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Abstract

Optimization methods are at the core of many problems inadfignage processing, computer vision, and machine
learning. For a long time, it has been recognized that I@kinthe dual of an optimization problem may drastically
simplify its solution. Deriving efficient strategies whighintly brings into play the primal and the dual problems
is however a more recent idea which has generated many iamponew contributions in the last years. These
novel developments are grounded on recent advances inxcamaysis, discrete optimization, parallel processing,
and nonsmooth optimization with emphasis on sparsity &slrethis paper, we aim at presenting the principles
of primal-dual approaches, while giving an overview of nuiced methods which have been proposed in different
contexts. We show the benefits which can be drawn from priaal-algorithms both for solving large-scale convex
optimization problems and discrete ones, and we providewsirapplication examples to illustrate their usefulness.
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I. MOTIVATION AND IMPORTANCE OF THE TOPIC

Optimization [1] is an extremely popular paradigm which stitates the backbone of many branches of applied
mathematics and engineeering, such as signal processintputer vision, machine learning, inverse problems,
and network communications, to mention just a few. The panityl of optimization approaches often stems from
the fact that many problems from the above fields are typiaghilaracterized by a lack of closed form solutions
and by uncertainties. In signal and image processing, fetante, uncertainties can be introduced due to noise,
sensor imperfectness, or ambiguities that are often imbémnethe visual interpretation. As a result, perfect or éxac
solutions hardly exist, whereas inexact but optimal (inaistical or an application-specific sense) solutions and
their efficient computation is what one aims at. At the samefione important characteristic that is nowadays
shared by increasingly many optimization problems enanedtin the above areas is the fact that these problems
are often of very large scale. A good example is the field of mater vision where one often needs to solve low
level problems that require associating at least one (gpiddify more than one) variable to each pixel of an image
(or even worse of an image sequence as in the case of videoJHB leads to problems that easily can contain
millions of variables, which are therefore the norm rathemt the exception in this context.

Similarly, in fields like machine learning [3].[4], due toelgreat ease with which data can now be collected
and stored, quite often one has to cope with truly massivasdtt and to train very large models, which thus
naturally lead to optimization problems of very high dimiensility [5]. Of course, a similar situation arises in many
other scientific domains, including application areas sashnverse problems (e.g., medical image reconstruction
or satellite image restoration) or telecommunicationg.(enetwork design, network provisioning) and industrial
engineering. Due to this fact, computational efficiency stittites a major issue that needs to be thoroughly
addressed. This, therefore, makes mandatory the use tdilita®ptimization techniques that are able to properly
exploit the problem structures, but which at the same tinmeaie applicable to a class of problems as wide as
possible.

A bunch of important advances that took place in this regarer ¢he last years concerns a particular class
of optimization approaches known psimal-dual methods. As their name implies, these approaches proceed by
concurrently solving a primal problem (corresponding ® dhiginal optimization task) as well as a dual formulation
of this problem. As it turns out, in doing so they are able tpleix more efficiently the problem specific properties,
thus offering in many cases important computational achgag, some of which are briefly mentioned next for two
very broad classes of problems.

1) Convex optimizationPrimal-dual methods have been primarily employed in cormatimization problems
[6]-[8] where strong duality holds. They have been sucedlgsdpplied to various types of nonlinear and nonsmooth
cost functions that are prevalent in the above-mention@tigtion fields.

Many such applied problems can essentially be expresseer tinel form of a minimization of a sum of terms,
where each term is given by the composition of a convex fonctiith a linear operator. One first advantage of

primal-dual methods pertains to the fact that they can weky efficient splitting optimization schemes, according

December 4, 2014 DRAFT



IEEE SIGNAL PROCESSING MAGAZINE 2

to which a solution to the original problem is iterativelyngputed through solving a sequence of easier subproblems,
each one involving only one of the terms appearing in the aibje function.

The resulting primal-dual splitting schemes can also fahdth differentiable and nondifferentiable terms, the
former by use of gradient operators (i.e., through explit#ps) and the latter by use of proximity operators (i.e.,
through implicit steps) [9],[110]. Depending on the targemndtions, either explicit or implicit steps may be easier
to implement. Therefore, the derived optimization schemgsoit the properties of the input problem, in a flexible
manner, thus leading to very efficient first-order algorighm

Even more importantly, primal-dual techniques are ablectdeve what is known afsll splitting in the optimiza-
tion literature, meaning that each of the operators invblivethe problem (i.e., not only the gradient or proximity
operators but also the involved linear operators) is usgdragely [11]. As a result, no call to the inversion of
a linear operator, which is an expensive operation for lagge problems, is required during the optimization
process. This is an important feature which gives these adstla significant computational advantage compared
with all other splitting-based approaches.

Last but not least, primal-dual methods lead to algorithhett tare easily parallelizable, which is nowadays
becoming increasingly important for efficiently handlinigi-dimensional problems.

2) Discrete optimizationBesides convex optimization, another important area wpereal-dual methods play
a prominent role is discrete optimization. This is of pardr significance given that a large variety of tasks from
signal processing, computer vision, and pattern recagnidire formulated as discrete labeling problems, where
one seeks to optimize some measure related to the qualityeofabeling [[12]. This includes, for instance, tasks
such as image segmentation, optical flow estimation, imageiding, stereo matching, to mention a few examples
from image analysis. The resulting discrete optimizatiowbfems not only are of very large size, but also typically
exhibit highly nonconvex objective functions, which arengeally intricate to optimize.

Similarly to the case of convex optimization, primal-duatthnods again offer many computational advantages,
leading often to very fast graph-cut or message-passisgebalgorithms, which are also easily parallelizable, thus
providing in many cases a very efficient way for handling dige optimization problems that are encountered
in practice [13]-15]. Besides being efficient, they areoatsiccessful in making little compromises regarding
the quality of the estimated solutions. Techniques like gshecalledprimal-dual schemare known to provide a
principled way for deriving powerful approximation algtmins to difficult combinatorial problems, thus allowing
primal-dual methods to often exhibit theoretical (i.e.,rgtecase) approximation properties. Furthermore, apart
from the aforementioned worst-case guaranties, primal-digorithms can also provide (for fre@er-instance
approximation guaranties. This is essentially made pleséip the fact that these methods are estimating not only
primal but also dual solutions.

Convex optimization and discrete optimization have ddférbackground theory originally. Convex optimization
may appear as the most tractable topic in optimization, foictv many efficient algorithms have been developed
allowing a broad class of problems to be solved. By contiastibinatorial optimization problems are generally

NP-hard. However, many convex relaxations of certain digcproblems can provide good approximate solutions
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to the original ones [17]/[18]. The problems encounteredigtrete optimization therefore constitute a source of

inspiration for developing novel convex optimization taifues.

Goals of this tutorial paper. Based on the above observations, our objectives will be dhewing:

i) To provide a thorough introduction that intuitively erpis the basic principles and ideas behind primal-dual
approaches.

i) To describe how these methods can be employed both indheext of continuous optimization and in the
context of discrete optimization.

iii) To explain some of the recent advances that have takaoeptoncerning primal-dual algorithms for solving
large-scale optimization problems.

iv) To detail useful connections between primal-dual mdthand some widely used optimization techniques like
the alternating direction method of multipliers (ADMM)_[[1920].

v) Finally, to provide examples of useful applications i ttontext of image analysis and signal processing.

The remainder of the paper is structured as follows. In 8edi we introduce the necessary methodological
background on optimization. Our presentation is groundedhe powerful notion of duality known as Fenchel's
duality, from which duality properties in linear programmgican be deduced. We also introduce useful tools from
functional analysis and convex optimization, including thotions of subgradient and subdifferential, conjugate
function, and proximity operator. The following two sectfoexplain and describe various primal-dual methods.
Section[Tll is devoted to convex optimization problems. Wecdss the merits of various algorithms and explain
their connections with ADMM, that we show to be a special aafsgrimal-dual proximal method. Secti¢nllV deals
with primal-dual methods for discrete optimization. We kaxp how to derive algorithms of this type based on the
primal-dual schema which is a well-known approximationhtgque in combinatorial optimization, and we also
present primal-dual methods based on LP relaxations anidddaamposition. In SectidnlV, we present applications
from the domains of signal processing and image analysifiding inverse problems and computer vision tasks
related to Markov Random Field energy minimization. In &Vl we finally conclude the tutorial with a brief

summary and discussion.

Il. OPTIMIZATION BACKGROUND

In this section, we introduce the necessary mathematidalitiens and concepts used for introducing primal-dual
algorithms in later sections. Although the following franmk holds for general Hilbert spaces, for simplicity we

will focus on the finite dimensional case.

A. Notation

In this paper, we will consider functions frof®" to |—oc, +00]. The fact that we allow functions to takeco
value is useful in modern optimization to discard some “fdden part” of the space when searching for an optimal

solution (for example, in image processing problems, th@panents of the solution often are intensity values
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which must be nonnegative). Thdomainof a function f: RY — ]—oco, +oc] is the subset oR™ where this
function takes finite values, i.eom f = {x € RN \ fz) < +oo}. A function with a nonempty domain is said to

be proper. A function f is convexif
(V,y) € RY))(VA€[0,1])  fAz+ (1= Ny) < Af(x) + (L= N f(y). (€N

The class of functions for which most of the main results invex analysis have been establishedi$R” ), the
class of proper, convex, lower-semicontinuous functisosfR™ to ]—oc, +oc]. Recall that a functiorf : RY —
]—o00, +o0] is lower-semicontinuous if itepigraphepi f = {(:c,() €dom f xR ] flx) < C} is a closed set (see

Fig. ).

Fig. 1: lllustration of the lower-semicontinuity property.
If C is a nonempty subset ®%, theindicator functionof C is defined as

0 if reC
vz eRY)  io(x) = (2)

+o0o otherwise.
This function belongs t@'y(RY) if and only if C' is a nonempty closed convex set.
The Moreausubdifferentialof a functionf: RY — ]—oo, +o0] atx € RY is defined as

Of(@) ={ueRY | (vyeRY) fy) > fz)+u' (y—=)}. ®)

Any vectoru in df(z) is called asubgradientof f atz (see Fig[R).

4 (g{) A (g{)

f f
fl@) +u' (y — ) fl@) +u'(y —x)

Fig. 2: Examples of subgradients of a function f at z.

Fermat's rule states thaétis a subgradient of at z if and only if x belongs to the set of global minimizers
of f. If f is a proper convex function which is differentiable @t then its subdifferential at reduces to the

singleton consisting of its gradient, i.8f(z) = {Vf(x)}. Note that, in the nonconvex case, extended definitions
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of the subdifferential may be useful such as timeiting subdifferential[21]], but this one reduces to the Moreau

subdifferential when the function is convex.

