋ(s)) ds with L 0 (s, x, p) =      H * L (p) if x < 0, H * R (p) if x > 0, min(-a , min α=L,R L α (0)) if x = 0,
and from [START_REF] Imbert | Flux-limited solutions for quasi-convex Hamilton-Jacobi equations on networks[END_REF] we see that u 0 is the unique solution of ( 6)-( 2) with Ā = a .

Step 1.2: The general convex case. The general case of convex Hamiltonians is recovered, because for Lipschitz continuous initial data u 0 , we know that the solution is globally Lipschitz continuous. Therefore, we can always modify the Hamiltonians Hα outside some compact intervals such that the modified Hamiltonians satisfy (56).

Step 2: General quasi-convex Hamiltonians: identification of Ā.

Step 2.1: Sub-Solution inequality. From Theorem 2.10 in [START_REF] Imbert | Flux-limited solutions for quasi-convex Hamilton-Jacobi equations on networks[END_REF], we know that w(t, 0), as a function of time only, satisfies in the viscosity sense

w t (t, 0) + a(t) ≤ Ā for all t / ∈ i=1,...,K+1 τ i + Z.
Using the 1-periodicity in time of w, we see that the integration in time on one period implies:

a ≤ Ā. ( 58 
)
Step 2.2: Super-solution inequality. Recall that Ā ≥ a ≥ A 0 := max α=L,R min( Hα ).

If Ā = A 0 , then obviously, we get Ā = a . Hence, it remains to treat the case Ā > A 0 .

Step 2.3: Construction of a super-solution for x = 0. Recall that pR and pL are defined in ( 8) and ( 9) and the minimum of Hα is reached for p0 α , α = R, L. Since Ā > A 0 , there exists some δ > 0 such that pL + 2δ < p0 From (45) with ρ δ = 0, we deduce that we have for some h ≥ 0

w(t, x) ≥ w R (t, x) = w(t, x + h) -p0 R h ≥ w(t, x) + (p R -δ -p0 R ) h -C δ .
From (59), this implies 0

≤ h ≤ C δ /δ (60) 
Recall that w i for i = c, d, are globally Lipschitz continuous in space and time. This shows that wd is also Lipschitz continuous in space and time by construction, because it is continuous at x = x -, x + . Moreover wd is 1-periodic in time. We now want to check that wd is a sub-solution of the equation satisfied by w d with Āc on the right hand side instead of Ād . We only have to check it for all times t ∈ {τ 0 , . . . , τ K } and x ∈ [x -, x + ], i.e. we have to show that wd t ( t, x) + Hα 0 ( wd

x ( t, x)) ≤ Āc for all x ∈ [x -, x + ]. ( 67 
)
Assume that ϕ is a test function touching wd from above at such a point ( t, x) with x ∈ [x -, x + ]. Then this implies in particular that ψ(t, x) = ϕ(t, x) -p0 α 0 (x -x -) touches wd (•, x -) = w c (•, x 0 ) from above at time t with

x 0 = b c α 0 + ℓ c α 0 /2. Recall that w c is solution of w c t + Hα 0 (w c x ) = Āc on (b c α 0 , b c α 0 +1
). From the characterization of sub-solutions (see Theorem 2.10 in [START_REF] Imbert | Flux-limited solutions for quasi-convex Hamilton-Jacobi equations on networks[END_REF]), we then deduce that ψ t ( t) + Hα 0 (p 0 α 0 ) ≤ Āc .

If x ∈ (x -, x + ), then we have ϕ x ( t, x) = p0 α 0 . This means in particular

ϕ t + Hα 0 (ϕ x ) ≤ Āc at ( t, x) if x ∈ (x -, x + ). (68) 
Using now (68), and still from Theorem 2.10 in [START_REF] Imbert | Flux-limited solutions for quasi-convex Hamilton-Jacobi equations on networks[END_REF], we deduce that we have in the viscosity sense wd t ( t, x) + max H- Proof of (14) in Theorem 1.12. Let w be a global corrector associated to Ā.

