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Playing with Duality: An Overview of Recent
Primal-Dual Approaches for Solving

Large-Scale Optimization Problems

Nikos KomodakisMember, IEEE and Jean-Christophe Pesquet|low, IEEE

Abstract

Optimization methods are at the core of many problems in signal/imagessingecomputer vision, and machine
learning. For a long time, it has been recognized that looking at the dl@al optimization problem may drastically
simplify its solution. Deriving efficient strategies which jointly brings into plag tbrimal and the dual problems
is however a more recent idea which has generated many importancemnbutions in the last years. These
novel developments are grounded on recent advances in cona#ysian discrete optimization, parallel processing,
and nonsmooth optimization with emphasis on sparsity issues. In this papeaim at presenting the principles
of primal-dual approaches, while giving an overview of numericathogs which have been proposed in different
contexts. We show the benefits which can be drawn from primal-duatitlgs both for solving large-scale convex
optimization problems and discrete ones, and we provide various appliGatanples to illustrate their usefulness.
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I. MOTIVATION AND IMPORTANCE OF THE TOPIC

Optimization [1] is an extremely popular paradigm which stitates the backbone of many branches of applied
mathematics and engineeering, such as signal processintputer vision, machine learning, inverse problems,
and network communications, to mention just a few. The pamityl of optimization approaches often stems from
the fact that many problems from the above fields are typicetiaracterized by a lack of closed form solutions
and by uncertainties. In signal and image processing, fatante, uncertainties can be introduced due to noise,
sensor imperfectness, or ambiguities that are often imhénethe visual interpretation. As a result, perfect or éxac
solutions hardly exist, whereas inexact but optimal (inatistical or an application-specific sense) solutions and
their efficient computation is what one aims at. At the sameetione important characteristic that is nowadays
shared by increasingly many optimization problems enarexdtin the above areas is the fact that these problems
are often of very large scale. A good example is the field of mater vision where one often needs to solve low
level problems that require associating at least one (guidally more than one) variable to each pixel of an image
(or even worse of an image sequence as in the case of videoJyljB leads to problems that easily can contain
millions of variables, which are therefore the norm rathemt the exception in this context.

Similarly, in fields like machine learning [3], [4], due toetgreat ease with which data can now be collected
and stored, quite often one has to cope with truly massivasééd and to train very large models, which thus
naturally lead to optimization problems of very high dimienslity [5]. Of course, a similar situation arises in many
other scientific domains, including application areas sashnverse problems (e.g., medical image reconstruction
or satellite image restoration) or telecommunicationg.(enetwork design, network provisioning) and industrial
engineering. Due to this fact, computational efficiency stitbtes a major issue that needs to be thoroughly
addressed. This, therefore, makes mandatory the use tdlitamptimization techniques that are able to properly
exploit the problem structures, but which at the same tinmeaie applicable to a class of problems as wide as
possible.

A bunch of important advances that took place in this regaser ¢he last years concerns a particular class
of optimization approaches known gsimal-dual methods. As their name implies, these approaches proceed by
concurrently solving a primal problem (corresponding t® éhiginal optimization task) as well as a dual formulation
of this problem. As it turns out, in doing so they are able tpleit more efficiently the problem specific properties,
thus offering in many cases important computational achged, some of which are briefly mentioned next for two
very broad classes of problems.

1) Convex optimizationPrimal-dual methods have been primarily employed in cormgtimization problems
[6]-[8] where strong duality holds. They have been succdigsdipplied to various types of nonlinear and nonsmooth
cost functions that are prevalent in the above-mentiongdicgtion fields.

Many such applied problems can essentially be expresseer tinel form of a minimization of a sum of terms,
where each term is given by the composition of a convex fonctiith a linear operator. One first advantage of

primal-dual methods pertains to the fact that they can wely efficient splitting optimization schemes, according
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to which a solution to the original problem is iterativelyngputed through solving a sequence of easier subproblems,
each one involving only one of the terms appearing in theabg function.

The resulting primal-dual splitting schemes can also hahdith differentiable and nondifferentiable terms, the
former by use of gradient operators (i.e., through expBtips) and the latter by use of proximity operators (i.e.,
through implicit steps) [9], [10]. Depending on the targetdtions, either explicit or implicit steps may be easier
to implement. Therefore, the derived optimization schemgsoit the properties of the input problem, in a flexible
manner, thus leading to very efficient first-order algorighm

Even more importantly, primal-dual techniques are ablectoeve what is known afull splitting in the optimiza-
tion literature, meaning that each of the operators inwlvethe problem (i.e., not only the gradient or proximity
operators but also the involved linear operators) is usg@drately [11]. As a result, no call to the inversion of
a linear operator, which is an expensive operation for laggde problems, is required during the optimization
process. This is an important feature which gives these adstla significant computational advantage compared
with all other splitting-based approaches.

Last but not least, primal-dual methods lead to algorithiret are easily parallelizable, which is nowadays
becoming increasingly important for efficiently handlingth-dimensional problems.

2) Discrete optimization:Besides convex optimization, another important area wpereal-dual methods play
a prominent role is discrete optimization. This is of paféc significance given that a large variety of tasks from
signal processing, computer vision, and pattern recamnidire formulated as discrete labeling problems, where
one seeks to optimize some measure related to the qualityeofabeling [12]. This includes, for instance, tasks
such as image segmentation, optical flow estimation, imageiding, stereo matching, to mention a few examples
from image analysis. The resulting discrete optimizatiosbfems not only are of very large size, but also typically
exhibit highly nonconvex objective functions, which arangrally intricate to optimize.

Similarly to the case of convex optimization, primal-duatthods again offer many computational advantages,
leading often to very fast graph-cut or message-passiagebalgorithms, which are also easily parallelizable, thus
providing in many cases a very efficient way for handling dite optimization problems that are encountered
in practice [13]-[16]. Besides being efficient, they areoatsiccessful in making little compromises regarding
the quality of the estimated solutions. Techniques like shecalledprimal-dual schemaare known to provide a
principled way for deriving powerful approximation alginins to difficult combinatorial problems, thus allowing
primal-dual methods to often exhibit theoretical (i.e.,rstecase) approximation properties. Furthermore, apart
from the aforementioned worst-case guaranties, primal-digorithms can also provide (for fre@er-instance
approximation guaranties. This is essentially made pteséip the fact that these methods are estimating not only
primal but also dual solutions.

Convex optimization and discrete optimization have déférbackground theory originally. Convex optimization
may appear as the most tractable topic in optimization, foickv many efficient algorithms have been developed
allowing a broad class of problems to be solved. By contrastibinatorial optimization problems are generally

NP-hard. However, many convex relaxations of certain diecproblems can provide good approximate solutions
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to the original ones [17], [18]. The problems encounteredigtrete optimization therefore constitute a source of

inspiration for developing novel convex optimization taitfues.