B. Proximity operator

A concept which has been of growing importance in recent ldpweents in optimization is the concept of
proximity operator It must be pointed out that the proximity operator was idtrced in the early work by

J. J. Moreau (1923-2014)I[9]. The proximity operator of adiion f € I'o(R") is defined as

1
prox;: RY 5 RY:z— argmm fy) + =y — =/ 4)
yER 2
where || - || denotes the Euclidean norm. For everye R”, prox,;az can thus be interpreted as the result of a

regularized minimization of in the neighborhood of. Note that the minimization to be performed to calculate
prox ;x always has a unique solution. Fig. 3 shows the variatione@piox, function whenf: R — R: z — |z|

with p > 1. In the case whep = 1, the classical soft-thesholding operation is obtained.

w0 e we

P
P
P
P
P
P

Fig. 3: Graph ofprox|.,. This powerp function is often used to regularize inverse problems.

In the case wherf is equal to the indicator function of a nonempty closed carsat C' C RY, the proximity
operator off reduces to the projectioR- onto this set, i.e(Vz € RY) Pz = argmin ||y — z||.

This shows that proximity operators can be viewed as extassif projections orclto convex sets. The proximity
operator enjoys many properties of the projection, in paldr it is firmly nonexpansive. The firm nonexpansiveness
can be viewed as a generalization of the strict contractropgxty which is the engine behind the Banach-Picard
fixed point theorem. This property makes the proximity opmrauccessful in ensuring the convergence of fixed
point algorithms grounded on its use. For more details alpooximity operators and their rich properties, the
reader is refered to the tutorial papers(in [5],/[10],/[22heTdefinition of the proximity operator can be extended
to nonconvex lower-semicontinuous functions which areelowounded by an affine function, bptox,x is no

longer guaranteed to be uniquely defined at any given peint
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C. Conjugate function
A fundamental notion when dealing with duality issues is iotion of conjugate functionThe conjugate of a
function f: RY — ]—o0, +0o0] is the functionf* defined as

[ RY = |—00,400] : u sg@p (xTu—f(:zr)) (5)
z€RN

This concept was introduced by A. M. Legendre (1752-1833h&one-variable case, and it was generalized by
M. W. Fenchel (1905-1988). A graphical illustration of thengugate function is provided in Figl 4. In particular,

for every vectorz € RY such that the supremum il (5) is attainedis a subgradient of at .

f(@)

7fh (u) L

/

Fig. 4: Graphical interpretation of the conjugate function.

It must be emphasized that, everyifs nonconvex;* is a (non necessarily proper) lower-semicontinuous convex
function. In addition, whery € I'y(RY), then f* € I'x(RY), and also the biconjugate gf (that is the conjugate
of its conjugate) is equal tg. This means that we can express any functfoim I'o(RY) as

(Vz € RY) f(x) = sup (u'z— f*(u)). (6)

uERN

A geometrical interpretation of this result is that the epjgh of any proper lower-semicontinuous convex function
always is an intersection of closed half-spaces.

As we have seen, the subdifferential plays an important imléhe characterization of the minimizers of a
function. A natural question is thus to enquire about thati@hs existing between the subdifferential of a function
f: RN — ]—00,+00] and the subdifferential of its conjugate function. An ansvgeprovided by the following

important properties:
uedf(r) = xz€df*(u) if fis proper
w€df(xr) <« ze€df(u) if feTo(RY). )

Another important property is Moreau’s decomposition fatanwhich links the proximity operator of a function

f € To(RYN) to the proximity operator of its conjugate:

(Vz € RV)(Vy € 10, +o0) T = PrOX, ;T + Y ProX,—1 f« (v ta). (8)
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Other useful properties of the conjugation operation astedi in Tabld]E] where a parallel is drawn with the
multidimensional Fourier transform, which is a more famiiltool in signal and image processing. Conjugation
also makes it possible to build an insightful bridge betwé#®n main two kinds of nonsmooth convex functions
encountered in signal and image processing problems, gaimgicator functions of feasibility constraints and

sparsity measures (see framebox below.

CONJUGATES OF SUPPORT FUNCTIONS
The support function of a set C C R is defined as
(Yu € RY) oc(u) = sup x' u. 9)
zeC
In fact, a function f is the support function of a nonempty closed convex set C if and only if it belongs to T'o(R™V)
and it is positively homogeneous [8], i.e.

(Ve € RYN)(Va € 10, +o0]) flaz) = af(z).

Examples of such functions are norms, e.g. the ¢;-norm:
. N ‘
(Vo= (@D)icjen €RY)  f@) =lzfli = 3 |2
j=1

which is a useful convex sparsity-promoting measure in LASSO estimation [23] and in compressive sensing [24].
Another famous example is the Total Variation semi-norm [25] which is popular in image processing for retrieving
constant areas with sharp contours. An important property is that, if C' is a nonempty closed convex set, the
conjugate of its support function is the indicator function of C. For example, the conjugate function of the ¢1-norm
is the indicator function of the hypercube [—1, 1]V, This shows that using sparsity measures are equivalent in the
dual domain to imposing some constraints.

D. Duality results

A wide array of problems in signal and image processing caexipeessed under the following variational form:
miwneiﬂgllvize f(x)+ g(Lx) (10)
where f: RY — ]—oco, +o0], g: RE — ]—o00,+00], and L € REXN, Problem [(ID) is usually referred to as the
primal problemwhich is associated with the followingual problem[6], [8], [26]:
mgleiﬂg}gze f (=L"v) + g*(v). (11)
The latter problem may be easier to solve than the former esgcially whenk is much smaller thamV.

A question however is to know whether solving the dual probieay bring some information on the solution of
the primal one. A first answer to this question is given by thadhel-Rockafellar duality theorem which basically
states that solving the dual problem provides a lower bounthe minimum value which can be obtained in the
primal one. More precisely, iff and g are proper functions and jf and p* denote the infima of the functions
minimized in the primal and dual problems, respectivelgnttveak dualityholds, which means that > —pu*. If

w is finite, u + p* is called theduality gap In addition, if f € To(RY) andg € I'o(R¥), then, under appropriate

1Throughout the papeint S denotes the interior of a sé&.
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TABLE 1. Parallelism between properties of the Legendre-Fenchejugation [10] and of the Fourier transfornf. is a
function defined orRY, f* denotes its conjugatq‘ is its Fourier transform such tha‘t = [on f(z)exp( (=92 v)dx
wherev € RY and ; is the imaginary unit (a similar notation is used for otheno‘lmns),h, g, and (fm)i<m<m are
functions defined o™, (¢,)1<;<x are functions defined oR, v is an even function defined dh, 1 is defined as)(p) =
2mp 2 N)/2 100 N2 J o) s (2r )t (r)dr wherep € R and J(y_2)/2 is the Bessel function of ordeV — 2)/2, and s
denotes the Dirac distribution. (Some properties of theriodransform may require some technical assumptions.)

conjugation Fourier transform
Property h(z) h* (u) h(z) | 5w
i invariant function %HxHQ %HUHQ exp(—||z||?) exp(—||v||?)
ii translation flx—c¢) F*(u) +cTu flx—c¢) exp(—]QNCTV)f(V)
c€eRN
iii dual translation flx)+clz f*u—-c) exp(y2mc’ z) f(x — c) f(l/ —c)
c€RN
iv scalar multiplication af(z) af* (L) af(z) af(v)
a € 10, +o0[
v invertible linear transform| f(Lx) (L= HTw) f(Lx) ‘detl(L)‘f((Lfl)Tu)
L € RVNXN invertible
vi scaling F(2) F*(au) F(2) o] f(av)
a e R*
vii  reflection f(=z) fr(—u) f(=z) Fl=v)
N N N N
vii  separability > i) > b)) [ %) 119
j=1 j=1 j=1 j=1
=)< <n u=u)cjen || 2= (@D)1cen v=r9)ig<n
X isotropy D * (full) D Bl
x  inf-convolution (fOg)(x) P+ || )@ Fw)aw)
/convolution = yie%fN fly)+g(x—vy) / fWg(z —y)d
xi sum/product f@) + g(@) (f*Og*)(u) f(@)g(x) (F*9) ()
feTo(RN), g € To(RY)
dom f Nint (dom g) # @
xii  identity element {0y (z) 0 o(x) 1
of convolution
xiii  identity element 0 t{oy () 1 o(v)
of addition/product
xiv  offset flz) + f*(u) —a flz) + o Fw) + ad(v)
a€eR
i M
xv infinum/sum 1<m<M Fm () 1;7:21% fr () Z_ fm () mZ:l fm (V)
xvi  value at0 f*(0) = —inf f 0) :/ f(z)dx
BN
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qualification condition,there always exists a solution to the dual problem and thétdgmp vanishes. When the

duality gap is equal to zero, it is said thgttong dualityholds.

CONSENSUS AND SHARING ARE DUAL PROBLEMS

Suppose that our objective is to minimize a composite function Z%zl gm Where the potential g,,: RY —
|—o00, +00] is computed at the vertex of index m € {1,..., M} of a graph. A classical technique to perform
this task in a distributed or parallel manner [20] consists of reformulating this problem as a consensus problem,
where a variable is assigned to each vertex, and the defined variables z1, ...,z s are updated so as to reach a
consensus: z1 = ... = x7. This means that, in the product space (RY)M the original optimization problem can
be rewritten as o

minimize N tp(x) + Z gm (Tm)
m=1

z=(z1,...,xpr)€RN)M

g9(x)
where D is the vector space defined as D = {& = (z1,...,2m) € RN)M |21 = ... =2y}
By noticing that the conjugate of the indicator function of a vector space is the indicator function of its orthogonal
complement, it is easy to see that the dual of this consensus problem has the following form:

M
minimize thL(v) + gr, (vm)
v=(v1,..., /UM)E(RN)M b mZ:1 manm
g*(v)
where DL = {v = (v1,...,var) € RY)M | vy + -+ 4+ vpy = 0} is the orthogonal complement of D. By making
the variable change (Ym € {1,...,M}) vm = um — u/M where u is some given vector in RY, and by setting
hm(um) = —gk, (um — u/M), the latter minimization can be reexpressed as

M
maximize N th(um).

up €RY ..., upr €ER —
w1t —u m=1

This problem is known as a sharing problem where one wants to allocate a given resource u between M agents

while maximizing the sum of their welfares evaluated through their individual utility functions (hm)1<m<as-

Another useful result follows from the fact that, by using ttefinition of the conjugate function gf Problem[(ID)

can be reexpressed as the following saddle-point problem:

Find inf sup (f(z)+v' Lz —g*(v)). (12)

zERN  cRK

In order to find a saddle poirft?,v) € RY x RX, it thus appears natural to impose the inclusion relations:
— L0 € 0f(3), Lz € 0g™ (D). (13)

A pair (z,v) satisfying the above conditions is calledkahn-Tucker pointActually, under some technical assump-
tion, by using Fermat's rule andl(7), it can be proved thatzifv) is a Kuhn-Tucker point, theft is a solution
to the primal problem and is a solution to the dual one. This property especially heoitien f € I'o(RY) and

g € To(RE).