Recall that

Ā ≥ Ā0 := max α=1,...,N a α ≥ A 0 := max α=1,...,N A α 0 with A α 0 = max β=α-1,α (min Hβ ). ( 71 
)
Our goal is to prove that Ā = Ā0 when all the distances ℓ α are large enough, i.e. [START_REF] Giga | Hamilton-Jacobi equations with discontinuous source terms[END_REF]. Let us assume that Ā > Ā0 .

Step 1: Considering another corrector with the same a α = Ā0 . Let µ α ≥ 0 such that a α = µ α + a α with a α = Ā0 for all α = 1, . . . , N.

Let us call w the corresponding corrector with associated constant A. Then Theorem 1.4 (still valid here) implies that A ≥ Ā > Ā0 .

We also split the set {1, . . . , N} into two disjoint sets I 0 = α ∈ {1, . . . , N} , Ā0 = A α 0 and I 1 = α ∈ {1, . . . , N} , Ā0 > A α 0 . Note that by (71), if α ∈ I 0 , then a α = A α 0 , and then by (C3), we have a α (t) = const = A α 0 for all time t ∈ R. For later use, we then claim that w satisfies

w t (t, x) + max( H- α ( w x (t, x + )), H+ α-1 ( w x (t, x -))) = Â for all (t, x) ∈ R × {b α } (72)
and not only for t ∈ R\ (Z + {τ 0 , . . . , τ K }). Let us show it for sub-solutions (the proof being similar for super-solutions). Let ϕ be a test function touching w from above at some point ( t, x) = (j + τ k , b α ) for some j ∈ Z, k ∈ {0, . . . , K}. Assume also that the contact between ϕ and w only holds at that point ( t, x). The proof is a variant of a standard argument. For η > 0, let us consider the test function

ϕ η (t, x) = ϕ(t, x) + η t -t for t ∈ (-∞, t).
Then for r > 0 fixed, we have inf

(t,x)∈Br( t,x), t< t(ϕ η -w)(t, x) = (ϕ η -w)(t η , x η ) with P η = (t η , x η ) → ( t, x) = P as η → 0, ϕ t ( P ) ≤ lim sup η→0 (ϕ η ) t (P η ).
This implies that w is a relaxed viscosity sub-solution at ( t, x) in the sense of Definition 2.2 in [START_REF] Imbert | Flux-limited solutions for quasi-convex Hamilton-Jacobi equations on networks[END_REF]. By [18, Proposition 2.6], we deduce that w is also a standard (i.e. not relaxed) viscosity sub-solution at ( t, x). Finally we get (72).

Step 2: Defining a space super-solution. Let us define the function

M(x) = inf t∈R w(t, x).
Because w is globally Lispschitz continuous, we deduce that M is also globally Lipschitz continuous. Moreover we have the following viscosity super-solution inequality Hα (M x (x)) ≥ A > Ā0 for all x ∈ (b α , b α+1 ), for all α = 0, . . . , N.

Let us call for α = 0, . . . , N:

pα,R = min E α,R with E α,R = p ∈ R, H+ α (p) = Hα (p) = Ā0 , pα,L = max E α,L with E α,L = p ∈ R, H- α (p) = Hα (p) = Ā0 .
Let us now consider α = 0, . . . , N and two points x -< x + with x ± ∈ (b α , b α+1 ). Let us assume that there is a test function ϕ ± touching M from below at x ± . Then we have Hα (ϕ ±

x (x ± )) ≥ A > Ā0 with ϕ ± x (x ± ) ≥ pα,R or ϕ ± x (x ± ) ≤ pα,L . Moreover, if Ā0 > min Hα , then we have pα,L < p0 α < pα,R for any p0 α which is a point of global minimum of Hα .

Step 3: A property of the space super-solution. We now claim that the following case is impossible:

p -:= ϕ - x (x -) < ϕ + x (x + ) =: p + and inf [p -,p + ] Hα < A.
If it is the case, then let p ∈ (p -, p + ) such that Hα (p) < A. Therefore the geometry of the graph of the function M implies that 

M x ≥ pα,R in (b α , xα ), -M x ≥ -p α,L in (x α , b α+1 ).
Moreover from Theorem 4.6 ii) (see Lemma 5.2), we deduce from A > max(min H N , min H 0 ) that xN = +∞ and x0 = -∞.

