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Abstract 

A strong correlation (R² >0.96) is found between machined surfaces and their fatigue limits. In a larger study, the four- point 

bending fatigue limit was determined on steel specimens milled with two different conditions, in two directions, with and without 

residual stresses relieved. Curvature analysis is shown here, based on Heron’s formula, as a function of scale and position, on 

profiles extracted parallel to the direction of maximum tensile stress, from areal texture measurements. Several combinations of 

parameters are regressed linearly with the fatigue limits over a range of scales. The strongest correlations are found with the mean 

curvature plus two standard deviations, at a scale of 610μm. The correlation varies smoothly, although not monotonously, with 

respect to decreasing scale, with R² falling to zero at 100μm. 
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1. Introduction  

The objective of this work is to investigate the strength of correlations between the curvatures of the topographies 

of ball-end milled steel specimens and the fatigue limits in four-point bending.  Curvatures are calculated from profiles 

extracted from measured topographies. The curvatures change with position and with the scale of observation and 

provide an indication of the integrity of the surface topography.  

A quantitative understanding of the relation between the topography and the fatigue limit can facilitate better 

product and process design for parts where fatigue resistance is important.  The discovery of strong correlations 

between topographic characterization parameters and the fatigue limit could depend on identifying the appropriate 

characterization parameter and the appropriate scale, which would be similar to correlations that have been found with 

adhesion, friction, fracture surfaces, and mass transfer [1-5].  

1.1. State-of-the-art  

Although it is generally accepted that topography influences the fatigue limit, quantitative descriptions with 

experimental confirmation appear to be rare.  Geometric stress concentration (Kt) is based on curvature (k=1/ρ) and 

the depth of a notch (t) [6]: 

Kt = 1 + 2 (t/ρ)
½
                                         (1) 

Models have been proposed that use conventional roughness characterizations in the calculation of stress 

concentrations.  Arola and Ramulu [7] studied rough surface topographies of machined fiber reinforced composites.  

They replaced notch depth with the conventional roughness characterization parameters: Ra average roughness, Rt 



  

 

maximum peak to valley depth, Rz average of the greatest peak to valley depth in five sections. This produces an 

expression for tensile loading: 

Kt = 1 + 2 (Ra/ρ)(Rt/Rz)                                    (2) 

For machined metals, however, the surface roughness parameters appear not to be sufficient, at least on an individual 

basis, for estimating fatigue strength [8].  Cracks that lead to fatigue failure of mechanical parts have been found to 

originate from micro-scratches on the surface, which are not described by conventional roughness parameters [9]. 

Cracks are not restricted to originating on topographic features and could originate on microstructural elements. 

Useful expressions for the stress concentrations could depend on the material and the preparation of the surface.  

The dependence of the stress concentration on the curvatures calculated from measured topographies seems like a 

logical extension of the fundamental development of stress concentrations for notches. There are established 

procedures for strength analysis in shafts and axles that are based on the static strength with stress concentration 

factors (e.g., DIN 743 [10]). 

The roughness of topographies that results from machining of metals has regular and irregular, or chaotic, 

components [11,12].  Machined surfaces also have regular components at larger scales, which are usually associated 

with the feed.  The irregular components have been modeled as stochastic, successfully reproducing Abbot curves 

[13]. These irregular topographies contain features with a range of curvatures that vary with scale and position.  These 

features defy any simple curvature descriptions as smooth notches.   

Recently, methods of calculating curvatures of roughness profiles on a multi-scale basis have been proposed 

[14,15]. The current work applies these recent developments of the multi-scale calculation of curvatures on profiles to 

the characterization of milled surfaces, and then uses it for correlation with the fatigue limit.  