2For example, this property is satisfied if the intersectidrthe interior of the domain of; and the image of the domain ¢f by L is

nonempty.
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E. Duality in linear programming

In linear programming (LP)_[27], we are interested in conegtimization problems of the form:

Primal-LP: minimize ¢'z st Lz >b, (14)
mE[O,-ﬁ-oo[N

where L = (LU9)) ;e r<jen € REXN b € RE ande € IR{NH The above formulation can be viewed as a

special case of (10) where
(Ve e RY)  f(z) =cTo+ gt (@), (V2 €RF) g(2) = 10 qoopx (2 = D). (15)

By using the properties of the conjugate function and byirgetf = —uv, it is readily shown that the dual problem
(@) can be reexpressed as

Dual-LP: maximize b'y st L'y <e. (16)
y€[0,4+oo[K

Since f is a convex function, strong duality holds in LP.4lf= (z2(/)); <<y is a solution to Primal-LP, a solution

7 = (§)1<i<x to Dual-LP can be obtained by thgimal complementary slackness condition
K
(Vj €{1,...,N}) suchthat 200 >0, > LG50 =0, (17)
i=1

whereas, ify is a solution to Dual-LP, a solutio@ to Primal-LP can be obtained by thloual complementary

slackness conditian

N
(Vie{l,...,K}) suchthat 5 >0, > LO)z0) =p®. (18)
j=1

IIl. CONVEX OPTIMIZATION ALGORITHMS

In this section, we present several primal-dual splittirefmods for solving convex optimization problems, starting

from the basic forms to the more sophisticated highly paliabd ones.

A. Problem

A wide range of convex optimization problems can be formadaas follows:

minimize f(@) + g(Lz) + h(z). (19)
z€R

where f € To(RY), g € To(RE), L € REXN ‘andh € To(RY) is a differentiable function having a Lipschitzian
gradient with a Lipschitz constarit € ]0,+oo[. The latter assumption means that the gradiéhtof h is such
that

(V(z,y) € ®RY)?) | Vh(z) - VA) < llz — y]. (20)

For examples, the functiong, g o L, and h may model various data fidelity terms and regularizationcfioms
encountered in the solution of inverse problems. In pdgicthe Lipschitz differentiability property is satisfidar

least squares criteria.
3The vector inequality in[{14) means that: — b € [0, +oo[¥.
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With respect to Probleni{10), we have introduced an additismooth termh. This may be useful in offering
more flexibility for taking into account the structure of theoblem of interest and the properties of the involved
objective function. We will however see that not all alglnits are able to possibly take advantage of the fact that
h is a smooth term.

Based on the results in Sectibn1l-D and Propelty (xi) in &dblthe dual optimization problem reads:

mineig}(ize (f*ah*)(=LTv) + g(v). (21)
Note that, in the particular case whén= 0, the inf-convolutionf* O h* (see the definition in Tablgri(x)) of the
conjugate functions of andh reduces tof* and we recover the basic forin {11) of the dual problem.

The common trick used in the algorithms which will be presdrih this section is to solve jointly Problenis19)
and [21), instead of focusing exclusively on eitHer] (19)Z#)( More precisely, these algorithms aim at finding a

Kuhn-Tucker point(z,7) € RY x RX such that
—L'9—-Vh(z) € df(@) and LZ € dg*(v). (22)

It has to be mentioned that some specific forms of Probleth (@9). wheng = 0) can be solved in a quite

efficient manner by simpler proximal algorithms (seel [10frt those described in the following.

B. ADMM

The celebrated ADMM (Alternating Direction Method of Mudtiers) can be viewed as a primal-dual algorithm.
This algorithm belongs to the class atigmented Lagrangiamethods since a possible way of deriving this
algorithm consists of looking for a saddle point of an augteérversion of the classical Lagrange function![20].

This augmented Lagrangian is defined as

(V(z,y,2) € RY x (RF)?)  L(z,y,2) = f(2) + h(z) +g(y) + 72" (Le —y) + %HLI —yll> (@3)

where~ € 10, +o00[ and~z corresponds to a Lagrange multiplier. ADMM simply splite tstep of minimizing the
augmented Lagrangian with respect(tg y) by alternating between the two variables, while a gradieceat is

performed with respect to the variable The resulting iterations are given in AlgoritHrh 1.

Algorithm 1 ADMM

Setyo € R¥ andzy € R¥

Sety € 10, +o0]
Forn=0,1,...
— i1 2,1
Tn = argmin 3 ||Lx — yn + zn||” + ;(f(m) + h(z))
z€RN
S$n = Lzn,

Yn+1 = Proxg (zn + sn)
Y

Zn+1 = Zn + Sn — Yn+1.
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This algorithm has been known for a long time [[19],1[28] alibb it has attracted recently much interest in
the signal and image processing community (see le.g). [24])-[8 condition for the convergence of ADMM is as

follows:

CONVERGENCE OF ADMM
Under the assumptions that
e rank(L) = N,
o Problem (I39) admits a solution,
e int(domg) N L(dom f) # @ or dom g Nint (L(dom f)) # @E
(zn)nen converges to a solution to the primal problem (@9) and (yzn)nen coOnverges to a solution to the dual
problem (7).

A convergence rate analysis is conducted_in [35].

It must be emphasized that ADMM is equivalent to the applicabf the Douglas-Rachford algorithm_[36],
[37], another famous algorithm in convex optimization, e tdual problem. Other primal-dual algorithms can be
deduced from the Douglas-Rachford iteratibn| [38] or an aegped Lagrangian approach [39].

Although ADMM was observed to have a good numerical perferoean many problems, its applicability may
be limited by the computation aof,, at each iteratiom € N, which may be intricate due to the presence of matrix
L, especially when this matrix is high-dimensional and hasinple structure. In addition, functionsandh are

not dealt with separately, and so the smoothneds isfnot exploited here in an explicit manner.

C. Methods based on a Forward-Backward approach

The methods which will be presented in this subsection asedan a forward-backward approach![40]: they
combine a gradient descent step (forward step) with a coatipatstep involving a proximity operator. The latter
computation corresponds to a kind of subgradient step pedd in an implicit (or backward) mannér [10]. A deeper
justification of this terminology is provided by the theorfyraonotone operators[[8] which allows to highlight the
fact that a pairn(z,v) € RV x RE satisfying [22) is a zero of a sum of two maximally monotoneragors. We
will not go into details which can become rather technical, \Wwe can mention that the algorithms presented in
this section can then be viewed as offsprings of the forvmrckward algorithm for finding such a zefgd [8]. Like
ADMM, this algorithm is an instantiation of a recursion cenging to a fixed point of a nonexpansive mapping.

One of the most popular primal-dual method within this clizsgiven by Algorithn[2. In the case whén= 0,
this algorithm can be viewed as an extension of the Arrowwtazrmethod which performs alternating subgradient
steps with respect to the primal and dual variables in ordesdlve the saddle point problemi{12) [41]. Two
step-sizeg and o and relaxation factoré),, )<y are involved in Algorithni P2, which can be adjusted by the user
S0 as to get the best convergence profile for a given appmlitati

Note that whenZ = 0 and ¢g* = 0 the basic form of the forward-backward algorithm (also exhlthe proximal

gradient algorithm) is recovered, a popular example of Wiicthe iterative soft-thresholding algorithin [42].

“More general qualification conditions involving the relatiinteriors of the domain of and L(dom f) can be obtained [10].
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Algorithm 2 FB-based primal-dual algorithm

Setzo € RN andvo € R*

Set(r,0) € 10, +o0[?

Forn=0,1,...
Pn = ProxX, ¢ (n — 7(Vh(zn) + LTvn))
dn = ProX,gs (vn +oL(2pn — :cn))
Set\, € ]0, +o0]

(@nt1,0n11) = (@n,vn) + A ((Pry Gn) — (0, vn)).

A rescaled variant of the primal-dual method (see AlgorifB)ris sometimes preferred, which can be deduced
from the previous one by using Moreau’s decompositidn (&) lay making the variable changeg; = ¢,, /o and
vl, = v, /0. Under this form, it can be seen that, whdh= K, L = Id, h = 0, andro = 1, the algorithm
reduces to the Douglas-Rachford algorithm (seé [43] folitileexisting with extensions of the Douglas-Rachford

algorithm).

Algorithm 3 Rescaled variant of Algorithiin] 2

Setzy € RY andv) € R¥

Set(r,0) € 10, +oo[?

Forn=0,1,...
Dn = ProX, ¢ (:rn — T(Vh(:rn) + ULTv;))
q, = (Id — proxg/c) (v; + L(2pn — :cn))
Set\, € |0, +o0]

(£Cn+1,’l);b+1) = (CC”7U;L) + )‘"((p’!HQ;L) - (‘Z",L,’U;L)).

Also, by using the symmetry existing between the primal dreddual problems, another variant of Algorithin 2
can be obtained (see AlgoritHrh 4) which is often encounterdige literature. Wherd, T L = pId with p € 10, +oo],
h =0, 7op =1, and\,, = 1, Algorithm[4 reduces to ADMM by setting = o, andz,, = v,, /o in Algorithm[1.

Convergence guarantees were established in [44], as whll asmore general version of this algorithm in [45]:

CONVERGENCE OF ALGORITHMS Pland[4]
Under the following sufficient conditions:

=1 —o||L||2 > B/2 where || L||s is the spectral norm of L,
o (An)nen asequencein 0,6 such that 3 .y An (6 — An) = +cowhere § =2 — 8(r~ ! —o||L|I3)"1/2 €
[1,2],
o Problem (I9) admits a solution,
o int (dom g) N L(dom f) # @ or dom g N int (L(dom f)) # &,
the sequences (z»)nen and (vn )nen are such that the former one converges to a solution to the primal problem
(19) and the latter one converges to a solution to the dual problem 1.
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Algorithm 4 Symmetric form of Algorithn R

Setzo € RN andvo € R*

Set(r,0) € 10, +o0[?

Forn=0,1,...
gn = ProX, g« (vn + Jan)
Pn = ProX, s (:cn — T(Vh(:cn) + LT (2qn — vn)))
Set\, € ]0,+o0]

(Tnt1,Vn11) = (@n,vn) + A ((Pry @n) — (0, vn)).

Algorithm [2 also constitutes a generalization bf |[46]+[48Esignated by some authors as PDHG, Primal-Dual
Hybrid Gradient). Preconditioned or adaptive versionsta$ talgorithm were proposed in_[49]-[52] which may
accelerate its convergence. Convergence rate resultsalsreecently derived ir [53].

Another primal-dual method (see Algorithoh 5) was proposedbd], [55] which also results from a forward-

backward approach [52]. This algorithm is restricted to ¢taee whenf = 0 in Problem [ID).

Algorithm 5 Second FB-based primal-dual algorithm

Setzo € RN andvo € R*
Set(r,0) € 10, +oc[?
Forn=0,1,...