In particular, we deduce that there exists at least one α 0 ∈ {1, . . . , N} such that

xα 0 -b α 0 ≥ ℓ α 0 /2 and b α 0 -xα 0 -1 ≥ ℓ α 0 -1 /2. ( 73 
)
Step 4: The case α 0 ∈ I 0 . In this case, we see that there exists a time t such that the test function

ϕ(t, x) = pα 0 ,R (x -b α 0 ) for x ≥ b α 0 , pα 0 -1,L (x -b α 0 ) for x ≤ b α 0
is a test function touching (up to some additive constant) w from below at ( t, b α 0 ). By (72), this implies Ā0 = max( Hα 0 (p α 0 ,R ), Hα 0 -1 (p α 0 -1,L )) ≥ A ≥ Ā.

Contradiction.

Step 5: Consequences on w. From the fact that w is 1-periodic in time and C-Lipschitz continuous in time (with a constant C depending only on max α=1,...,N a α ∞ and the Hα 's, see (49)), we deduce that we have

w(t, x + h) -w(t, x) ≥ pα,R h -2C for x, x + h ∈ (b α , xα ), w(t, x -h) -w(t, x) ≥ -p α,R h -2C for x, x + h ∈ (x α , b α+1 ). ( 74 
)
Step 6: The case α 0 ∈ I 1 : definition of a space-time super-solution. Proceeding similarly to Step 3 of the proof of ( 12), we define From (74), we deduce that we have for some h ∈ [0, ℓα 0 4 ] w(t, x) ≥ w α 0 ,R (t, x) = w(t, x + h) -p0 α 0 h ≥ w(t, x) + (p α 0 ,R -p0 α 0 ) h -2C

w α 0 ,R (t, x) = inf
The case x = 0 in the proof of Theorem 1.7. We only deal with the subcase x > 0 since the subcase x < 0 is treated in the same way. Reducing r if necessary, we may assume that B r (t, x) is compactly embedded in the set {(t, x) ∈ (0, +∞) × (0, +∞) : x > 0}: there exists a positive constant c r such that (t, x) ∈ B r (t, x) ⇒ x > c r .

Let p = ϕ x (t, x) and let v R = v R (t, x) be a solution of the cell problem

v R t + H R t, x, p + v R x = HR (p) in R × R . ( 80 
)
We claim that if ε > 0 is small enough, the perturbed test function [START_REF] Evans | The perturbed test function method for viscosity solutions of nonlinear PDE[END_REF] ϕ ε (t, x) = ϕ(t, x) + εv R t ε , x ε satisfies, in the viscosity sense, the inequality

ϕ ε t + H t ε , x ε , ϕ ε x ≥ θ 2 in B r (t, x) (81) 
for sufficiently small r > 0. To see this let ψ be a test function touching ϕ ε from below at (t Since (79) implies that x ε → +∞, as ε → 0, uniformly with respect to (t, x) ∈ B r (t, x), we can find, owing to (A5), an ε 0 > 0 independent of ψ and (t for a suitable positive constant κ r . By comparison principle we deduce

u ε + κ r ≤ ϕ ε in B r (t, x)
and passing to the limit as ε → 0 and (t, x) → ( t, x) on both sides of the previous inequality, we produce the contradiction u(t, x) < u(t, x) + κ r ≤ ϕ(t, x) = u(t, x) .

A.2 Proof of Lemma 3.3

Proof of Lemma 3.3. We first adress uniqueness. Let us assume that we have two solutions (v i , λ i ) for i = 1, 2 of (3). Let u i (t, x) = v i (t, x) + px -λ i t Then u i solves u i t + H α (t, x, u i x ) = 0 with u 1 (0, x) ≤ u 2 (0, x) + C

The comparison principle implies u 1 ≤ u 2 + C for all t > 0 and then λ 1 ≥ λ 2 . Similarly we get the reverse inequality and then λ 1 = λ 2 . We now turn to the continuity of the map p → Hα (p). It follows from the stability of viscosity sub-and super-solutions, from the fact that the constant C in ( 24) is bounded for bounded p's and from the comparison principle. This achieves the proof of the lemma.