A strong correlation is being sought here between some representation of the curvature of features on the surface and 

the fatigue limit in four point bending.  The fatigue specimens are all machined with a ball-nose endmill, the same feed 

per tooth but with different tool inclinations, and different feed directions.  Because the influence of residual stress and 

micro-geometry can be coupled, in four specimens the residual stresses were removed, leaving only the influence of 

the micro-geometry.  The curvature is calculated as a function of scale and position.  It is not immediately obvious 

how to use this myriad of calculated curvatures to find a strong correlation with the fatigue limit.  Several statistical 

representations of curvature are investigated.  A method is proposed for finding the appropriate scale for calculating 

the curvature (patent pending).        

 

ρ radius (reciprocal of curvature, k)  

k curvature varying with scale and position  

R  linear regression coefficient 

μ( ) mean of the indicated value 

σ( ) standard deviation of the indicated value 

2. Methods 

Bainitic 50CrMo4 steel (Re=480 Mpa; Rm=1080 Mpa) was machined by ball-end milling on a Mikron UCP710 five-axis 

vertical machining centre to create six different types of surfaces on approximately 80 specimens for fatigue texting. These specimens 

have been studied extensively previously [9,11,12 ,16, 17].  The tool inclination relative to the surface is defined by the lead angle β, 

as shown in Fig. 1.  Two values of β were studied (β = 45° and β = -3°).  The specimen dimensions are 100x20x4mm. The 

machining conditions are listed in Table 1.  Four of the machined specimens were subjected to a stress-relieving heat 

treatment at 470⁰C for one hour, with a cooling rate of 90⁰C/hr. 

 



 

 

Fig. 1. Schematic of ball-end milling with an inclined tool indicating only a regular component of the machined surface topography  

Table 1. Machining conditions 

__________________________________________ 
Spindle speed  ω 9550 rpm 
Feed per tooth   f  400μm per tooth 

Depth of cut   p  500μm 

Step over   ae 450μm  
Tool nose radius   r 5mm 

Inclination angles  βf 45⁰, -3⁰_________                        

 
As indicated below in Table 2 during the machining the milling tool was fed both transversely and longitudinally 

with respect to the eventual loading direction, i.e., tensile stress axis, in four-point bending fatigue tests [17].  Each of 

the two inclinations was repeated in both directions for a total of four specimens.  These four specimens were 

subjected to the stress relieving heat treatment. Two additional specimens were machined in the transverse direction 

and were not subjected to the heat treatment. 

The nominal scallop height, hc, can be calculated to be 5μm from the step over and the tool nose radius by 

theoretical approximation (hc=ae²/8r). This expression is based on smooth surface generation by a smooth tool edge 

with no ploughing.   

The machined surfaces were measured with a 3D Stil Microstation.  This is a horizontal profile-scanning 

instrument with a confocal chromatic height sensor with a 100μm vertical range. All measurements were cropped to 

700x700μm.  A modal outlier filter [18] was used to eliminate spike artefacts from the measurements.  This modal 

filtering is characterized by two parameters: the risk (α=10
-5 

here) and the number of modes for the calculation (250 

here).  Thresholding and Gaussian filtering were attempted but not used.  According to area-scale analysis [19,20], 

these filters did not work as well as the modal filter for removing spike-like measurement artifacts.  The relative areas 

were higher for these methods.  In the final analysis, only the modal filtering was used. 

Curvature calculations were done on a total of 1120 profiles extracted parallel to the axis of maximum tensile 

stress. Because the sampling intervals in the profiling direction were different for two of the measurements, 0.625μm 

versus 0.5μm, the common interval of 0.625μm was chosen and the profiles closest to that sampling interval were 

extracted.   

A geometric method, based on Heron’s formula [14. 15], is used to calculate the curvatures based on three heights 

equally separated laterally.  The lateral spacing of the two exterior heights is used to represent the scale.  For the 

calculation of the curvature from three measured heights, the algorithm steps along a profile of height sample by 

height sample, calculating the curvature as a function of position at one scale, and then the calculation repeats for each 

scale.   

A strict protocol was followed for the fatigue tests, which were done in four-point bending [17]. The two extreme 

loading points (or, more precisely, loading lines) were 50mm apart, and the central, interior loading points were 20mm 

apart. 