Sn = Tn — TVh(Zn)

Yn = Sp — TLT’Un

dn = PIOX, g (vn + ULyn)
Pn =50 —TL gn

Set\, € 0, +o0|

($n+1,vn+1) = (IEn,’Un) + An((pn,qn) - (‘T"Hv”))'

As shown by the next convergence result, the conditions erstbp-sizes and o are less restrictive than for
Algorithm [2.

CONVERGENCE OF ALGORITHM[G]
Under the assumptions that
e 7o||L||3 < landT <2/B,
o (An)nen asequence in ]0,1] such that inf,,cy An > 0,
o Problem (19) admits a solution,
e int(domg) Nran(L) # &,
the sequence (zy,)nen cONverges to a solution to the primal problem (@9) (where f = 0) and (vn,)nen CONverges
to a solution to the dual problem (21).

Note also that the dual forward-backward approach that wapgsed in[[58] for solving[{19) in the specific
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case wherh = || - —r||?/2 with r € RY belongs to the class of primal-dual forward-backward apghes.

It must be emphasized that Algorithid§ 2-5 present two istere features which are very useful in practice.
At first, they allow to deal with the functions involved in tlogptimization problem at hand either through their
proximity operator or through their gradient. Indeed, fom& functions, especially non differentiable or non finite
ones, the proximity operator can be a very powerful toal ja1t} for some smooth functions (e.g. the Poisson-Gauss
neg-log-likelihood[[58]) the gradient may be easier to Han&econdly, these algorithms do not require to invert
any matrix, but only to apply. and its adjoint. This advantage is of main interest whenelaige problems have

to be solved for which the inverse @f (or LT L) does not exist or it has a no tractable expression.

D. Methods based on a Forward-Backward-Forward approach

Primal-dual methods based on a forward-backward-forwppi@ach were among the first primal-dual proximal
methods proposed in the optimization literature, inspfrech the seminal work in([59]. They were first developed
in the case wherh = 0 [60], then extended to more general scenarios_in [11] (see @1], [62] for further

refinements).

Algorithm 6 FBF-based primal-dual algorithm

Setzo € RY andvy € R
Forn=0,1,...

Sety, € 0, +oo[

Yin = Tn — Tn (Vh(zn) + LTvn)
Y2,n = Un + YnLlTn

Pl,n = ProX, (Yin

P2,n = PIoX, g«Y2,n

qrn = prn = Yo (VR(p1n) + L p2in)
q2,n = D2,n + YnLlpin

(xn+17 Un+1) = (l‘n —Yint+ @0, Un — Y2,n + q2,n)-

The convergence of the algorithm is guaranteed by the fatigwesult:

CONVERGENCE OF ALGORITHM[6]

Under the following assumptions:
o (vn)nen is asequencein [e, (1 —€)/u] where e €]0,1/(1 + p)[and p = B8 + || L||s,
o Problem (19) admits a solution,
e int (dom g) N L(dom f) # @ or dom g N int (L(dom f)) # @,

the sequence (zn, vn)nen CONverges to to a pair of primal-dual solutions.

Algorithm|[§ is often refered to as the M+LFBF (Monotone+ldhitz Forward Backward Forward) algorithm. It
enjoys the same advantages as FB-based primal-dual algsrive have seen before. It however makes it possible

to compute the proximity operators of scaled versions otfiens f and ¢* in parallel. In addition, the choice of
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its parameters in order to satisfy convergence conditioag appear more intuitive than for Algorithrai 2-4. With
respect to FB-based algorithms, an extra forward step hemmeeds to be performed. This may lead to a slower
convergence if, for example, the computational cost of tiagignt is high and an iteration of a FB-based algorithm

is at least as efficient as an iteration of Algorithin 6.

E. A projection-based primal-dual algorithm

Another primal-dual algorithm was recently proposed_in] [8ich relies on iterative projections onto half-spaces

including the set of Kuhn-Tucker points (see Algorithin 7).

Algorithm 7 Projection-based primal-dual algorithm

Setzg € RY andvy € R
Forn=0,1,...

Set(vn, ptn) € 10, +00]

an = Prox., sip(@n = ynL vn)

ln = Lay

by, = proxung(ln + UnUn)

Sn="n " (Tn — an) + pin "L (In — bn)
tn = b, — Lan

T = [lsall® + [[ta]l®

if 7, =0

8)
Il

an
0= vn + " (In — bn)

| return

else

Set\, € 10, +oo]

On = X (v 20 — anl® + pztlln = bn®) /7

T+l = Tn — Onsn

Un+1 = Un — Gntn.

We have then the following convergence result:

CONVERGENCE OF ALGORITHM[7]
Assume that
e (Yn)nen and (un)nen are sequences such that inf,ecnyn > 0, sup,enyvn < +00, infpenpn > 0,
SUp, ey Hn < 00,
¢ (An)nen asequence in R such that inf,,ey An > 0 and sup,,cy An < 2,
o Problem (19) admits a solution,
e int(dom g) N L(dom f) # @ or dom g N int (L(dom f)) # @,

then, either the algorithm terminates in a finite number of iterations at a pair of primal-dual solutions (Z, %), or it

generates a sequence (xn,vn)nen CONverging to such a point.
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Although few numerical experiments have been performed wits algorithm, one of its potential advantages
is that it introduces few constraints on the choice of theapeatersy,,, i1, and X, at iterationn and that it does
not require any knowledge on the norm of the mattixNonetheless, the use of this algorithm does not allow us

to exploit the fact that, is a differentiable function.

F. Extensions

More generally, one may be interested in more challengimyeo optimization problems of the form:

M
minimize f(x) + »  (gmOlm)(Lmz) + h(z), (24)
z€RY m=1

where f € To(RY), h € To(RY), and, for everym € {1,...,M}, gm € To(R¥™), £y € To(R%™), and

L,, € RE=>N _The dual problem then reads

M M
ez (59 (= 32 L) + 32 (it + o) 29
Some comments can be made on this general formulation. Atdine of its benefits is to split an original objective
function in a sum of a number of simpler terms. Such splitstigitegy is often the key of an efficient resolution
of difficult optimization problems. For example, the proiiynoperator of the global objective function may be
quite involved, while the proximity operators of the indlvial functions may have an explicit form. A second
point is that we have now introduced in the formulation, &ddal functions(¢,,)1<m<a. These functions may
be useful in some models [64], but they present also the ginakadvantage to make the primal problem and its
dual form quite symmetric. For instance, this fact accodiotthe symmetric roles played by Algorithrak 2 ddd 4.
An assumption which is commonly adopted is to assume thatredsh is Lipschitz differentiable, the functions
({m)1<m<m are strongly convex, i.e. their conjugates are Lipschiffedgntiable. A last point to be emphasized is
that, such split forms are amenable to efficient parallellémgntations. Using parallelized versions of primal-dual
algorithms on multi-core architectures may render thesthoas even more successful for dealing with large-scale

problems.
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HOW TO PARALLELIZE PRIMAL-DUAL METHODS ?
Two main ideas can be used in order to put a primal-dual method under a parallel form.
Let us first consider the following simplified form of Problem (24).

M

minimize gm(Lmx). (26)
zeRN mzzl m( " )

A possibility consists of reformulating this problem in a higher-dimensional space as

M

minimize f)+ gm(ym), @7)

y1€RKL, .y eRFM mZ:1 B
where y = [y],...,y,]T € RE with K = K1 + -+ + Ky, and £ is the indicator function of ran(L), where
L=[L],...,L},]T € REXN Function f serves to enforce the constraint: (vm € {1,..., M}) ym = Lmz. By

defining the separable function g: y — 2%:1 gm (ym ), we are thus led to the minimization of f + g in the space
R . This optimization can be performed by the algorithms described in Sections[II=BHIII-El The proximity operator
of f reduces to the linear projection onto ran(L), whereas the separability of g ensures that its proximity operator
can be obtained by computing in parallel the proximity operators of the function (gm)1<m<ns. Note that, when_
L1 = ... = Ly = Id, we recover a consensus-based approach that we have already discussed. This technique
can be used to derive parallel forms of the Douglas-Rachford algorithm, namely the Parallel ProXimal Algorithm
(PPXA) [65] and PPXA+ [66], as well as parallel versions of ADMM (Simultaneous Direction Method of Multipliers
or SDMM) [67].

The second approach is even more direct since it requires no projection onto ran(L). For simplicity, let us consider
the following instance of Problem @24):

M

minin}\;ze flx) + Z gm(Lmz) + h(z). (28)

z€R m=1

By defining the function g and the matrix L as in the previous approach, the problem can be recast as
minimize f(z)+ g(Lz) + h(z). (29)
zeRN
Once again, under appropriate assumptions on the involved functions, this formulation allows us to employ the
algorithms proposed in Sections [lll-CHllI-E] and we still have the ability to compute the proximity operator of g in a

parallel manner.

IV. DISCRETE OPTIMIZATION ALGORITHMS
A. Background on discrete optimization

As already mentioned in the introduction, another commas<lof problems in signal processing and image
analysis are discrete optimization problems, for whicimatidual algorithms also play an important role. Problems

of this type are often stated asteger linear programgILPs), which can be expressed under the following form:

Primal-ILP: minimize ¢'z

zeRN
st. Lv>b, zeN NV,

where L = (L09)),cic i 1<j<n represents a matrix of siz& x N, andb = (0);<i<x, ¢ = (cV)1<jen
are column vectors of siz& and N, respectively. Note that integer linear programming pdesgi a very general
formulation suitable for modeling a very broad range of peats, and will thus form the setting that we will
consider hereafter. Among the problems encountered intipeagnany of them lead to a Primal-ILP that is NP-

hard to solve. In such cases, a principled approach for findimapproximate solution is through the use of convex
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relaxations(see framebox), where the original NP-hard problem is agprated with a surrogate one (the so-called
relaxed problem), which is convex and thus much easier teesdlhe premise is the following: to the extent that
the surrogate problem provides a reasonably good appréivimi the original optimization task, one can expect

to obtain an approximately optimal solution for the lattgrdssentially making use of or solving the former.

RELAXATIONS AND DISCRETE OPTIMIZATION
Relaxations are very useful for solving approximately discrete optimization problems. Formally, given a problem

(P): miarvl'igrgizo f(z)

where C' is a subset of RN, we say that

(P’) : minimize f’(x)
zeC’

with C’ C RY is a relaxation of (P) if and only if (i) C' C C’, and (i) (Vz € C’) f(z) > f'(x).
For instance, let us consider the integer linear program defined by (Vz € RY) f(z) = ¢z and C = SNz,
where ¢ € R \ {0} and S is a nonempty closed polyhedron defined as

S={zeRY|Lz >0}

with L € REXN and b € RE. One possible linear programming relaxation of (P) is obtained by setting f/ =
and C’ = S, which is typically much easier than (P) (which is generally NP-hard). The quality of (P’) is quantified
by its so-called integrality gap defined as % > 1 (provided that —oo < inf f/(C") # 0).