A.4 Construction of λ ρ in the proof of Lemma 5.2 In order to get λ ρ , it is enough to apply the following lemma. u(τ + T, 0) -u(τ, 0) T .

Remark that T → ±T λ ± (T ) is sub-additive. Remark that the fact that u is L-Lipschitz continuous with respect to time implies that λ ± (T ) are both finite:

|λ ± (T )| ≤ L.
the ergodic theorem implies that λ ± (T ) converges towards λ ± and

λ + = inf T >0
λ + (T ) and λ -= sup T >0

λ -(T ).

If moreover |λ

+ (T ) -λ -(T )| ≤ C T , (84) 
then the proof of the lemma is complete. Indeed, (84) implies in particular that λ + = λ - and -

C T ≤ λ -(T ) -λ ≤ λ + (T ) -λ ≤ C T .
This implies that |u(t, 0) -λt| ≤ C.

Finally, we get |u(t, x) -λt| ≤ C + Lρ.

It remains to prove (84)

. There exists k ∈ Z and β ∈ [0, 1) such that τ + = k + τ -+ β. Moreover, u(τ + , x) ≤ u(τ -+ β, x) + u(τ + , 0) -u(τ -+ β, 0) + 2Lρ where ρ = diam K. Now remark that u(τ -+ β + t, x) + D is a solution in [τ + , +∞) for all constant D. Hence, we get by comparison that for all t > 0 and x ∈ K, u(τ + + t, x) ≤ u(τ -+ β + t, x) + u(τ + , 0) -u(τ -+ β, 0) + 2Lρ.

In particular, u(τ + + T, 0) -u(τ + , 0) ≤ u(τ -+ β + T, 0) -u(τ -+ β, 0) + 2Lρ ≤ u(τ -+ T, 0) -u(τ -, 0) + 2L(1 + ρ).

Finally, we get (after letting ε → 0),

λ + (T ) ≤ λ -(T ) + 2L(1 + ρ) T .
Similarly, we can get

λ + (T ) ≥ λ -(T ) - 2L(1 + ρ) T .
This implies (84) with C = 2L(1 + ρ). The proof of the lemma is now complete.

Lemma 3 . 3 (

 33 Uniqueness of λ). The real number λ given by Lemma 3.1 is unique. If Hα (p) denotes such a real number, the function Hα is continuous. Lemma 3.4 (Coercivity of Hα ). The continuous function Hα is coercive, lim |p|→+∞ Hα (p) = +∞.

Lemma 3 . 5 (

 35 Convexity of Hα under (B-ii)). Assume (A0)-(A5) and (B-ii). Then the function Hα is convex.

  Then we can argue as in the proof of continuity of Hα and deduce that Hα (p) = lim ε→0 Hε α (p).

Proposition 4 . 1 (

 41 Comparison principle for a mixed boundary value problem). Let ρ 2 > ρ 1 > ρ 0 and λ ∈ R and v be a super-solution of the following boundary value problem

Proposition 4 . 4 (

 44 First definition of the effective flux limiter). The map ρ → λ ρ is nondecreasing and bounded in (0, +∞). In particular, Ā = lim ρ→+∞ λ ρ exists and Ā ≥ λ ρ for all ρ > 0.

Theorem 4 . 6 (

 46 Existence of a global corrector for the junction). Assume (A0)-(A5) and either (B-i) or (B-ii).

2 .

 2 Contruction of w on R. The result of Theorem 4.6 still holds true for w = lim ρ→+∞ (w ρ -w ρ (0, 0)) which is globally Lipschitz continuous in space and time and satisfies (53) with ρ = +∞, and Ā = lim ρ→+∞ λ ρ .

  w denotes a global corrector given by Lemma 5.2 (or Theorem 4.6), let us definew R (t, x) = inf h≥0 w(t, x + h) -p0 R h for x ≥ 0,and similarly w L (t, x) = inf h≥0 w(t, x -h) + p0 L h for x ≤ 0.