Goals of this tutorial paper. Based on the above observations, our objectives will be dhewfing:
i) To provide a thorough introduction that intuitively eapis the basic principles and ideas behind primal-dual
approaches.
ii) To describe how these methods can be employed both indh&ext of continuous optimization and in the
context of discrete optimization.
iiiy To explain some of the recent advances that have takaoceptoncerning primal-dual algorithms for solving
large-scale optimization problems.
iv) To detail useful connections between primal-dual mdthand some widely used optimization techniques like
the alternating direction method of multipliers (ADMM) [[1920].
v) Finally, to provide examples of useful applications i ttontext of image analysis and signal processing.
The remainder of the paper is structured as follows. In 8edti, we introduce the necessary methodological
background on optimization. Our presentation is groundedhe powerful notion of duality known as Fenchel's
duality, from which duality properties in linear programmgican be deduced. We also introduce useful tools from
functional analysis and convex optimization, including thotions of subgradient and subdifferential, conjugate
function, and proximity operator. The following two sectfoexplain and describe various primal-dual methods.
Section Il is devoted to convex optimization problems. Wecdss the merits of various algorithms and explain
their connections with ADMM, that we show to be a special aafggrimal-dual proximal method. Section IV deals
with primal-dual methods for discrete optimization. We lexp how to derive algorithms of this type based on the
primal-dual schema which is a well-known approximationhtgque in combinatorial optimization, and we also
present primal-dual methods based on LP relaxations aridddaamposition. In Section V, we present applications
from the domains of signal processing and image analysiéyding inverse problems and computer vision tasks
related to Markov Random Field energy minimization. In &scW/I, we finally conclude the tutorial with a brief

summary and discussion.

Il. OPTIMIZATION BACKGROUND

In this section, we introduce the necessary mathematidaitiens and concepts used for introducing primal-dual
algorithms in later sections. Although the following framtek holds for general Hilbert spaces, for simplicity we

will focus on the finite dimensional case.

A. Notation

In this paper, we will consider functions frof®”" to |—oc, +oc]. The fact that we allow functions to takeco
value is useful in modern optimization to discard some “fdden part” of the space when searching for an optimal

solution (for example, in image processing problems, thepmments of the solution often are intensity values
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which must be nonnegative). Thigomainof a function f: RY — |—o0,+oc] is the subset oRY where this
function takes finite values, i.éom f = {z € RY | f(z) < +oo}. A function with a nonempty domain is said to

be proper. A function f is convexif
(V(y) e RN (A 0,1])  fOz+ (1= Ny) < Af(2) + (1 =Ny (1)

The class of functions for which most of the main results invex analysis have been established'§gR%), the
class of proper, convex, lower-semicontinuous functigosfRY to ]—oco, +oc]. Recall that a functiorf: RY —
]—o0, +0c] is lower-semicontinuous if itepigraphepi f = {(z,¢) € dom f x R ] f(z) < ¢} is a closed set (see
Fig. 1).

Fig. 1: lllustration of the lower-semicontinuity property.
If C is a nonempty subset &%, the indicator functionof C is defined as
0 if x€C

(Ve eRY)  io(a) = 2
+o0o otherwise.

This function belongs td'o(RY) if and only if C is a nonempty closed convex set.

The Moreausubdifferentialof a function f: RY — ]—oc, +oo] atx € RY is defined as
Of(z) = {u e RY | (Wy € RY) f(y) = f(2) +u' (y —2)}. (3)

Any vectoru in f (x) is called asubgradientof f atz (see Fig. 2).

Y
Fa) +u (y — )

Fig. 2: Examples of subgradients of a function f at x.

Fermat’s rule states thatis a subgradient of at « if and only if x belongs to the set of global minimizers
of f. If f is a proper convex function which is differentiable @t then its subdifferential at reduces to the

singleton consisting of its gradient, i.8f(x) = {Vf(x)}. Note that, in the nonconvex case, extended definitions
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of the subdifferential may be useful such as timeiting subdifferential[21], but this one reduces to the Moreau

subdifferential when the function is convex.

B. Proximity operator

A concept which has been of growing importance in recent ldpweents in optimization is the concept of
proximity operator It must be pointed out that the proximity operator was idtreed in the early work by
J. J. Moreau (1923-2014) [9]. The proximity operator of action f € I'o(R") is defined as

1
prox;: RY — RY: 2 — argmin fly) + ny—ajHQ (4)
yeRN 2
where || - || denotes the Euclidean norm. For everye R”, prox,az can thus be interpreted as the result of a

regularized minimization off in the neighborhood of. Note that the minimization to be performed to calculate
prox;x always has a unique solution. Fig. 3 shows the variationb@ptox,; function whenf: R — R: z > [z|?

with p > 1. In the case whep = 1, the classical soft-thesholding operation is obtained.

L[ |
W N e

Fig. 3: Graph ofprox,.,. This powerp function is often used to regularize inverse problems.

In the case wherf is equal to the indicator function of a nonempty closed carsetC C RY, the proximity
operator off reduces to the projectioR- onto this set, i.e(Vz € RY) Pox = argmm lly — ||

This shows that proximity operators can be viewed as extassf projections onto convex sets. The proximity
operator enjoys many properties of the projection, in paldr it is firmly nonexpansive. The firm nonexpansiveness
can be viewed as a generalization of the strict contractiopgrty which is the engine behind the Banach-Picard
fixed point theorem. This property makes the proximity ofmrauccessful in ensuring the convergence of fixed
point algorithms grounded on its use. For more details alpookimity operators and their rich properties, the
reader is refered to the tutorial papers in [5], [10], [22heTdefinition of the proximity operator can be extended
to nonconvex lower-semicontinuous functions which areelowounded by an affine function, bptox;z is no

longer guaranteed to be uniquely defined at any given paint

November 30, 2014 DRAFT



IEEE SIGNAL PROCESSING MAGAZINE 6

C. Conjugate function
A fundamental notion when dealing with duality issues is tisgion of conjugate functionThe conjugate of a
function f: RY — ]—o0, +0o0] is the functionf* defined as

RN = |—0c0,+00] : u Sel;&pN (J;Tu — f(2)). (5)

This concept was introduced by A. M. Legendre (1752-1833h&one-variable case, and it was generalized by
M. W. Fenchel (1905-1988). A graphical illustration of thengugate function is provided in Fig. 4. In particular,

for every vectorz € RY such that the supremum in (5) is attainedis a subgradient of at z.

f()

— [ (u);

/

Fig. 4: Graphical interpretation of the conjugate function.

It must be emphasized that, everyifs nonconvex,/* is a (non necessarily proper) lower-semicontinuous convex
function. In addition, whery € I'o(RY), then f* € I'o(RY), and also the biconjugate ¢f (that is the conjugate
of its conjugate) is equal tg. This means that we can express any functfoim I'o(RY) as

(Vo € RY) f(z) = sup (u—rm = f*(w)). (6)
u€ERN

A geometrical interpretation of this result is that the epjh of any proper lower-semicontinuous convex function
always is an intersection of closed half-spaces.