Hence, for approximation purposes, LP relaxations are not all of equal value. If

(P") : minimize ¢’z
zeC’
is another relaxation of () with C”" C C’, then relaxation (P"’) is tighter. Interestingly, (P) always has a tight LP
relaxation (with integrality gap 1) given by C” = conv(S N Z), where conv(C) is the convex hull polyhedron of
C. Note, however, that if (P) is NP-hard, polyhedron conv(S N Z™) will involve exponentially many inequalities.
The relaxations in all of the previous examples involve expanding the original feasible set. But, as mentioned,
we can also derive relaxations by modifying the original objective function. For instance, in so-called submodular
relaxations [68], [69], one uses as new objective a maximum submodular function that lower bounds the original
objective. More generally, convex relaxations allow us to make use of the well-developed duality theory of convex

programming for dealing with discrete nonconvex problems.

The type of relaxations that are typically preferred in éargcale discrete optimization are based on linear
programming, involving the minimization of a linear furanti subject to linear inequality constraints. These can be
naturally obtained by simply relaxing the integrality coagts of Primal-ILP, thus leading to the relaxed primal
problem [14) as well as its dudl (16). It should be noted thatuse of LP-relaxations is often dictated by the need
of maintaining a reasonable computational cost. Althoughenpowerful convex relaxations do exist in many cases,
these may become intractable as the number of variablessgarger, especially for Semidefinite Programming
(SDP) or Second-Order Cone Programming (SOCP) relaxations

Based on the above observations, in the following we aim ésgmt some very general primal-dual optimization
strategies that can be used in this context, focusing a Iadhein underlying principles, which are based on two
powerful techniques, the so-callpdmal-dual schemanddual decompositiomAs we shall see, in order to estimate
an approximate solution to Primal-ILP, both approachesenfedavy use of the dual of the underlying LP relaxation,

i.e., Problem[{16). But their strategies for doing so is gdiifferent: the second one essentially aims at solving this
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dual LP (and then converting the fractional solution intoitegral one, trying not to increase the cost too much

in the process), whereas the first one simply uses it in thgyules the algorithm.

B. The primal-dual schema for integer linear programming

The primal-dual schema is a well-known technique in the doatbrial optimization community that has its
origins in LP duality theory. It is worth noting that it stad as an exact method for solving linear programs. As
such, it had initially been used in deriving exact polyndrtime algorithms for many cornerstone problems in
combinatorial optimization that have a tight LP relaxatitts first use probably goes back to Edmond’s famous
Blossom algorithm for constructing maximum matchings oapips, but it had been also applied to many other
combinatorial problems including max-flow (e.g., Ford andkErson’s augmenting path-based techniques for max-
flow can essentially be understood in terms of this schent@test path, minimum branching, and minimum
spanning treel [70]. In all of these cases, the primal-duaést is driven by the fact that optimal LP solutions
should satisfy theomplementary slackness conditiqsee [1VV) and’(18)). Starting with an initial primal-dualrpa
of feasible solutions, it therefore iteratively steerathi|wards satisfying these complementary slackness donsglit
(by trying at each step to minimize their total violation)n€® this is achieved, both solutions (the primal and the
dual) are guaranteed to be optimal. Moreover, since thegbiisralways chosen to be updated integrally during the
iterations, it is ensured that an integral optimal solui®obtained at the end. A notable feature of the primal-dual
method is that it often reduces the original LP, which is aghigdd optimization problem, to a series of purely
combinatorial unweighted ones (related to minimizing ti@ation of complementary slackness conditions at each
step).

Interestingly, today the primal-dual schema is no longexdulr providing exact algorithms. Instead, its main
use concerns deriving approximation algorithms to NP-rdisdrete problems that admit an ILP formulation, for
which it has proved to be a very powerful and widely applieablol. As such, it has been applied to many NP-hard
combinatorial problems up to now, including set-coverjri&enetwork, scheduling, Steiner tree, feedback vertex
set, facility location, to mention only a few [17],_[18]. Witregard to problems from the domains of computer
vision and image analysis, the primal-dual schema has besydiced recently in [13]/[71], and has been used
for modeling a broad class of tasks from these fields.

It should be noted that for NP-hard ILPs an integral soluisono longer guaranteed to satisfy the complementary
slackness conditions (since the LP-relaxation is not @x&fgw could it then be possible to apply this schema to
such problems? It turns out that the answer to this quesbasists of using an appropriate relaxation of the above
conditions. To understand exactly how we need to proceetiindase, let us consider the problem Primal-ILP
above. As already explained, the goal is to compute an opsoiation to it, but, due to the integrality constraints
z € N, this is assumed to be NP-hard, and so we can only estimatppanxamate solution. To achieve that, we
will first need to relax the integrality constraints, thusigg rise to the relaxed primal problem in{14) as well as
its dual [I6). A primal-dual algorithm attempts to computeapproximate solution to Primal-ILP by relying on

the following principle (see framebox for an explanation):
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Primal-dual principle in the discrete case: Letx € RY andy € R¥X be integral-primal and dual feasible
solutions (i.ex € N and Lz > b, andy € [0, +oo[ and LTy < ¢). Assume that there existse [1, +oo| such
that

cle<vbly. (30)

Then,z can be shown to be a-approximation to an unknown optimal integral soluti@ni.e.

c'i<cz<ve'z (31)

PRIMAL-DUAL PRINCIPLE IN THE DISCRETE CASE
Essentially, the proof of this principle relies on the fact that the sequence of optimal costs of problems Dual-LP,
Primal-LP, and Primal-ILP is increasing.

- Ayz) ——>

+— A(Z,z) —

T T
’—v by TVCT:E (:T;ij
Dual cost of Primal cost of optimal Primal cost of
solution integral solution Z integral solution x

Specifically, by weak LP duality, the optimal cost of Dual-LP is known to not exceed the optimal cost of Primal-LP.
As a result of this fact, the cost ¢ Z (of an unknown optimal integral solution %) is guaranteed to be at least as
large as the cost b y of any dual feasible solution y. On the other hand, by definition, ¢ Z cannot exceed the
cost ¢z of an integral-primal feasible solution z. Therefore, if the gap A(y, =) between the costs of y and z is
small (e.g., it holds cTx < vbTy), the same will be true for the gap A(Z, =) between the costs of z and z (i.e.,

¢z < vc'2), thus proving that x is a v-approximation to optimal solution Z.

Although the above principle lies at the heart of many prighadl techniques (i.e., in one way or another,
primal-dual methods often try to fulfill the assumptions mspd by this principle), it does not directly specify
how to estimate a primal-dual pair of solutioiis,y) that satisfies these assumptions. This is where the so-
called relaxed complementary slackness conditiaose into play, as they typically provide an alternative and
more convenient (from an algorithmic viewpoint) way for geating such a pair of solutions. These conditions
generalize the complementary slackness conditions aedaivith an arbitrary pair of primal-dual linear programs
(see Sectiof I[-E). The latter conditions apply only in casden there is no duality gap, like between Primal-LP
and Dual-LP, but they are not applicable to cases like Pritraland Dual-LP, when a duality gap exists as a
result of the integrality constraint imposed on variabléAs in the exact case, two types of relaxed complementary

slackness conditions exist, depending on whether the pomdual variables are checked for being zero.

Relaxed Primal Complementary Slackness Conditions with relaxation facton/,ima < 1. For a givenz =

(29))1<jen €RY, y = (yD)1<;<x € RE, the following conditions are assumed to hold:
(Vj S Jz) Vprimal W) < Z L(l’])y(l) < ) (32)
=1

whereJ, = {j € {1,...,N} | 219 > 0}.
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Relaxed Dual Complementary Slackness Conditions with relaxation factorvg., > 1. For a giveny =

(YN 1<i<x € RE, 2 = (zD)1<;<n € RY, the following conditions are assumed to hold:

N
(Vi c Iy) b(i) < ZL(@j)x(J’) < Vdual b(i) (33)

j=1
wherel, = {i € {1,...,K} | y > 0}.

When bothvpimal = 1 and vquar = 1, we recover the exact complementary slackness conditior{4) and
(I8). The use of the above conditions in the context of a drolmal approximation algorithm becomes clear by
the following result:

If 2 = (29));<j<n andy = (y)1<i<x are feasible with respect tBrimal-ILP and Dual-LP respectively, and
satisfy the relaxed complementary slackness condif@&sand (33), then the pair(z, y) satisfies the primal-dual

principle in the discrete case with = -*4L-, Thereforex is a v-approximate solution t&rimal-ILP.

primal

This result simply follows from the inequalities

N @& 1 & : A A :
To=Y g <3 (V — ZL@,J)y(z))x(a) = 3 (ZLm)x(a))ym
]:1 ]:1 prima. i=1 prima. i=1 j*l
K
BSE) Vdual Zb(i)y(i) _ ﬂbTy. (34)
Vprimal Vprimal

Based on the above result, iterative schemes can be deviseihg a primal-duak-approximation algorithm.

For example, we can employ the following algorithm:

Algorithm 8 Primal-dual schema
Generate a sequenden, yn»)nen Of elements oRY x R¥ as follows:

Setvprimal < 1 andvgua > 1
Setyo € [0, +oo[* such thatl, "yy < ¢
Forn=0,1,...
Findz, € {x € N'| Lz > b} minimizing (35)
Sier, a? st (Viel,) Y L4920 < g b® +¢9, ¢ >0
Findyn 1 € {y € [0, +00[* | LTy < ¢} minimizing
Sien 19 St (Vi €Jn) LKL LEVYO 41D > i ), 10 > 0.

Note that, in this scheme, primal solutions are always wgaattegrally. Also, note that, when applying the
primal-dual schema, different implementation strategies possible. The strategy described in Algorifiim 8 is to
maintain feasible primal-dual solutior{s.,, y,,) at iterationn, and iteratively improve how tightly the (primal or
dual) complementary slackness conditions get satisfiets iBhperformed through the introduction of slackness
variables(¢(V);e;, and(r\9);c,, the sums of which measure the degrees of violation of eaelxedlslackness
condition and have thus to be minimized. Alternatively, &xample, we can opt to maintain solutiofs,, v, )

that satisfy the relaxed complementary slackness comditibut may be infeasible, and iteratively improve the
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feasibility of the generated solutions. For instance, if start with a feasible dual solution but with an infeasible
primal solution, such a scheme would result into improving feasibility of the primal solution, as well as the
optimality of the dual solution at each iteration, ensurihgt a feasible primal solution is obtained at the end. No
matter which one of the above two strategies we choose towipthe end result will be to gradually bring the
primal and dual costs"z,, andb'y,, closer and closer together so that asymptotically the pritnal principle
gets satisfied with the desired approximation factor. Bsalgn at each iteration, through the coupling by the
complementary slackness conditions the current primaitisol is used to improve the dual, and vice versa.
Three remarks are worth making at this point: the first onatesl to the fact that the two processes, i.e. the
primal and the dual, make only local improvements to eaclerot¥iet, in the end they manage to yield a result
that is almost globally optimal. The second point to empeass that, for computing this approximately optimal
result, the algorithm requires no solution to the Primal-PDual-LP to be computed, which are replaced by
simpler optimization problems. This is an important adaget from a computational standpoint since, for large
scale problems, solving these relaxations can often bee aquustly. In fact, in most cases where we apply the
primal-dual schema, purely combinatorial algorithms canobtained that contain no sign of linear programming
in the end. A last point to be noticed is that these algoritihewgiire appropriate choices of the relaxation factors
Vprimal @NdVaual, Which are often application-guided.
Application to the set cover problem: For a simple illustration of the primal-dual schema, letassisider the
problem of set-cover, which is known to be NP-hard. In thisheem, we are given as input a finite Sétof K
elements(v(?),<;<x, a collection of (non disjoint) subse = {S;}1<;<n where, for everyj € {1,...,N},
S; CV, ande.V:1 S; =V. Letp: S — R be a function that assigns a cast= ¢(S5;) for each subse§;. The
goal is to find a set cover (i.e. a subcollection®fthat covers all elements af) that has minimum cost (see

Fig.[).