  inf x∈[x -,x + ] (M(x) -xp) = M(x) -xp for some x ∈ (x -, x + ) and then we have the viscosity super-solution inequality at x: Hα (p) ≥ A which leads to a contradiction. Therefore (in all cases Ā0 > min Hα or Ā0 = min Hα ), it is possible to check that there is a point xα ∈ [b α , b α+1 ] such that the Lipschitz continuous function M satisfies in the viscosity sense

+ h) -p0 α 0 h for b α 0 ≤ x ≤ b α 0 + ℓ α 0 4 andw

 4 (α 0 -1),L (t, x) = inf ℓ (α 0 -1) 4 ≥h≥0 w(t, x -h) + p0 α 0 -1 h for b α 0 -ℓ α 0 -1 4 ≤ x ≤ b α 0 .

Lemma A. 1 .

 1 Let u be the solution of a Hamilton-Jacobi equation of evolution-type submitted to the initial condition: u(0, x) = 0 and posed on a compact set K. Assume that • the comparison principle holds true;• u is L-globally Lipschitz continuous in time and space;• u(k + •, •) + C is a solution for all k ∈ N and C ∈ R.There then exists λ ∈ R such that |u(t, x) -λt| ≤ C 0 and |λ| ≤ L where C 0 = L(2 + 3ρ) if ρ denotes the diameter of K. Proof. Define λ + (T ) = sup τ ≥0 u(τ + T, 0) -u(τ, 0) T and λ -(T ) = inf τ ≥0

  Āc for all t ∈ {τ 0 , . . . τ K } .

	α 0 ( wd x ( t, x+ )), H+ α 0 ( wd x ( t, x-)) ≤ Āc for x = x ± .	(69)
	Therefore (68) and (69) imply (67).	
	Let us now call H d the Hamiltonian in assumption (C1) constructed with the points
	{b d α } α=1,...,N . Then we have	
	wd t + H d (t, x, wd	
	Note that the proof of Theorem 1.4 is unchanged for the present problem, and then The-
	orem 1.4 still holds true. This shows that	
	Ād ≤ Āc	(70)
	which shows the expected monotonicity. The proof is now complete.	
	Remark 5.3. Note that, in the previous proof, it would also be possible to compare the sub-
	solution given by the restriction of wd on some interval [-ρ, ρ] with ρ > 0 large enough (see

x ) ≤ [18, Proposition 2.19]), with the approximation w d,ρ of w d on [-ρ, ρ] with Ād ≥ Ād ρ → Ād as ρ → +∞. The comparison for large times would imply Ād ρ ≤ Āc . As ρ → +∞, this would give the same conclusion (70).

  1 , x 1 ) ∈ B r (t, x) ⊆ B r (t, x). In this way the functionη(s, y) = 1 ε (ψ(εs, εy) -ϕ(εs, εy)) touches v R from below at (s 1 , y 1 ) = t 1 ε , x 1 εand (80) yieldsψ t (t 1 , x 1 ) -ϕ t (t 1 , x 1 ) + H R + ψ x (t 1 , x 1 ) -ϕ x (t 1 , x 1 ) ≥ HR (p).

	t 1 ε	,	x 1 ε	, p (82)

  1 , x 1 ) such that the inequality holds true for ε < ε 0 . Combining (19)-(82)-(83) and using the continuity of ϕ x and ϕ t we have + ψx (t 1 , x 1 ) -ϕ x (t 1 , x 1 ) + ( t, x) + ψ x (t 1 , x 1 ) -ϕ x (t 1 , x 1 ) -θ 4 ≥ θ 2if r is sufficiently close to 0. The claim (81) is proved. Since ϕ is strictly above u, if ε and r are small enough u ε + κ r ≤ ϕ ε on ∂B r (t, x)

	ψ t (t 1 , x 1 ) + H	t 1 ε	,	x 1 ε	, ψ x (t 1 , x 1 )				
	≥ ψ t (t 1 , x 1 ) + H R , p H R t 1 ε , x 1 ε t 1 ε , x 1 ε , ψ x (t 1 , x 1 ) -H R	t 1 ε	,	x 1 ε	, ϕ x
	H	t 1 ε	,	x 1 ε	, ψ x (t 1 , x 1 ) ≥ H R	t 1 ε	,	x 1 ε	, ψ x (t 1 , x 1 ) -	θ 4	(83)
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A Proofs of some technical results

A.1 The case x = 0 in the proof of convergence

Arguing as in [START_REF] Forcadel | Homogenization of fully overdamped Frenkel-Kontorova models[END_REF] for instance, we deduce that there exists a real number λ ρ with |λ ρ | ≤ C and a constant C 0 (that depends on ρ) such that we have |w ρ (t, x) + λ ρ t| ≤ C 0 .