As we have seen, the subdifferential plays an important ioléhe characterization of the minimizers of a
function. A natural question is thus to enquire about thaeti@hs existing between the subdifferential of a function
f: RN — ]—o00,+oc] and the subdifferential of its conjugate function. An ansvgeprovided by the following

important properties:
uedf(x) = ze€df(u) if f is proper
uedf(z) < xe€df(u) if feToRY). @

Another important property is Moreau’'s decomposition fatanwhich links the proximity operator of a function

f € To(RYN) to the proximity operator of its conjugate:

(Va € RY)(Vy € 10, +o0) T = Prox, ;& + 7 Prox, -1 f« (v t2). (8)
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Other useful properties of the conjugation operation astedi in Table £ where a parallel is drawn with the

multidimensional Fourier transform, which is a more faaniltool in signal and image processing. Conjugation
also makes it possible to build an insightful bridge betwé#®n main two kinds of nonsmooth convex functions
encountered in signal and image processing problems, gaimgicator functions of feasibility constraints and

sparsity measures (see framebox below.

CONJUGATES OF SUPPORT FUNCTIONS
The support function of a set C ¢ RY is defined as
(Vu € RN) oc(u) = sup z' u. 9)
zeC
In fact, a function f is the support function of a nonempty closed convex set C if and only if it belongs to T'o(R™V)
and it is positively homogeneous [8], i.e.

(Vo € RN)(Va € 10, +o0]) flaz) = af(z).

Examples of such functions are norms, e.g. the ¢;-norm:
. N )
(Vx:(x(]))lSjSN G]RN) f(x) = ||1;H1 :Z|x(ﬂ)|
j=1

which is a useful convex sparsity-promoting measure in LASSO estimation [23] and in compressive sensing [24].
Another famous example is the Total Variation semi-norm [25] which is popular in image processing for retrieving
constant areas with sharp contours. An important property is that, if C' is a nonempty closed convex set, the
conjugate of its support function is the indicator function of C. For example, the conjugate function of the £;-norm
is the indicator function of the hypercube [—1, 1]V, This shows that using sparsity measures are equivalent in the

dual domain to imposing some constraints.

D. Duality results

A wide array of problems in signal and image processing caexipeessed under the following variational form:

minimize f(z) + g(Lx) (10)
z€R

where f: RY — |—o0, +00], g: RE — ]—00, +00], and L € REXN . Problem (10) is usually referred to as the

primal problemwhich is associated with the followingual problem[6], [8], [26]:

miﬂneiﬂr&ize F(=LTv) + g*(v). (11)
The latter problem may be easier to solve than the former esggcially whenk is much smaller thav.

A question however is to know whether solving the dual pnabfeay bring some information on the solution of
the primal one. A first answer to this question is given by tlhadhel-Rockafellar duality theorem which basically
states that solving the dual problem provides a lower bounthe minimum value which can be obtained in the
primal one. More precisely, iff and g are proper functions and jf and p* denote the infima of the functions
minimized in the primal and dual problems, respectivelgntiveak dualityholds, which means that > —p*. If

w is finite, u + p* is called theduality gap In addition, if f € To(RY) andg € I'o(R¥), then, under appropriate

1Throughout the papeint S denotes the interior of a sé&t.
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TABLE I Parallelism between properties of the Legendre-Fenchel conjugat@iinafid of the Fourier transformf is a

function defined orR™, f* denotes its conjugatef is its Fourier transform such thzft(u) = [an f(2) exp(—72nz’ v)dx

where v € RY and j is the imaginary unit (a similar notation is used for other functiorts)g, and (fm)i<m<a are

functions defined o™, (¢,)1<;<x are functions defined oR, v is an even function defined dh, 1 is defined as)(p) =
2mp 2 N)/2 [0 N2 [ o) 2 (2 p)ib(r)dr wherep € R and J(y_2)/2 is the Bessel function of ordetV — 2)/2, and s
denotes the Dirac distribution. (Some properties of the Fourier trangfragnrequire some technical assumptions.)

conjugation Fourier transform
Property h(z) h* (u) h(z) | A
i invariant function %Hx||2 %HuH2 exp(—||z||?) exp(—||v||?)
i translation flz—c) ) +clu flz—o exp(—j2mc’ ) F(v)
ceRN
i dual translation flz)+cTz f*(u—c) exp(2nc’ z)f(z — ¢) fv—o
ceRN
iv scalar multiplication af(z) af* (%) af(x) af(v)
o € 10, +o0[
v invertible linear transform| f(Lzx) (L HTw) f(Lx) ‘detl(L)‘ F(L=HTw)
L € RNXN invertible
vi  scaling F(2) F*(au) 7(2) la| f(av)
a € R*
vii  reflection f(—=x) f*(—u) f(—x) f(—z/)
N N N N
vii  separability > i) > b)) [ %) 119
j=1 j=1 j=1 j=1
z = (@)igjcn u=(u)ien || 2= (@D)gen v=(W)igen
X isotropy w(2ll) w*(lul) () Bl
X inf-convolution (fOg)(x) F*(u) + 9" (w) (f % 9)(x) F)gw)
Jconvolution = inf ) +9(r ~ ) = /R T =~ y)dy
xi sum/product f(@) + g(x) (F*Og%)(u) f(@)g(x) (Fro)W)
J €To(RN), g € Do(RY)
dom f Nint (dom g) # @
Xii identity element t{0} () 0 6(z) 1
of convolution
xiii  identity element 0 {0y () 1 o(v)
of addition/product
xiv  offset flz) + o f*(u) —a fx) + Fw) + ab(v)
aelR
i 13
xv  infinum/sum 1§171132M fm(z) S I (u) mZ:1 Fm(z) mz:l Fn ()
xvi  value at0 *(0) = —inf f 7(0) = / (z)dx
RN
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qualification conditiong,there always exists a solution to the dual problem and thétggap vanishes. When the

duality gap is equal to zero, it is said thgttong dualityholds.

CONSENSUS AND SHARING ARE DUAL PROBLEMS

Suppose that our objective is to minimize a composite function Zﬁf:l gm Where the potential g,,: RV —
]—o0, +00] is computed at the vertex of index m € {1,..., M} of a graph. A classical technique to perform
this task in a distributed or parallel manner [20] consists of reformulating this problem as a consensus problem,
where a variable is assigned to each vertex, and the defined variables z1, ...,z ), are updated so as to reach a
consensus: 1 = ... = x7. This means that, in the product space (RY )M the original optimization problem can
be rewritten as

M
minimize tp(x) + gm(Tm)
z=(z1,....,z7)ERN )M mz::I

g9(=)
where D is the vector space defined as D = {x = (z1,...,za) € RV)M |21 = ... = a5}
By noticing that the conjugate of the indicator function of a vector space is the indicator function of its orthogonal
complement, it is easy to see that the dual of this consensus problem has the following form:

M
minimize = tpu (V) + Z I (Vm)
v=(v1,...,up7)ERY) m=1

g9 (v)
where D+ = {v = (v1,...,va) € RY)M |1 + -+ 4+ vy = 0} is the orthogonal complement of D. By making
the variable change (Ym € {1,..., M}) vm = um — u/M where u is some given vector in RY, and by setting
hm(um) = —g¥, (um — u/M), the latter minimization can be reexpressed as
M
B 2 o)
urt-Fupy =u

This problem is known as a sharing problem where one wants to allocate a given resource u between M agents

while maximizing the sum of their welfares evaluated through their individual utility functions (hm)1<m<as-

Another useful result follows from the fact that, by using ttefinition of the conjugate function gf Problem (10)

can be reexpressed as the following saddle-point problem:

Find inf sup (f(z)+ v Lz — g*(v)). 12)

z€RN | cRK

In order to find a saddle poir{t;,7) € RV x RX, it thus appears natural to impose the inclusion relations:
~L"0edf(@), Lzecdg ). (13)

A pair (z,?) satisfying the above conditions is calledahn-Tucker pointActually, under some technical assump-
tion, by using Fermat's rule and (7), it can be proved thatzifo) is a Kuhn-Tucker point, theft is a solution
to the primal problem and is a solution to the dual one. This property especially hoitien f € I'o(R") and

g € To(RE).