3. Results 

The fatigue results are shown in Table 2, along with the machining conditions and an indication of whether or not 

they were stress relieved. The specimens with polished surfaces have a fatigue limit of 755MPa [17]. 



  

 

Examples of renderings of measured surfaces are shown in Figures 2 a&b, from specimens milled with inclination 

of -3⁰ and 45⁰ with the stress relieved.  The fine-scale roughness, which could be described as variations from an 

otherwise smooth surface that is defined only by the tool shape and motion, is clearly evident, appearing as irregular 

or chaotic topographic elements.  

Table 2. Fatigue limits, machining conditions, and stress relief 

_____________________________ 
  stress     Angles Feed           Fatigue limit 

  relieved   βf deg direction  MPa 

 no -3 transverse  670 

yes -3 transverse  633 
yes 45 transverse  675 

 no 45 transverse  680 

yes -3 longitudinal 735 
__  yes 45 longitudinal 715_____ 

 

 

Fig. 2a. Rendering of a measurement of the surface milled with an inclination of -3º and then stress relieved and subjected to transverse loading as 

indicated by the line in the upper left image. 

 

Fig. 2b. Rendering of a measurement of the surface milled with an inclination of 45º and then stress relieved and subjected to longitudinal loading, 

as indicated by the line in the upper left image. 

The roughness values for the height parameters are shown in Table 3.  The S parameters are means and standard 

deviations of the areal measurements.  It is noted that the identical machining conditions do not produce surfaces with 

identical roughness parameters.  The peak-to-valley roughness values (St) differ clearly from the theoretical 

calculation of the cusp height (hc=5μm) in all cases. 



 
Table 3. Conventional roughness characterizations of means of heights.  All values are in micrometres.   
 

Specimen*      Sa        Sq       St         Sv 

 N-3T      1.39   1.79   11.2   3.81  
 Y-3T      1.45  1.73  17.2  5.71 

 Y45T      1.59  1.92  11.8  6.35 

 N45T      1.46  1.76  10.3  5.29 
 Y-3L      1.72  2.05  13.8  6.66  

 Y45L_____   2.28  2.71 20.48         7.99 

*Stress relief Y/N, angle, direction  

 
Figures 3a&b show profiles, and curvatures versus position at scales of 150 and 500μm.  The positive curvatures 

are concave up and tend to be at the bottoms of valleys, more likely for fatigue crack initiation. 

 

Fig. 3a.  Profile, extracted as indicated in Fig. 2a, with corresponding curvatures versus position at scales of 150 and 500μm. 

Figures 4&5 show the curvatures versus position and scale.  Curvature is plotted on the vertical axis is and is also 

represented by colour.  The horizontal axes denote the positions along the extracted profile and the scale at which the 

curvature is calculated.  As the scale increases, there are fewer positions at which the curvature can be calculated, and 

the plot along the profile axis becomes narrower.   

 

Fig. 3b.  Profile, extracted as indicated in Fig. 2b, with corresponding curvatures versus position at scales of 150 and 500μm. 



  

 

At the larger scales, the values of the curvatures diminish and tend towards zero, consistent with the flat nature of 

the specimens at larger scales.  Figures 4a&b go up to a scale of 600μm, where it is difficult to discern any change in 

curvature with position in contrast to the finer scales.  At the finest scales changes in curvature with position are 

obvious.  Therefore, additional plots are shown at the larger scales with the curvature axis re-scaled in order to make 

the changes in curvature with position along the profile more obvious. 

 

Fig. 4a. Profile curvatures (vertical axis, colour) as a function of scale and position from the surface shown in Figures 2a and3a milled at -3º.  

     

Fig. 4b. Profile curvatures (vertical axis, colour) as a function of scale and position from the surface shown in Figures 2b and3b milled at 45º.  

    Figures 5a&b show the curvatures versus position at the largest scales.   

 

Fig. 5a. Profile curvatures (vertical axis, colour) as a function of scale and position from the surface shown in Figures 2a and3a milled at -3º.  