(54) Details are given in Appendix for the reader's convenience.

Step 1.2. Getting global sub and super-solutions. Let us now define the following function (up to some subsequence k n → +∞):

which still satisfies (53) and ( 54). Then we also define the two functions

They still satisfy (53) and ( 54) and are respectively a super-and a sub-solution of the problem in R × [-ρ, ρ]. They satisfy moreover that w ρ ∞ (t, x) + λ ρ t and w ρ ∞ (t, x) + λ ρ t are 1-periodic in time, which implies the following bounds

Step 1.3: A new Cauchy problem on (0, +∞) and construction of a time periodic solution. We note that w ρ ∞ + 2C 0 ≥ w ρ ∞ , and we now solve the Cauchy problem with new initial data w ρ ∞ (0, x) instead of the zero initial data and call wρ the solution of this new Cauchy problem. From the comparison principle, we get

Moreover wρ still satisfies (53) (indeed with the same constant because, by construction, this is also the case for w ρ ∞ ). We now define (up to some subsequence

which, because of (55) and the fact that wρ (t, x) + λ ρ t is bounded, satisfies wρ ∞ (k + 1, x) + λ = wρ ∞ (k, x) and then wρ ∞ (t, x) + λ ρ t is 1-periodic in time. Moreover wρ ∞ is still a solution of the Cauchy problem and satisfies (53). We define w ρ := wρ ∞ + λ ρ t which satisfies (37) and then provides the analogue of the function given in Proposition 4.3. and using the fact that w is globally Lipschitz continuous, we deduce that for α = R:

Moreover, by constrution (as an infimum of (globally Lipschitz continuous) super-solutions), w R is a (globally Lipschitz continuous) super-solution of the problem in R × (0, +∞). We also have for x = y + z with z ≥ 0:

Similarly (and we can also use a symmetry argument to see it), we get that w L is a (globally Lipschitz continuous) super-solution in R × (-∞, 0), it satisfies (61) with α = L and

We now define

which by constrution is lower semi-continuous and satisfies (61), and is a super-solution for x = 0.

Step 2.4: Checking the super-solution property at x = 0. Let ϕ be a test function touching w from below at (t 0 , 0) with t 0 / ∈ i=1,...,K+1 τ i + Z. We want to check that

We may assume that

We distinguish two cases. Assume first that h > 0. Then we have for all h ≥ 0

with equality for (t, h) = (t 0 , h). This implies the viscosity inequality

). Assume now that h = 0. Then we have ϕ ≤ w ≤ w with equality at (t 0 , 0). This implies immediately (65).

Step 2.5: Conclusion. We deduce that w is a super-solution on R × R. Now let us consider a C 1 function ψ(t) such that ψ(t) ≤ w(t, 0) with equality at t = t 0 . Because of ( 62) and (63), we see that

with equality at (t 0 , 0). This implies (65), and at almost every point t 0 where the Lipschitz continuous function w(t, 0) is differentiable, we have

Because w is 1-periodic in time, we get after an integration on one period,

Together with (58), we deduce that a = Ā, which is the desired result, for N = 1.

Proof of (13) in Theorem 1.12. . We simply remark, using the sub-solution viscosity inequality at each junction condition, that for α = 1, . . . , N, Ā ≥ a α which is the desired result. This achieves the proof of ( 12) and [START_REF] Forcadel | Homogenization of some particle systems with two-body interactions and of the dislocation dynamics[END_REF].