S, S

A
QP
T

Fig. 5: A toy set-cover instance witlk = 4 and N = 3, wherep(S1) = 3, ¢(S2) = 1, ¢(S3) = 2. In this case, the optimal
set-cover is{S1, S} and has a cost of.

N

The above problem can be expressed as the following ILP:

N
minimize ©(S;) ) (36)
r=(zP)1<;<n =1
st. (Vie{l,...,K}) > D=1, zefo}¥, (37)
J€{L,....N}
U(i)GSj

where indicator variabIeSr(j))lngN are used for determining if a set # has been included in the set cover or

not, and [(3F7) ensures that each one of the elementsisfcontained in at least one of the sets that were chosen
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for participating to the set cover.
An LP-relaxation for this problem is obtained by simply @ghg the Boolean constraint with the constraint

x € [0, +o00[". The dual of this LP relaxation is given by the following lareprogram:

K
imi (4)
‘maximize Y (38)
y=(y")1<i<x €[0,400[" ;
st (G e{l,...,NY) Yy <op(s)). (39)
ie{l,....K}
U(i)GSj

Let us denote byF,.. the maximum frequency of an element ¥y where by the ternfrequencywe mean
the number of sets this element belongs to. In this case, Weaugé the primal-dual schema to derive &R .-
approximation algorithm by choosing,rimai = 1, Ydual = Fmax. This results into the following complementary
slackness conditions, which we will need to satisfy:

Primal Complementary Slackness Conditions

(Vje{l,....,Np itz >0then >y =p(s;) (40)

Relaxed Dual Complementary Slackness Conditions (withxedlon factorF,.)

(Vie{l,....K})ify >0then Y 20 < Fu (41)

je{1,...,N}
U(i)GSj

A setS; with j € {1,..., N} for which} Jicq1 . xy y@ = ©(S;) will be calledpacked Based on this definition,
’U(i>65j
and given that the primal variablés)), ;< are always kept integral (i.e., eithéror 1) during the primal-dual

schema, Condition§ (#0) basically say that only packedceatsbe included in the set cover (note that overpacked
sets are already forbidden by feasibility constraifitd x3S)milarly, Conditions[(4i1) require that an element)
with i € {1,..., K} associated with a nonzero dual varialé should not be covered more thdf, .. times,

which is, of course, trivially satisfied given that,.x represents the maximum frequency of any element.in

Algorithm 9 Primal-dual schema for set-cover.

Setxg < 0,50 < 0
Declare all elements i as uncovered
While V contains uncovered elements
Select an uncovered elemenft) with i € {1,..., K} and increasg" until some set becomes packed
For every packed sef; with j € {1,..., N}, setz?) « 1
(include all the sets that are packed in the cover)

Declare all the elements belonging to at least oneSsewith ) =1 as covered.

Based on the above observations, the iterative method wpssedocode is shown in Algorithhd 9 emerges

naturally as a simple variant of Algorithid 8. Upon its teration, bothz andy will be feasible given that there
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will be no uncovered element and no set that violafe$ (39thEtmore, given that the final pafr,y) satisfies
the relaxed complementary slackness conditions wjthnar = 1, Vdual = Fmax, the set cover defined by will

provide anF,,..-approximate solution.

C. Dual decomposition

We will next examine a different approach for discrete ofation, which is based on the principle of dual
decomposition[[1],[[14],[[72]. The core idea behind thimpiple essentially follows a divide and conquer strategy:
that is, given a difficult or high-dimensional optimizatignoblem, we decompose it into smaller easy-to-handle
subproblems and then extract an overall solution by clgwewmbining the solutions from these subproblems.

To explain this technique, we will consider the general peobof minimizing the energy of a discrete Markov
Random Field (MRF), which is a ubiquitous problem in the fietd computer vision and image analysis (applied
with great success on a wide variety of tasks from these dwrsich as stereo-matching, image segmentation,
optical flow estimation, image restoration and inpaintiogobject detection) |2]. This problem involves a graph
G with vertex setV and edge sef (i.e., G = (V,&)) plus a finite label sefL. The goal is to find a labeling
z = (2),cy € LIV for the graph vertices that has minimum cost, that is

e ZV o)+ 3 e (42)
where, for everyp € V ande € &, p,: L — ]—o00,+oo[ and @.: L2 — ]—o0,+oc[ represent the unary and
pairwise costs (also known connectively as MRF potentials {{¢,} ey, {@c}ece ), andz(®) denotes the pair
of components of: defined by the variables corresponding to vertices condeuye: (i.e., z(¢) = (2(»), 2(9)) for
e=(p,q) €&).

The above problem is NP-hard, and much of the recent work ofr BiRimization revolves around the following
equivalent ILP formulation of {42) [73], which is the one tivee will also use here:

minimize f(rip) = Y. @) n?) Y 0@ x), (43)
peV, z® el ec€,z(e)eL?

where the seC; is defined for any graply = (V, &) as
Vp e V) Y wer tp(2@) =1

Ve = (p,q) € £)(vz1) € L) Zzwegx{zm} xe(2(9)) = ffq(Z(Q))

(
(
Co=qz={{zp}pevce {Xc}eevaeca} | (Ye = (p,q) €E)(F2P € L) 3 0repatmynr %e(2®) = 2p(2@)
(
(

VpeV) zp(-): L—{0,1}
Ve € ) xe(): £2 — {0,1}

(44)
In the above formulation, for every € V ande € &, the unary binary functiorr,(-) and the pairwise binary

function x.(-) indicate the labels assigned to vertexand to the pair of vertices connected by edge (p’,¢)
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respectively, i.e.,
(V2 e L) z,(2P)=1 & pis assigned labet®) (45)
(V2@ = (270 20y e £2)  x.(29)=1 & p, ¢ are assigned labels?") (@), (46)

Minimizing with respect to the vectar regrouping all these binary functions is equivalent to cleiaig for an optimal
binary vector of dimensiotV = |V||£|+|£[|£|?. The first constraints il (44) simply encode the fact thahesrtex
must be assigned exactly one label, whereas the rest of tttramts enforces consistency between unary functions
z,(+), z4(-) and the pairwise functior (-) for edgee = (p, q), ensuring essentially that if,(2(P)) = z,((?) = 1,
thenx, (2P, 2(9) = 1.

As mentioned above, our goal will be to decompose the MRF Iprol{43) into easier subproblems (called
slave$, which, in this case, involve optimizing MRFs defined on g@phs ofG. More specifically, le{G,,, =
(Vin, Em) }1<m<nr be a set of subgraphs that form a decompositio@'ef (V, &) (i.e.,UM_V,, =V, UM_ &, =
£). On each of these subgraphs, we define a local MRF with quoreng (unary and pairwise) potentigi§’ =
e pevn - {07 }ece,, }» whose cost functionf™ (x; ™) is thus given by

ffae™ = Y oM aEP) Y el @) xe (@) (47)

PEVm, 2P el e€Em,z(e)eL?

Moreover, the sum (over) of the potential functiong™ is ensured to give back the potentiglsof the original
MRF on G, i.e.
(Vp € V)(Ve € €) Yo o= Yo el =g (48)
mée{l,...,M}:peV,, me{l,...,M}:e€&p,

This guarantees thagt = Zn]\le f™, thus allowing us to re-express problem](43) as follows

M
minimize n;f%;som). (49)
An assumption that often holds in practice is that miningzseparately each of thg™ (over x) is easy, but
minimizing their sum is hard. Therefore, to leverage this,fave introduce, for eveny € {1,..., M}, anauxiliary
copyz™ € Cg,, for the variables of the local MRF defined @r,,, which are thus constrained to coincide with
the corresponding variables in vectari.e., it holdsz™ = g, , wherezq,, is used to denote the subvectoraof
containing only those variables associated with verticebedges of subgrapi,,,. In this way, Problem[(49) can

be transformed into
M

minimize (™™
z€Cq,{z"€Cq,, }1<m<m mZ:1f ( v )
st. (Yme{l,...,M}) ™ =xq,,. (50)

SFor instance, to ensurE_(48) we can simply $etn € {1,...,M}) o7 and ™

. o E— - ®e
H{Im/[p€V,,,/ } {m/le€€,/ }"
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By considering the dual of (50), using a technique similath® one described in framebox on page 9, and noticing
that
xelCe & (Wme{l,....M}) 2™ eCqg,,, (51)

we finally end up with the following problem:

M
maximize A™ (™), 52
(v™)1<m<m EA 2_:1 ( ) ( )
where, for everym € {1,..., M}, the dual variable™ consists of{{v;,”}peym, {vi"}ece,, } similarly to o™, and

function ™ is related to the following optimization of a slave MRF 6f,:

A™(u™) = min [fM™(z™; " +0™). (53)
zmeCa,,
The feasible sef\ is given by
(Vp € V)(V2P) € L) 3 v (2®) = 0,
mée{l,...,M}:peV,,
. . (Ve € £)(Vz(®) € £?) > v (2(¢)) =0
A=(qv= {{Up }PEVma {Ve }eeé’m}lngM mée{l,...M}:e€€m

(Yme{l,...,M})(VpeV) v'(-): L= R
(Vme{l,...,.M})(Ve € &) v*(-): L2~ R

(54)

The above dual problem provides a relaxation to the origprablem [48){(44). Furthermore, note that this
relaxation leads to a convex optimization problemlthough the original one is not. As such, it can always be
solved in an optimal manner. A possible way of doing this &iasof using a projected subgradient method.
Exploiting the form of the projection onto the vector spacgields Algorithm[I0 wherg~,,),cn iS @ summable
sequence of positive step-sizes aid;’, }pev,., {X, }ccs,, } corresponds to a subgradient of functibft with
m € {1,..., M} computed at iteration [14]. Note that this algorithm requiremly solutions to local subproblems
to be computed, which is, of course, a task much easier tinttefiumore can be executed in a parallel manner. The

solution to the master MRF is filled in from local solutiofi$z7",} ,cv,,, (X2, }ece after convergence

m }1§m§M
of the algorithm.