2For example, this property is satisfied if the intersectiorthaf interior of the domain of and the image of the domain of by L is
nonempty.
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E. Duality in linear programming
In linear programming (LP) [27], we are interested in conegtimization problems of the form:

Primal-LP: minimize ¢

r St Lx>b, (14)
z€[0,+oo[V
where L = (L09)) 1 cici<jen € REXN b € RX, andc € RV.3 The above formulation can be viewed as a

special case of (10) where
(Vz e RY) flz)=c'a+ L[0,+00[N (), (Vz € RF) g(2) = L[0,+00[% (2 = b). (15)

By using the properties of the conjugate function and byirgetf = —v, it is readily shown that the dual problem
(11) can be reexpressed as

Dual-LP: maximize b'y st LTy <e. (16)
y€[0, 400

Since f is a convex function, strong duality holds in LP.2f= (g?(j))lngN is a solution to Primal-LP, a solution

7 = (§))1<i<x to Dual-LP can be obtained by th@imal complementary slackness condition
K
(Vj €{L,...,N}) suchthat 200 >0, > LOIHO =0, 17)
=1

whereas, ify is a solution to Dual-LP, a solutiot to Primal-LP can be obtained by thldual complementary

slackness conditian
N
(Vie{l,...,K}) suchthat g* >0, > LU)z0) =p®. (18)

Jj=1
IIl. CONVEX OPTIMIZATION ALGORITHMS

In this section, we present several primal-dual splittirgfimds for solving convex optimization problems, starting

from the basic forms to the more sophisticated highly peliagéd ones.

A. Problem

A wide range of convex optimization problems can be fornadaas follows:

minimize f(z)+ g(Lz) + h(z). (19)
z€RY

where f € To(RY), g € To(R¥), L € REXN "andh € T\o(RY) is a differentiable function having a Lipschitzian
gradient with a Lipschitz constarit € ]0,+oc[. The latter assumption means that the gradihtof h is such
that

(V(e.y) € ®Y)?)  |Vh(z) - Vh(y)] < Bllz - yl. (20)

For examples, the functiong, g o L, and h may model various data fidelity terms and regularizationcfiams
encountered in the solution of inverse problems. In padicthe Lipschitz differentiability property is satisfiéolr

least squares criteria.
3The vector inequality in (14) means that: — b € [0, +oo[K.
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With respect to Problem (10), we have introduced an additismooth termh. This may be useful in offering
more flexibility for taking into account the structure of tpeoblem of interest and the properties of the involved
objective function. We will however see that not all algonits are able to possibly take advantage of the fact that
h is a smooth term.

Based on the results in Section II-D and Property (xi) in &ablthe dual optimization problem reads:

m%ﬁ?ﬂ}@*ﬂhﬂ@Jﬁb)+g@) (21)
Note that, in the particular case whén= 0, the inf-convolutionf*0Oh* (see the definition in Table I(x)) of the
conjugate functions of andh reduces tof* and we recover the basic form (11) of the dual problem.

The common trick used in the algorithms which will be preedrih this section is to solve jointly Problems (19)
and (21), instead of focusing exclusively on either (19) 2&t)( More precisely, these algorithms aim at finding a

Kuhn-Tucker point(z,7) € RN x R such that
L5 Vh(Z) € 8f(F) and L7 € dg*(D). 22)

It has to be mentioned that some specific forms of Problem (&9). wheng = 0) can be solved in a quite

efficient manner by simpler proximal algorithms (see [10frt those described in the following.

B. ADMM

The celebrated ADMM (Alternating Direction Method of Mudtiers) can be viewed as a primal-dual algorithm.
This algorithm belongs to the class afigmented Lagrangiamethods since a possible way of deriving this
algorithm consists of looking for a saddle point of an augreeérversion of the classical Lagrange function [20].

This augmented Lagrangian is defined as

(V(z,y,2) €RY x (RF)?)  L(z,y,2) = f(x) + h(z) + g(y) + 72" (Le —y) + %I\Lw —yll® (23)

where~y € 10, +o0[ and~yz corresponds to a Lagrange multiplier. ADMM simply splite titep of minimizing the
augmented Lagrangian with respect(tay) by alternating between the two variables, while a gradisceat is

performed with respect to the variabie The resulting iterations are given in Algorithm 1.

Algorithm 1 ADMM

Setyo € R¥ andz, € R
Setry € 10, +o0[
Forn=0,1,...
z, = argmin 3 ||Lz — yn + z|? + %(f(z) + h(z))

zer™

$pn = Lan,
Ynt1 = Proxg (zn + sn)

Zn+1 = Zn + Sn — Yn+1-
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This algorithm has been known for a long time [19], [28] aligb it has attracted recently much interest in
the signal and image processing community (see e.g. [28]}-[B condition for the convergence of ADMM is as

follows:

CONVERGENCE OF ADMM
Under the assumptions that
e rank(L) = N,
o Problem (19) admits a solution,
e int(domg) N L(dom f) # @ or dom g Nint (L(dom f)) # @,*
(zn)nen converges to a solution to the primal problem (19) and (vz»)nen COnverges to a solution to the dual
problem (21).

A convergence rate analysis is conducted in [35].

It must be emphasized that ADMM is equivalent to the applicaof the Douglas-Rachford algorithm [36],
[37], another famous algorithm in convex optimization, be dual problem. Other primal-dual algorithms can be
deduced from the Douglas-Rachford iteration [38] or an aerged Lagrangian approach [39].

Although ADMM was observed to have a good numerical perforceain many problems, its applicability may
be limited by the computation aof,, at each iteratiom € N, which may be intricate due to the presence of matrix
L, especially when this matrix is high-dimensional and hasintple structure. In addition, functionsandh are

not dealt with separately, and so the smoothness isf not exploited here in an explicit manner.

C. Methods based on a Forward-Backward approach

The methods which will be presented in this subsection asedan a forward-backward approach [40]: they
combine a gradient descent step (forward step) with a caatipatstep involving a proximity operator. The latter
computation corresponds to a kind of subgradient step pegd in an implicit (or backward) manner [10]. A deeper
justification of this terminology is provided by the theorfyraonotone operators [8] which allows to highlight the
fact that a pairn(z,v) € RY x RE satisfying (22) is a zero of a sum of two maximally monotoneragors. We
will not go into details which can become rather technicait Wwe can mention that the algorithms presented in
this section can then be viewed as offsprings of the forvimckward algorithm for finding such a zero [8]. Like
ADMM, this algorithm is an instantiation of a recursion cenging to a fixed point of a nonexpansive mapping.