Proof of the monotonicity of Ā in Theorem 1.12. Let N ≥ 2, and for i = c, d, let us assume some given b 

Calling p0

α 0 a point of global minimum of Hα 0 , we define

As in Step 3 of the proof of ( 12), if

Then as in Steps 4 and 5 of the proof ( 12), we deduce that w is a super-solution up to the junction point x = b α 0 and that Ā0 = a α 0 ≥ A ≥ Ā.

Contradiction.

Step 7: Conclusion. If (75) and (76) hold true for any α 0 ∈ I 1 , then we deduce that Ā ≤ Ā0 , which implies Ā = Ā0 . This ends the proof of ( 14) in Theorem 1.12.

Proof of (15) in Theorem 1.12. Let us consider

and (w, Ā) a solution (given by Theorem 4.6 (see also Lemma 5.2)) of

w is 1-periodic with respect to t.

From Theorem 1.12, we also know that Ā = ā .

For N ≥ 2, we set ℓ = (ℓ 1 , . . . , ℓ N -1 ) ∈ (0, +∞) N -1 and consider

We now call (w ℓ , Āℓ ) a global corrector given by Theorem 4.6 (see also Lemma 5.2). The remaining of the proof is divided into several steps.

Step 1: Bound from above on Āℓ . We define

Proceeding as in Step 1 of the proof of Theorem 1.12 ii), it is then easy to check that w is a sub-solution of the equation satisfied by w ℓ with Ā on the right hand side instead of Āℓ . Then Theorem 1.4 implies that Āℓ ≤ Ā = ā .

Step 2: Bound from below on Āℓ . From Theorem 2.10 in [START_REF] Imbert | Flux-limited solutions for quasi-convex Hamilton-Jacobi equations on networks[END_REF], we deduce that we have in the viscosity sense (in time only)

We also know that w ℓ is 1-periodic and globally Lipschitz continuous with a constant which is independent on ℓ. Therefore there exists a 1-periodic and Lipschitz continuous function g = g(t) such that w ℓ (t, b α ) → g(t) for all α = 1, . . . , N, as ℓ → 0.

The stability of viscosity solutions implies in the viscosity sense g ′ (t) + a α (t) ≤ A, for all α = 1, . . . , N, for all t / ∈ ∪ K k=0 {τ k + Z}. Because g is Lipschitz continuous, this inequality also holds for almost every t ∈ R. This implies g ′ (t) + ā(t) ≤ A for a.e. t ∈ R.

An integration on one period gives ā ≤ A.

(78)

Step 3: Conclusion. Combining (77) with (78) finally yields that Āℓ → ā as ℓ → 0. The proof of (15) in Theorem 1.12 is now complete.

A.3 Sketch of the proof of Proposition 4.1

Sketch of the proof of Proposition 4.1. Consider

We want to prove that

We argue by contradiction by assuming that M > 0. The supremum defining M ν is reached, let s ν , t ν , x ν denote a maximizer. Choose ν small enough so that

If there exists ν n → 0 such that x νn = ρ 1 for all n ∈ N, then

where ω 0 denotes the modulus of continuity of U 0 . The contradiction M ≤ 0 is obtained by letting n go to +∞. Hence, we can assume that for ν small enough, x ν > ρ 1 . Reasoning as in [18, Theorem 7.8], we can easily reduce to the case where H(t ν , x ν , •) reaches its minimum for p = p 0 = 0. We can also consider the vertex test function G γ associated with the single Hamiltonian H (using notation of [START_REF] Imbert | Flux-limited solutions for quasi-convex Hamilton-Jacobi equations on networks[END_REF], it corresponds to the case N = 1) and the free parameter γ. If x ν < ρ 2 , then G γ (x, y) reduces to the standard test function (x-y) -εG γ (ε -1 x, ε -1 y) -ϕ ν (t, s, x)

where r = r ν is chosen so that ρ 1 / ∈ B r (x ν ) and the localization function

The supremum defining M ν,ε is reached and if (t, s, x, y) denotes a maximizer, then (t, s, x, y) → (t ν , s ν , x ν , x ν ) as (ε, γ) → 0.

In particular, x, y ∈ B r (x ν ) for ε and γ small enough. The remaining of the proof is completely analogous (in fact much simpler).