For a better intuition for the updates of variablee!”, }pev,., {@, }ece., } in Algorithm[10, we

1<m<M,neN
should note that their aim is essentially to bring a consgasaiong the solutionsjof1he local subproblems. In other
words, they try to adjust the potentials of the slave MRFshsd in the end the corresponding local solutions are
consistent with each other, i.e., all variables correspantb a common vertex or edge are assigned the same value
by the different subproblems. If this condition is satisf{gd., there is a full consensus) then the overall solution
that results from combining the consistent local solutisnguaranteed to be optimal. In general, though, this might

not always be true given that the above procedure is solvithg arelaxation of the original NP-hard problem.

6In order to see this, notice that™(v™) is equal to a pointwise minimum of a set of linear functionsvéf, and thus it is a concave

function.
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Algorithm 10 Dual decomposition for MRF optimization.

Choose a decompositiofGr, = (Vin, Em) i<m<m Of G

Initialize potentials of slave MRFs:

(Vm € {1,...,M})(Vp € Vm) ¢y = W&n,}w (Ve € &m) oo = ngm,}‘

forn=0,...

Compute minimizers of slave MRF problents'm € {1,..., M}) {{Z}'}pevy, {Xtin }ece,, } € Argmin

Update potentials of slave MRFs:

(vm € {L,..., MP)(Yp € Vin) fins1 = pinss + T (Fpin -
(Vm S {17 . 7M})(Ve € gm) (pg?nJrl = (pg,ln +’Yn (S(Vg}n -

i peVim Tpon
H{m/[peV,,,/ }
Ymic€lm ?an)

{m/IpeV ./}

zmeCa,,

(@™ o)

MASTER-SLAVE COMMUNICATION

During dual decomposition a communication between a master process and the slaves (local subproblems) can

be thought of as taking place, which can also be interpreted as a resource allocation/pricing stage.

Resource allocation

Pricing

master |
M

STy DTN
urT ot TN
A

¥
1|2|°'°M|

master

slave MRFs

slave MRFs

the slaves based on the current local solutions (Z™)1<m< -

their welfares based on the newly assigned resources (Z™)1<m<n-

Resource allocation: At each iteration, the master assigns new MRF potentials (i.e., resources) (¢™)1<m<as 10

Pricing: The slaves respond by adjusting their local solutions (2™ )<< (i.€., the prices) so as to maximize
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DECOMPOSITIONS AND RELAXATIONS
Different decompositions can lead to different relaxations and/or can affect the speed of convergence. We show
below, for instance, 3 possible decompositions for an MRF assumed to be defined on a 5 x 5 image grid.

g “{GE} ) polytopes
1 A [ o [
il I N T O I I

N T O ]

Y D T ]

Tighter relaxation

Decompositions {G}, }, {G2,}, {G2,} consist respectively of one suproblem per row and column, one subproblem
per edge, and one subproblem per 2 x 2 subgrid of the original 5 x 5 grid. Both {G},} and {G2,} (due to using
solely subgraphs that are trees) lead to the same LP relaxation of (@3), whereas {G3,} leads to a relaxation that
is tighter (due to containing loopy subgraphs).

On the other hand, decomposition {G},} leads to faster convergence compared with {G2,} due to using larger

subgraphs that allow a faster propagation of information during message-passing.

Interestingly, if we choose to use a decomposition comgjsbinly of subgraphs that are trees, then the resulting
relaxation can be shown to actually coincide with the stashti®-relaxation of linear integer program{43) (generated
by replacing the integrality constraints with non-negéaticonstraints on the variables). This also means that when
this LP-relaxation is tight, an optimal MRF solution is comgd. This, for instance, leads to the result thaal
decomposition approaches can estimate a globally optimlati®n for binary submodular MRF&lthough it should
be noted that much faster graph-cut based techniques ekistlbmodular problems of this type - see framebox on
page3D). Furthermore, when using subgraphs that are tieménimizer to each slave problem can be computed
efficiently by applying the Belief Propagation algorithn@[7which is a message-passing method. Therefore, in this
case, Algorithni_TI0 essentially reduces to a continuousangd of messages between the nodes of géapBuch
an algorithm relates to or generalizes various other mespagsing approaches [15], [75][79]. In general, besides
tree-structured subgraphs, other types of decompositineabproblems can be used as well (such as binary planar
problems, or problems on loopy subgraphs with small tredtiwifor which MRF optimization can still be solved

efficiently), which can lead to even tighter relaxationse(§@mebox on page 29) [B0[-[85].
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GRAPH-CUTS AND MRF OPTIMIZATION
For certain MRFs, optimizing their cost is known to be equivalent to solving a polynomial mincut problem [86], [87]. These
are exactly all the binary MRFs (] £| = 2) with submodular pairwise potentials such that, for every e € £,

0c(0,0) + 0e(1,1) < 9e(0, 1) + @e(1,0). (5)

Due to (58), the cost f(x) of a binary labeling = = (z(P)); <<y € {0, 1}VI for such MRFs can always be written (up to
an additive constant) as
f(z) = Z apz® + Z a® (1 —z®) 4 Z apqz® (1 — (D), (56)
PEVP PEVN (p,9)€E
where all coefficients (ap)pey and (ap,q)(p,q)ce are nonnegative (Vp C V, Vy C V).
In this case, we can associate to f a capacitated network that has vertex set Vy = V U {s, t}. A source vertex s and a
sink one t have thus been added. The new edge set £; is deduced from the one used to express f:

Er={mt)lpeVpIU{(s,p) | P € VN}UE,

and its edge capacities are defined as (Vp € Vp UVnN) ¢p,t = ¢s,p = ap, and (¥(p,q) € €) ¢cp,q = ap,q-
A one-to-one correspondence between s-t cuts and MRF labelings then exists:

z e {0, 1}V & cut(x) = {s}u{p|z® =1}

for which it is easy to see that

fz) = Z Cu,v = cost of cut(z) .

u€cut(z),v¢cut(x)
Computing a mincut, in this case, solves the LP relaxation of (#3), which is tight, whereas computing a max-flow solves
the dual LP.

Furthermore, besides the projected subgradient methed;amalternatively apply an ADMM scheme for solving
relaxation[[5P) (see Secti@nTllIB). The main differencethis case, is that the optimization of a slave MRF problem
is performed by solving a (usually simple) local quadratiogfem, which can again be solved efficiently for an
appropriate choice of the decomposition (see Sedtion)lIffis method again penalizes disagreements among
slaves, but it does so even more aggressively than the slibgtanethod since there is no longer a requirement
for step-sizegv, )nen CONverging to zero. Furthermore, alternative smoothedlacated schemes exist and can be
applied as well[[88]-+[90].

V. APPLICATIONS

Although the presented primal-dual algorithms can be applirtually to any area where optimization problems

have to be solved, we now mention a few common applicatiorthexfe techniques.

A. Inverse problems

For a long time, convex optimization approaches have beecessfully used for solving inverse problems such
as signal restoration, signal reconstruction, or inteafieh of missing data. Most of the time, these problems are
ill-posed and, in order to recover the signal of interest isatisfactory manner, some prior information needs to
be introduced. To do this, an objective function can be minéth which includes a data fidelity term modelling

knowledge about the noise statistics and possibly invadMasear observation matrix (e.g. a convolutive blur), and a
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regularization (or penalization) term which corresporodthe additional prior information. This formulation casal
often be justified statistically as the determination of axWam A Posteriori (MAP) estimate. In early developed
methods, in particular in Tikhonov regularization, a quaidr penalty function is employed. Alternatively, hard
constraints can be imposed on the solution (for examplentt®on the signal values), leading to signal feasibility
problems. Nowadays, a hybrid regularization|[91] may begueal so as to combine various kinds of regularity
measures, possibly computed for different representatidrthe signal (Fourier, wavelets,...), some of them like
total variation [25] and its nonlocal extensions [[92] beitaglored for preserving discontinuities such as image
edges. In this context, constraint sets can be translategh@nalization terms being equal to the indicator function
of these sets (seEl(2)). Altogether, these lead to globalfenstions which can be quite involved, often with many
variables, for which the splitting techniques describe&attioi II-F are very useful. An extensive literature &xis
on the use of ADMM methods for solving inverse problems (esge [29]-33]). With the advent of more recent
primal-dual algorithms, many works have been mainly foduse image recovery applications [46]-[49], [51], [54],
[55], [58], [62], [64], [93]-[97]. Two illustrations are no provided.

In [98], a generalization of the total variation is defined & arbitrary graph in order to address a variety of

inverse problems. For denoising applications, the op#mon problem to be solved is of the forin {19) where
1
f=0, g=oc, h:x'—>§||:v—y||2, (57)

x is a vector of variables associated with each vertex of ahtedygraph, ang € RY is a vector of data observed
at each vertex. The matrik € RX*V is equal toDiag(y/@,, . .., V@) A where(w, ...wx) € [0, +oo[" is the
vector of edge weights and € RX*¥ is the graph incidence matrix playing a role similar to a ggatioperator
on the graph. The sé&t is defined as an intersection of closed semi-balls in suchyatha its support functioar&
(see[®)) allows us to define a class of functions extendiagdtal variation semi-norm (sele [98] for more details).
Good image denoising results can be obtained by buildinggthph in a nonlocal manner following the strategy
in [92)]. Results obtained for Barbara image are displaye#ig[8. Interestingly, the ability of methods such as
those presented in Sectibn IMI-D to circumvent matrix irsiens leads to a significant decrease of the convergence
time for irregular graphs in comparison with algorithmsdzh®n the Douglas-Rachford iteration or ADMM (see
Fig.[q).

Another application example of primal-dual proximal aligfoms is Parallel Magnetic Resonance Imaging (PMRI)
reconstruction. A set of measurement vectarg. << is acquired fromJ coils. These observations are related to
the original full FOV (Field Of View) imager € CV corresponding to a spin density. An estimaterd$ obtained

by solving the following problem:

J
minimize f(z) + g(Lz) + Y [|IZF Sz — 23 (58)
zeC - J
j=1
h(z)
where (Vj € {1,...,J}) | - Hi;l = (-)HAJ.‘I(-), A; is the noise covariance matrix for thjethe channelS;

CN*N is a diagonal matrix modelling the sensitivity of the cdil,c CNY*" is a 2D discrete Fourier transform,
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(a) Original image (b) Noisy SNR =14.47 dB (c) Nonlocal TV SNR =20.78 dB

Fig. 6: Nonlocal denoising (additive white zero-mean Gaussiasenwiith variancer? = 20).
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Fig. 7: Comparison of the convergence speed of a Douglas-Rachfsedbalgorithm (PPXAT[65]) (blue) and an FBF-based
primal-dual algorithm (red) for image denoising using a-negular graph, Matlab implementation on an Intel Xeon HgG
8-core system.