One of the most popular primal-dual method within this clissgiven by Algorithm 2. In the case wheén= 0,
this algorithm can be viewed as an extension of the Arrowwilzrmethod which performs alternating subgradient
steps with respect to the primal and dual variables in ordesdlve the saddle point problem (12) [41]. Two
step-sizeg and o and relaxation factoré),, ),cn are involved in Algorithm 2, which can be adjusted by the user
S0 as to get the best convergence profile for a given apmitati

Note that whenL = 0 and g* = 0 the basic form of the forward-backward algorithm (also exlthe proximal

gradient algorithm) is recovered, a popular example of wigcthe iterative soft-thresholding algorithm [42].

“More general qualification conditions involving the relatiinteriors of the domain of and L(dom f) can be obtained [10].

November 30, 2014 DRAFT



IEEE SIGNAL PROCESSING MAGAZINE 13

Algorithm 2 FB-based primal-dual algorithm

Setzo € RY andvy € R¥

Set(r,0) € 10, 400>

Forn=0,1,...
pn = prox, ;(zn — 7(Vh(zn) + LTv,))
qn = ProxX, g« (vn + o L(2pn — n))
Set\, € 10, +o0|

(xn+1,1)n+1) = ($n,1}n) + A77«((p7laq”7f) - (xn’v”))'

A rescaled variant of the primal-dual method (see AlgoritBjris sometimes preferred, which can be deduced
from the previous one by using Moreau’s decomposition (&) layy making the variable changeg; = ¢,,/o and
vl, = v,/o. Under this form, it can be seen that, whdh= K, L = Id, h = 0, andro = 1, the algorithm
reduces to the Douglas-Rachford algorithm (see [43] foditileexisting with extensions of the Douglas-Rachford

algorithm).

Algorithm 3 Rescaled variant of Algorithm 2

Setzg € RY andv) € R¥

Set(r,0) € 10, +oo[?

Forn=0,1,...
Pn = Prox, ¢ (:cn — T(Vh(xn) + JLTv;))
qn = (Id — prox, ) (v5, + L(2pn — zn))
Set\, € ]0,+o00]

($7l+17U;L+1) = (mn»U;) + An((pn:q;b) - (mmvit))

Also, by using the symmetry existing between the primal dmddual problems, another variant of Algorithm 2
can be obtained (see Algorithm 4) which is often encounteréie literature. Wherd, ' L = pId with p € 10, +o0],
h=0, Top =1, and ), = 1, Algorithm 4 reduces to ADMM by setting = o, andz,, = v, /o in Algorithm 1.

Convergence guarantees were established in [44], as wkdl asmore general version of this algorithm in [45]:

CONVERGENCE OF ALGORITHMS 2 and 4
Under the following sufficient conditions:

o 771 —0o|L||Z > B/2 where || L||s is the spectral norm of L,

e (An)nen asequencein ]0,8[ suchthat 3, cy An(6 — An) = +oowhere § =2 — B(r~ ! —o||L|IZ)"1/2 €
1,2,

« Problem (19) admits a solution,

o int (domg) N L(dom f) # @ or dom g Nint (L(dom f)) # &,

the sequences (zr),en and (vn)nen are such that the former one converges to a solution to the primal problem

(19) and the latter one converges to a solution to the dual problem (21).
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Algorithm 4 Symmetric form of Algorithm 2

Setzy € RY andvg € R¥

Set(r,0) € 10, +oo[?

Forn=0,1,...
Gn = ProxX, g« (vn + O'LLE")
Pn = Prox, ¢ (:rn — T(Vh(mn) + LT (2gn — vn)))
Set\, € 10, +o0|

(xn+1,1)n+1) = ($n,1}n) + A77«((p7laq”7f) - (xn’v”))'

Algorithm 2 also constitutes a generalization of [46]-[48Fsignated by some authors as PDHG, Primal-Dual
Hybrid Gradient). Preconditioned or adaptive versionsti$ algorithm were proposed in [49]-[52] which may
accelerate its convergence. Convergence rate resultsalsreecently derived in [53].

Another primal-dual method (see Algorithm 5) was proposed5i], [55] which also results from a forward-

backward approach [52]. This algorithm is restricted to ¢hee whenf = 0 in Problem (19).

Algorithm 5 Second FB-based primal-dual algorithm

Setzo € RY andvg € R¥
Set(r,0) € 10, +oo[?
Forn=0,1,...

Sn = T — TVh(Tn)

Yn = sn — 7L vy

Qn = PrOX, g« (Un + crLyn>
Pn = Sp — TLTq"

Set\, € 10, +o0]

(xn+17'Un+l) = (xn, Un) + )\n((pnz Qn) - (m'm vn))~

As shown by the next convergence result, the conditions erstép-sizes and o are less restrictive than for
Algorithm 2.

CONVERGENCE OF ALGORITHM 5
Under the assumptions that
o 7o|lL||3 <1land T < 2/8,
o (An)nen asequence in 0, 1] such that inf,,cy A > 0,
« Problem (19) admits a solution,
e int(domg)Nran(L) # @,

the sequence (zr)nen cOnverges to a solution to the primal problem (19) (where f = 0) and (vx )necn CONVerges
to a solution to the dual problem (21).

Note also that the dual forward-backward approach that wapgged in [56] for solving (19) in the specific
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case wherh = || - —r||?/2 with » € RV belongs to the class of primal-dual forward-backward apphes.

It must be emphasized that Algorithms 2-5 present two isterg features which are very useful in practice.
At first, they allow to deal with the functions involved in tlogtimization problem at hand either through their
proximity operator or through their gradient. Indeed, fom& functions, especially non differentiable or non finite
ones, the proximity operator can be a very powerful tool 5] for some smooth functions (e.g. the Poisson-Gauss
neg-log-likelihood [58]) the gradient may be easier to han@econdly, these algorithms do not require to invert
any matrix, but only to apply. and its adjoint. This advantage is of main interest whenelaige problems have

to be solved for which the inverse d@f (or LT L) does not exist or it has a no tractable expression.

D. Methods based on a Forward-Backward-Forward approach

Primal-dual methods based on a forward-backward-forwppiaach were among the first primal-dual proximal
methods proposed in the optimization literature, inspirech the seminal work in [59]. They were first developed
in the case wherh = 0 [60], then extended to more general scenarios in [11] (see [@1], [62] for further

refinements).

Algorithm 6 FBF-based primal-dual algorithm

Setzy € RY andwy € R¥
Forn=0,1,...

Sety, € 10, +o0]

Yin = Tn — Y (Vh(zn) + LT vn)
Y2,n = Un + YnLxn

Pin = PIoX, (Yin

D2,n = PIOX, ,«Y2,n

@1n = pin = Yo (Vh(p1n) + L pan)
G2,n = D2,n + Ynlpin

(Z’n+17 Un+1) = (3371 —Y1,n +q1n,Vn — Y2,n + q2,n)-

The convergence of the algorithm is guaranteed by the faligwesult:

CONVERGENCE OF ALGORITHM 6

Under the following assumptions:
o (vYn)nen is asequencein [, (1 —€)/u] where e €]0,1/(1 + p)[and p = B8 + || L]|s,
« Problem (19) admits a solution,
o int (domg) N L(dom f) # @ or dom g N int (L(dom f)) # &,

the sequence (z,,vn)nen CONverges to to a pair of primal-dual solutions.