 

Fig. 5b. Profile curvatures (vertical axis, colour) as a function of scale and position from the surface shown in Figures 2b and3b milled at 45º.  

Several criteria, combinations of the curvature and roughness parameters, were regressed linearly with the fatigue 

limit over a range of scales. The most successful criteria, shown in Table 4, come from analyses of the distribution of 

the curvatures.  The mean and standard deviations of the curvatures are calculated on each profile at each scale. The 



 

maximum values from these calculations from all of the 1120 profiles might match the most dangerous feature on the 

surface for initiating a fatigue crack.  Regression analyses with the fatigue limit versus these maximum values are 

performed over all the scales in the measurements. The results are shown in Table 4 with the regression coefficients 

and scales. 

Table 4. Regression coefficients for several candidate criteria  

 

Method     max R²     scale (μm) 

max(k)    0.76 620 

μ (10 max(k))   0.8 618 

max(μ(k) + σ(k))                 0.65 620 

max(μ(k) + 2σ(k))  0.96 610 
  

Fig. 6 shows a plot of the regression coefficient R² as a function of scale for the most successful criterion, 

maximum mean of the curvatures plus two standard deviations (max(μ(k) + 2σ(k))).  The maximum R² (0.96) is 

reached at a scale of 610μm.  Fig. 7 shows the plot of max(μ(k) + 2σ(k)) versus the fatigue limit at 610μm.  This 

remarkably strong correlation is found only at a scale of 610μm. 

 

  

Fig. 6. The coefficient of linear regression curvature (mean of the curvatures, plus two standard deviations) regressed with the fatigue limit, plotted 

versus scale. 

    

Fig. 7. Mean of the curvatures, plus two standard deviations versus the fatigue limit at a scale of 610μm.  The two circled results were from 

specimens that were not heat treated. 

4. Discussion 

The curvature calculated from measured profiles provides an indication of the stress concentration that would 

influence fatigue strength.  Curvature, or radius, of notch roots has been used in the traditional, theoretical 

developments of the calculation of stress concentrations.   



  

 

Fatigue cracks can initiate on things other than topographic features. However, in this study, it has been decided to 

focus on the machining and resulting topography.  However, the strong correlation of the fatigue limit with the 

curvature confirms our choice, regardless of the heat treatment and the direction of machining relative to the applied 

tensile stress.   

This work suggests that a systematic approach to finding the relations between roughness and fatigue limit could be 

based on determining the scale at which the mean curvature correlates most strongly with the fatigue limit. 

The scale at which the strongest correlation is found is larger than the feed per tooth.  It would be interesting to see 

if the maximum R² would also be found at this same scale if the machining were to be performed with finer feeds per 

tooth.   

The negative curvatures (convex up) should not be expected to influence the fatigue limit.  At the scale of the 

strongest correlation it is noted that there is little negative curvature.  In any event the consideration of the mean plus 

two standard deviations of the curvatures at each scale is robust with respect to the inclusion of negative curvatures.   

This approach guarantees that the features that are the most likely to provide dangerous stress concentrations will be 

considered. 

The stress-relieving heat treatment seems to have little influence on the correlation.  As indicated in Fig. 5 the two 

specimens without stress relief appear to be on the same curve as those with stress relief.  In situations where residual 

stresses play a larger role, the influence of the residual stress on the fatigue limit might be considered by a super 

position of the residual stress on the applied stresses.  Then the same sort of calculation of curvature could be used to 

determine the influence of the microgeometry. 

5. Conclusions  

 The maximum mean curvature plus two standard deviations correlates strongly with the limit in fatigue at a scale of 

610μm of the ball-end milled steel parts in this study.  

 The strength of the correlations with the multi-scale curvature parameters and the fatigue limit varies with the scale of 

calculation.  

 A method has been developed and demonstrated for determining for finding the appropriate scale for multi-scale 

parameters for predicting fatigue behaviour when applied to certain material and manufacturing process. 
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