¥ € {0,1}L%)*N is a subsampling matrix, € Iy (C¥) is a sparsity measure (e.g. a weightechorm), L € CK*N

is a (possibly redundant) frame analysis operator, Aiglthe indicator function of a vector subspace®@¥ serving

to set to zero the image areas corresponding to the backtjﬂo@ombining suitable subsampling strategies in the
k-space with the use of an array of coils allows us to redueeatiguisition time while maintaining a good image
quality. The subsampling factd® > 1 thus corresponds to aacceleration factor For a more detailed account on
the considered approach, the reader is refered to [99]] [A00 the references therein. Reconstruction results are
shown in Fig[8. Figl 9 also allows us to evaluate the convergdime for various algorithms. It can be observed
that smaller differences between the implemented primal-dtrategies are apparent in this example. Due to the
form of the subsampling matrix, the matrix inversion inadvat each iteration of ADMM however requires to
make use of a few subiterations of a linear conjugate gradnethod.

Note that convex primal-dual proximal optimization algbms have been applied to other fields than image
7(-)H denotes the transconjugate operation arddesignates the lower rounding operation.

December 4, 2014 DRAFT



IEEE SIGNAL PROCESSING MAGAZINE

(@

33

(b)

Fig. 8: (a) Effects of the sensitivity matrices in the spatial domairtlie absence of subsampling: the moduli of the images

corresponding tq.S;7)2<; <3 are displayed for 2 channels out of 3B) Reconstruction quality: moduli of the original slice
T and the reconstructed one with SNR26.03 dB (from left to right) using polynomial sampling of order litw R = 5, a

wavelet frame, and af; regularization.
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Fig. 9: Signal-to-Noise Ratio as a function of computation timengsADMM, and FB or FBF-based primal-dual methods for
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a given slice, Matlab implementation on an Intel i7-3520MU@2.9 GHz system.

recovery, in particular to machine learnirig [5], [101], tgyn identification[[102], audio processirig [103], optimal
transport[[104], empirical mode decompositibn [105], seg106], database management [107], and data streaming

over networks[[108].

B. Computer vision and image analysis
The great majority of problems in computer vision involveaipe observation data that are of very high di-

mensionality, inherently ambiguous, noisy, incomplete] aften only provide a partial view of the desired space.
Hence, any successful model that aims to explain such da@lysequires a reasonable regularization, a robust
data measure, and a compact structure between the varidligsrest to efficiently characterize their relationship
Probabilistic graphical models, and in particular disefeiarkov Random Fields, have led to a suitable methodology
for solving such visual perception problems|[12],][16]. §hipe of models offer great representational power, and
are able to take into account dependencies in the data, eqram knowledge, and model (soft or hard) contextual
constraints in a very efficient and modular manner. Furtloeemthey offer the important ability to make use of
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(b) ‘Tsukuba’ stereo matching (from left to right: left imagFastPD output, time comparison plot)
Fig. 10: FastPD[[125] results for an image denoising (top) and steratzhing (bottom) problem. The plot in each row compares
the corresponding running time per iteration of the abovenardual algorithm with then-expansion algorithm, which is a
primal-based method (experiments conducted on a 1.6 GH2).CPU

very powerful data likelihood terms consisting of arbijraxonconvex and non-continuous functions that are often
crucial for accurately representing the problem at hand.aA®sult, MAP-inference for these models leads to
discrete optimization problems that are (in most cased)ljrigonconvex (NP-hard) and also of very large scale
[109], [110]. These discrete problems take the fofm (42)enehtypically the unary termg,(-) encode the data
likelihood and the higher-order terms.(-) encode problem specific priors.

Primal-dual approaches can offer important computatiaasiantages when dealing with such problems. One
such characteristic example is the FastPD algorithrh [1B]¢kvcurrently provides one of the most efficient methods
for solving generic MRF optimization problems of this tydso guaranteeing at the same time the convergence
to solutions that are approximately optimal. The theoattierivation of this method relies on the use of the
primal-dual schema described in Section 1V, which resiittghis case, into a very fast graph-cut based inference
scheme that generalizes previous state-of-the-art apipesasuch as the-expansion algorithni[111] (see FIg.J10).
More generally, due to the very wide applicability of MRF netglto computer vision or image analysis problems,
primal-dual approaches can and have been applied to a blasslaf both low-level and high-level problems from
these domains, including image segmentation|[112]+{1st6feo matching and 3D multi-view reconstruction [116],
[117], graph-matching [118], 3D surface tracking [119]ticgl flow estimation[[120], scene understanding [121],
image deblurring([122], panoramic image stitchifig [123tegory-level segmentation [124], and motion tracking
[125]. In the following we mention very briefly just a few explas.

A primal-dual based optimization framework has been rdgemtoposed in [[127],[[128] for the problem of
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Fig. 11: Color encoded visualization of the surface distance betwegped and expert segmentation after affine (left), FFD-
based[[1209] (middle), and primal-dual based registratigh{() for the Brain 1 data set. The color range is scaled taaimum
and minimum distance of 3 mm. The average surface distan&®)After registration for the gray matter is 1.66, 1.14, and
1.00 mm for affine, FFD-based, and primal-dual method, i&smdy. For the white matter the resulting ASD is 1.92, 1.8ad
1.06 mm. Note also that the FFD-based method is more tham8#stslower than the primal-dual approach.

deformable registration/fusion, which forms one of the twasitral and challenging tasks in medical image analysis.
This problem consists of recovering a nonlinear dense deftion field that aligns two signals that have in general an
unknown relationship both in the spatial and intensity diomia this framework, towards dimensionality reduction
on the variables, the dense registration field is first exygeaising a set of control points (registration grid) and
an interpolation strategy. Then, the registration cosixjgressed using a discrete sum over image costs projected
on the control points, and a smoothness term that penalimes tleviations on the deformation field according
to a neighborhood system on the grid. One advantage of thdtings optimization framework is that it is able
to encode even very complex similarity measures (such amalmed mutual information and Kullback-Leibler
divergence) and therefore can be used even when seekingfamarations between different modalities (inter-
deformable registration). Furthermore, it admits a braatye of regularization terms, and can also be applied to
both 2D-2D and 3D-3D registration, as an arbitrary undagygraph structure can be readily employed (seelEilg. 11
for a result on 3D inter-subject brain registration).

Another application of primal-dual methods is in sterecoretruction[[130], where given as input a pair of left
and right imaged,, Iz we seek to estimate a functian: 2 — T" representing the depti(s) at a points in the
domain) C R? of the left image (her@ = [Umin, Vmax] denotes the allowed depth range). To accomplish this,

the following variational problem is proposed [n [130]:

miniumize /Qf(u(s),s)ds—i-/Q|Vu(s)|ds, (59)

where f(u(s), s) is a data term favoring different depth values by measuiiregabsolute intensity differences of
respective patches projected in the two input images, andahond term is a TV regularizer that promotes spatially
smooth depth fields. The above problem is nonconvex (duestaisk of the data terry), but it turns out that there

exists an equivalent convex formulation obtained by Igtihe original problem to a higher-dimensional space, in
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Fig. 12: Estimated depth map (right) for a large aerial stereo datafs€raz using the primal-dual approach in[130]. One of
the images of the corresponding stereoscopic pair (of 5598 x 1400) is shown on the left.

which u is represented in terms of its level sets

minimize /E(|V<;5(s,v)| + f(s,0)]|0u0(s,v)|)dsdv. (60)

$€D
In the above formulatior; = Q x T, ¢: ¥ — {0, 1} is a binary function such that(s, v) equalsl if «(s) > v and

0 otherwise, and the feasible set is definedas: {¢: £ — {0,1} | (Vs € Q) #(S, Umin) = 1, ¢(S, Umax) = 0}. A
convex relaxation of the latter problem is obtained by usibhy = {¢: X — [0,1] | (Vs € Q)
O(8,Umin) = 1,0(8, Umax) = ()} instead of D. A discretized form of the resulting optimization probleranc
be solved with the algorithms described in Secfion TlI-Qy.EBi2 shows a sample result of this approach.

Recently, primal-dual approaches have also been devefopddcrete optimization problems that involve higher-
order terms[[131]+[133]. They have been applied succdggsfulvarious tasks, like, for instance, in stereo matching
[137]. In this case, apart from a data term that measuredasitpibetween corresponding pixels in two images, a
discontinuity-preserving smoothness prior of the fapifs;, s2, s3) = min(|s; —2s2+ s3], &) with £ € |0, +00[ has
been employed as a regularizer that penalizes depth ssréddeigh curvature. Indicative stereo matching results
from an algorithm based on the dual decomposition prinaiiglscribed in Section TVAC are shown in Figl 13.

It should be also mentioned that an advantage of all primal-dlgorithms (which is especially important for
NP-hard problems) is that they also provide (for free) pstance approximation bounds, specifying how far the
cost of an estimated solution can be from the unknown opticost. This directly follows from the fact that
these methods are computing both primal and dual solutishigh (in the case of a minimization task) provide
respectively upper and lower limits to the true optimum. Seh@pproximation bounds are continuously updated
throughout an algorithm execution, and thus can be diractBd for assessing the performance of a primal-dual
method with respect to any particular problem instance (aitdout essentially any extra computational cost).
Moreover, often in practice, these sequences converge twmemon value, which means that the corresponding

estimated solutions are almost optimal (see, e.g., the pioFig.[13).

VI. CONCLUSION

In this paper, we have reviewed a number of primal-dual ogttion methods which can be employed for solving

signal and image processing problems. The links existirigd®en convex approaches and discrete ones were little
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Fig. 13: Stereo matching results for ‘Teddy’ (a) and 'Cones’ (b) wlisimg a higher-order discontinuity preserving smoothness
prior. We show plots for the corresponding sequences of uppd lower bounds generated during the primal-dual method.
Notice that these sequences converge to the same limit,ingetivat the estimated solution converges to the optimaleval

explored in the literature and one of the contributions &f aper is to put them in a unifying perspective. Although
the presented algorithms have been proved to be quite igééantnumerous problems, there remains much room for
extending their scope to other application fields, and asdniproving them so as to accelerate their convergence.
In particular, the parameter choices in these methods meg &astrong influence on the convergence speed and
it would be thus interesting to design automatic procedfwesetting these parameters. Various techniques can
also be devised for designing faster variants of these mdstljoreconditioning, activation of blocks of variables,
combination with stochastic strategies, distributed enpdntations...). Another issue to pay attention to is the
robustness to numerical errors although it can be mentidhatd most of the existing proximal algorithms are
tolerant to summable errors. Concerning discrete optitimzanethods, we have shown that the key to success lies
in tight relaxations of combinatorial NP hard problems. diaxting these methods to more challenging problems,
e.g. those involving higher-order Markov fields or extreynlakge label sets, appears to be of main interest in this
area. More generally, developing primal-dual stratedias turther bridge the gap between continuous and discrete
approaches, as well as for solving other kinds of nonconyeinization problems such as those encountered in
phase reconstruction or blind deconvolution opens the wappealing investigations. So, the ground is yours now
to play with duality!
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