Algorithm 6 is often refered to as the M+LFBF (Monotone+lép&z Forward Backward Forward) algorithm. It
enjoys the same advantages as FB-based primal-dual algarive have seen before. It however makes it possible

to compute the proximity operators of scaled versions otfions f andg* in parallel. In addition, the choice of
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its parameters in order to satisfy convergence conditioag appear more intuitive than for Algorithms 2-4. With
respect to FB-based algorithms, an extra forward step hemwaeeds to be performed. This may lead to a slower
convergence if, for example, the computational cost of ttaglignt is high and an iteration of a FB-based algorithm

is at least as efficient as an iteration of Algorithm 6.

E. A projection-based primal-dual algorithm

Another primal-dual algorithm was recently proposed in] [@8ich relies on iterative projections onto half-spaces

including the set of Kuhn-Tucker points (see Algorithm 7).

Algorithm 7 Projection-based primal-dual algorithm

Setzy € RY andvy € R¥
Forn=0,1,...
Set(vn, pn) € 0, +o0]

an = PrOXV,,L(f+h)(9Cn — ’ynLTvn)

lpn, = Lz,
bn = prox, ,(ln + pnvn)
Sn =Y (@n — an) + pi LT (In — bn)
tn = by — Lan
T = [lsnll + [[ta]l®
if 7, =0
T =an
0 =vn+ pty " (In — bn)
| return
else

Set\, € |0, +o0[
0n = An(%l\lwn - an||2 + Mlllln - bn||2)/Tn

Tn4+l = Tn — ensn

Un+1 = Un — gntn~

We have then the following convergence result:

CONVERGENCE OF ALGORITHM 7
Assume that
e (Yn)nen and (un)nen are sequences such that inf,enyn > 0, sup,eyyn < 400, infpenpn > 0,
SUp,eN Hn < +00,
e (An)nen asequence in R such that inf,,en A > 0 and sup,,cy An < 2,
o Problem (19) admits a solution,
o int (domg) N L(dom f) # @ or dom g N int (L(dom f)) # &,

then, either the algorithm terminates in a finite number of iterations at a pair of primal-dual solutions (z,v), or it

generates a sequence (zn, vn)nen CONVerging to such a point.
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Although few numerical experiments have been performeti #its algorithm, one of its potential advantages
is that it introduces few constraints on the choice of theapestersy,,, u,, and \,, at iterationn and that it does
not require any knowledge on the norm of the mattixNonetheless, the use of this algorithm does not allow us

to exploit the fact that is a differentiable function.

F. Extensions

More generally, one may be interested in more challengimyeo optimization problems of the form:
zeRN

M
minimize f(z) + Y (gm Dlm)(Lim) + h(z), (24)
m=1

where f € To(RY), h € Tx(RY), and, for everym € {1,...,M}, gm € To(RE™), ¢, € To(REm), and

L,, € RE=>N _The dual problem then reads

M M
V1 GR%IEI.TLZEGRKM (f ) ( mZ:1 e mz::l (g (v ) (U )) ( )

Some comments can be made on this general formulation. Atding of its benefits is to split an original objective
function in a sum of a number of simpler terms. Such splitstigitegy is often the key of an efficient resolution
of difficult optimization problems. For example, the proxiynoperator of the global objective function may be
quite involved, while the proximity operators of the indiuial functions may have an explicit form. A second
point is that we have now introduced in the formulation, &ddal functions(¢,,)1<m<a. These functions may
be useful in some models [64], but they present also the bnakadvantage to make the primal problem and its
dual form quite symmetric. For instance, this fact accodiotdhe symmetric roles played by Algorithms 2 and 4.
An assumption which is commonly adopted is to assume thatreash is Lipschitz differentiable, the functions
(¢m)1<m<nm are strongly convex, i.e. their conjugates are Lipschitiedintiable. A last point to be emphasized is
that, such split forms are amenable to efficient parallellémgntations. Using parallelized versions of primal-dual
algorithms on multi-core architectures may render thesthogs even more successful for dealing with large-scale

problems.
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HOW TO PARALLELIZE PRIMAL-DUAL METHODS ?
Two main ideas can be used in order to put a primal-dual method under a parallel form.
Let us first consider the following simplified form of Problem (24):

M
minimize Z gm (Lmx). (26)
zerN m=1

A possibility consists of reformulating this problem in a higher-dimensional space as

M
minimize « fly) + Z gm (Ym), @7

K
y1ERTL . yp ERTM m=1

where y = [yf, . ,yL]T € RE with K = K1 + --- + Ky, and f is the indicator function of ran(L), where
L=[L],...,L},]T € REXN Function f serves to enforce the constraint: (¥m € {1,..., M}) ym = Lmz. By
defining the separable function g: y — Z%zl gm (ym ), we are thus led to the minimization of f + g in the space
R This optimization can be performed by the algorithms described in Sections I1I-B-1II-E. The proximity operator
of f reduces to the linear projection onto ran(L), whereas the separability of g ensures that its proximity operator
can be obtained by computing in parallel the proximity operators of the function (gm)1<m<as. Note that, When_
L; = ... = Ly = Id, we recover a consensus-based approach that we have already discussed. This technique
can be used to derive parallel forms of the Douglas-Rachford algorithm, namely the Parallel ProXimal Algorithm
(PPXA) [65] and PPXA+ [66], as well as parallel versions of ADMM (Simultaneous Direction Method of Multipliers
or SDMM) [67].

The second approach is even more direct since it requires no projection onto ran(L). For simplicity, let us consider
the following instance of Problem (24):

M

minirr]l\;ze flz)+ Z gm (Lmz) + h(zx). (28)

z€eR m—1

By defining the function g and the matrix L as in the previous approach, the problem can be recast as
minimize f(z)+ g(Lx) + h(z). (29)
zeRN
Once again, under appropriate assumptions on the involved functions, this formulation allows us to employ the
algorithms proposed in Sections I1I-C-1II-E and we still have the ability to compute the proximity operator of g in a

parallel manner.

IV. DISCRETE OPTIMIZATION ALGORITHMS
A. Background on discrete optimization
As already mentioned in the introduction, another commas<clof problems in signal processing and image
analysis are discrete optimization problems, for whiclnaifidual algorithms also play an important role. Problems
of this type are often stated asteger linear programgILPs), which can be expressed under the following form:

Primal-ILP: minimize ¢z
zeRY

st. Le>b, xzeN cCNV,

where L = (L9)); ;< 1<j<n represents a matrix of siz& x N, andb = (0)i<i<x, ¢ = (¢V)1<j<n
are column vectors of siz& and N, respectively. Note that integer linear programming piesi a very general
formulation suitable for modeling a very broad range of peois, and will thus form the setting that we will
consider hereafter. Among the problems encountered irntipeagnany of them lead to a Primal-ILP that is NP-

hard to solve. In such cases, a principled approach for fijndimapproximate solution is through the use of convex
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relaxations(see framebox), where the original NP-hard problem is apprated with a surrogate one (the so-called
relaxed problem), which is convex and thus much easier teesdlhe premise is the following: to the extent that
the surrogate problem provides a reasonably good apprtigimen the original optimization task, one can expect

to obtain an approximately optimal solution for the lattgrdssentially making use of or solving the former.

RELAXATIONS AND DISCRETE OPTIMIZATION
Relaxations are very useful for solving approximately discrete optimization problems. Formally, given a problem

(P) : migienéize f(x)

where C'is a subset of RY, we say that

(P’) : minimize f'(z)
zeC’

with C’ C R¥ is a relaxation of (P) if and only if (i) C C C’, and (ii) (Vz € C') f(z) > f'(z).
For instance, let us consider the integer linear program defined by (Vz € RY) f(z) = ¢c'z and C = SN ZY,

where ¢ € RN \ {0} and S is a nonempty closed polyhedron defined as
S={zeRY|Lz>b}

with L € REXN and b € RE. One possible linear programming relaxation of (P) is obtained by setting f’ = f
and C’ = S, which is typically much easier than (P) (which is generally NP-hard). The quality of (P’) is quantified
by its so-called integrality gap defined as % > 1 (provided that —co < inf f/(C”") # 0).
Hence, for approximation purposes, LP relaxations are not all of equal value. If

(P") : minimize ¢’z

zeC”’

is another relaxation of (P) with C”/ C C’, then relaxation (P”’) is tighter. Interestingly, (P) always has a tight LP
relaxation (with integrality gap 1) given by C”" = conv(S N Z¥), where conv(C) is the convex hull polyhedron of
C. Note, however, that if (P) is NP-hard, polyhedron conv(S N Z¥) will involve exponentially many inequalities.
The relaxations in all of the previous examples involve expanding the original feasible set. But, as mentioned,
we can also derive relaxations by modifying the original objective function. For instance, in so-called submodular
relaxations [68], [69], one uses as hew objective a maximum submodular function that lower bounds the original
objective. More generally, convex relaxations allow us to make use of the well-developed duality theory of convex

programming for dealing with discrete nonconvex problems.

The type of relaxations that are typically preferred in éargcale discrete optimization are based on linear
programming, involving the minimization of a linear furanti subject to linear inequality constraints. These can be
naturally obtained by simply relaxing the integrality cragts of Primal-ILP, thus leading to the relaxed primal
problem (14) as well as its dual (16). It should be noted thatuse of LP-relaxations is often dictated by the need
of maintaining a reasonable computational cost. Althoughenpowerful convex relaxations do exist in many cases,
these may become intractable as the number of variablessganger, especially for Semidefinite Programming
(SDP) or Second-Order Cone Programming (SOCP) relaxations

Based on the above observations, in the following we aim ésqmt some very general primal-dual optimization
strategies that can be used in this context, focusing a Iahein underlying principles, which are based on two
powerful technigues, the so-callpdmal-dual schemanddual decompositiorAs we shall see, in order to estimate
an approximate solution to Primal-ILP, both approachesateavy use of the dual of the underlying LP relaxation,

i.e., Problem (16). But their strategies for doing so is guiifferent: the second one essentially aims at solving this
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dual LP (and then converting the fractional solution intoistiegral one, trying not to increase the cost too much

in the process), whereas the first one simply uses it in theyed the algorithm.

B. The primal-dual schema for integer linear programming

The primal-dual schema is a well-known technique in the doatbrial optimization community that has its
origins in LP duality theory. It is worth noting that it stad as an exact method for solving linear programs. As
such, it had initially been used in deriving exact polyndrtiilme algorithms for many cornerstone problems in
combinatorial optimization that have a tight LP relaxatitts first use probably goes back to Edmond’s famous
Blossom algorithm for constructing maximum matchings oapips, but it had been also applied to many other
combinatorial problems including max-flow (e.g., Ford andkErson’s augmenting path-based techniques for max-
flow can essentially be understood in terms of this schenrtest path, minimum branching, and minimum
spanning tree [70]. In all of these cases, the primal-duaésa is driven by the fact that optimal LP solutions
should satisfy theomplementary slackness conditiqisee (17) and (18)). Starting with an initial primal-dualrpa
of feasible solutions, it therefore iteratively steersmthiewards satisfying these complementary slackness ¢onslit
(by trying at each step to minimize their total violation)n€® this is achieved, both solutions (the primal and the
dual) are guaranteed to be optimal. Moreover, since thegbiisralways chosen to be updated integrally during the
iterations, it is ensured that an integral optimal solui®ebtained at the end. A notable feature of the primal-dual
method is that it often reduces the original LP, which is aghted optimization problem, to a series of purely
combinatorial unweighted ones (related to minimizing ti@ation of complementary slackness conditions at each
step).

Interestingly, today the primal-dual schema is no longedufr providing exact algorithms. Instead, its main
use concerns deriving approximation algorithms to NP-tdisdrete problems that admit an ILP formulation, for
which it has proved to be a very powerful and widely applieaiolol. As such, it has been applied to many NP-hard
combinatorial problems up to now, including set-cover,r&tenetwork, scheduling, Steiner tree, feedback vertex
set, facility location, to mention only a few [17], [18]. Witregard to problems from the domains of computer
vision and image analysis, the primal-dual schema has besvdiced recently in [13], [71], and has been used
for modeling a broad class of tasks from these fields.

It should be noted that for NP-hard ILPs an integral soluisono longer guaranteed to satisfy the complementary
slackness conditions (since the LP-relaxation is not éxa&tw could it then be possible to apply this schema to
such problems? It turns out that the answer to this questiosists of using an appropriate relaxation of the above
conditions. To understand exactly how we need to proceethitndase, let us consider the problem Primal-ILP
above. As already explained, the goal is to compute an op8oiation to it, but, due to the integrality constraints
x € N, this is assumed to be NP-hard, and so we can only estimatppoximate solution. To achieve that, we
will first need to relax the integrality constraints, thusigg rise to the relaxed primal problem in (14) as well as
its dual (16). A primal-dual algorithm attempts to compute epproximate solution to Primal-ILP by relying on

the following principle (see framebox for an explanation):
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Primal-dual principle in the discrete case: Let z € RY andy € RX be integral-primal and dual feasible
solutions (i.ex € N and Lz > b, andy € [0, +oo[X and L™y < ¢). Assume that there existse [1, +oco[ such
that

cle<vbly. (30)

Then,z can be shown to be a-approximation to an unknown optimal integral solutigni.e.

c'Z<cr<ve' 7. (31)

PRIMAL-DUAL PRINCIPLE IN THE DISCRETE CASE
Essentially, the proof of this principle relies on the fact that the sequence of optimal costs of problems Dual-LP,
Primal-LP, and Primal-ILP is increasing.

+— Alyr) ——>

«— AZ,z) —>

’—> ley ’—>(+Jf (:TI:I:W

Dual cost of Primal cost of optimal Primal cost of
solution integral solution integral solution

Specifically, by weak LP duality, the optimal cost of Dual-LP is known to not exceed the optimal cost of Primal-LP.
As a result of this fact, the cost ¢ Z (of an unknown optimal integral solution Z) is guaranteed to be at least as
large as the cost by of any dual feasible solution y. On the other hand, by definition, ¢T Z cannot exceed the
cost ¢z of an integral-primal feasible solution 2. Therefore, if the gap A(y, x) between the costs of y and z is
small (e.g., it holds ¢cTx < vbTy), the same will be true for the gap A(Z, =) between the costs of Z and z (i.e.,

¢z < v Z), thus proving that « is a v-approximation to optimal solution Z.

Although the above principle lies at the heart of many prichahl techniques (i.e., in one way or another,
primal-dual methods often try to fulfill the assumptions oepd by this principle), it does not directly specify
how to estimate a primal-dual pair of solutiofis, y) that satisfies these assumptions. This is where the so-
called relaxed complementary slackness conditicesne into play, as they typically provide an alternative and
more convenient (from an algorithmic viewpoint) way for geating such a pair of solutions. These conditions
generalize the complementary slackness conditions aedoivith an arbitrary pair of primal-dual linear programs
(see Section II-E). The latter conditions apply only in casden there is no duality gap, like between Primal-LP
and Dual-LP, but they are not applicable to cases like Priirfland Dual-LP, when a duality gap exists as a
result of the integrality constraint imposed on variabléAs in the exact case, two types of relaxed complementary

slackness conditions exist, depending on whether the pomdual variables are checked for being zero.

Relaxed Primal Complementary Slackness Conditions with relaxation factorvp.ima1 < 1. For a givenz =

(29))1cjen €RY, y = (y)1<;<x € RE, the following conditions are assumed to hold:
K
(V€ Ja)  Vprimarc? < 3 L0y < ) (32)
1=1

whereJ, = {j € {1,...,N} | 21 > 0}.
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Relaxed Dual Complementary Slackness Conditions with relaxation factorvg,, > 1. For a giveny =

(y)1<ick € RE, 2 = (21));c;<n € RY, the following conditions are assumed to hold:
(VieI) b < Z LD 20) < pgar 0O (33)

wherel, = {i € {1,...,K} | ) > 0}.

When bothvpima = 1 and vgua = 1, we recover the exact complementary slackness conditior{$7) and
(18). The use of the above conditions in the context of a grolmal approximation algorithm becomes clear by
the following result:

If 2 = (29)<j<n andy = (y),<,<x are feasible with respect Brimal-ILP and Dual-LP respectively, and
satisfy the relaxed complementary slackness condi{idsand (33), then the pair(z, y) satisfies the primal-dual
principle in the discrete case with = T— . Therefore,x is a v-approximate solution t&rimal-ILP.

This result S|mply follows from the mequalmes

K
@ 2) S s ,
_Z (3) £ 3) Z( ZL(m) (z)) () —
C X Cc X
Vprlmal Y Vprimal

Jj=1 3

i (Z L(i,nx(j))y(i)

:1
K
@)

< dual NP (0) — Mdual pT (34)

Vprimal i—1 Vprimal
Based on the above result, iterative schemes can be devisleihy a primal-duak-approximation algorithm.

For example, we can employ the following algorithm:

Algorithm 8 Primal-dual schema
Generate a sequend&,, y»)nen Of elements oRY x R¥ as follows:

Setvprimal < 1 andvguar > 1
Setyo € [0, +oo[¥ such thatl, "yo < ¢
Forn=0,1,...
Findz, € {x € N'| Lz > b} minimizing (35)
Sier, d? st (vie L) Y, L0000 < g b® 449, ¢ >0
Findyn 1 € {y € [0,+00[* | LTy < ¢} minimizing
Syen 1P S (V€ dn) T LY 40D > v D), 1) > 0,

Note that, in this scheme, primal solutions are always gatiattegrally. Also, note that, when applying the
primal-dual schema, different implementation strategies possible. The strategy described in Algorithm 8 is to
maintain feasible primal-dual solutioris,,, y,,) at iterationn, and iteratively improve how tightly the (primal or
dual) complementary slackness conditions get satisfiets iBhperformed through the introduction of slackness
variables(¢(");c;, and(r?));c;, the sums of which measure the degrees of violation of eaelxedlslackness
condition and have thus to be minimized. Alternatively, é&@ample, we can opt to maintain solutio(s,, y,,)

that satisfy the relaxed complementary slackness congitibut may be infeasible, and iteratively improve the
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feasibility of the generated solutions. For instance, if start with a feasible dual solution but with an infeasible
primal solution, such a scheme would result into improvihg feasibility of the primal solution, as well as the
optimality of the dual solution at each iteration, ensurihgt a feasible primal solution is obtained at the end. No
matter which one of the above two strategies we choose towiplhe end result will be to gradually bring the
primal and dual costs' z,, andb 'y, closer and closer together so that asymptotically the gritaal principle
gets satisfied with the desired approximation factor. Btsbn at each iteration, through the coupling by the
complementary slackness conditions the current primaitisol is used to improve the dual, and vice versa.
Three remarks are worth making at this point: the first onatesl to the fact that the two processes, i.e. the
primal and the dual, make only local improvements to eaclerot¥et, in the end they manage to yield a result
that is almost globally optimal. The second point to empteass that, for computing this approximately optimal
result, the algorithm requires no solution to the Primal-«wPDual-LP to be computed, which are replaced by
simpler optimization problems. This is an important adaget from a computational standpoint since, for large
scale problems, solving these relaxations can often be aquistly. In fact, in most cases where we apply the
primal-dual schema, purely combinatorial algorithms canobtained that contain no sign of linear programming
in the end. A last point to be noticed is that these algorithegiire appropriate choices of the relaxation factors
Vprimal @NdVqual, Which are often application-guided.
Application to the set cover problem: For a simple illustration of the primal-dual schema, letaomsider the
problem of set-cover, which is known to be NP-hard. In thisbtem, we are given as input a finite Sétof K
elements(v(?);<;<k, a collection of (non disjoint) subset$ = {S;},<;<ny Where, for everyj € {1,...,N},
S; C 'V, and U;,V:l S; =V. Letp: S — R be a function that assigns a cagt= ¢(S5;) for each subsef;. The
goal is to find a set cover (i.e. a subcollection®fthat covers all elements af) that has minimum cost (see
Fig. 5).

Si S,
AWA

ELLEDs
T

Fig. 5: A toy set-cover instance wit = 4 and N = 3, wherep(S1) = 1, ¢(S2) = 1, ¢(S3) = 2. In this case, the optimal
set-cover is{S1, S»} and has a cost of.

The above problem can be expressed as the following ILP:

N
minimize o(S;) z9) (36)
wz(i(]))léjéN j=1
st (Vie{l,...,K}) Y2 =1, zefo1}, (37)
je{1,...N}
U(l)ESj

where indicator variable(sfp(j))lngN are used for determining if a set & has been included in the set cover or

not, and (37) ensures that each one of the elemenisisfcontained in at least one of the sets that were chosen
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for participating to the set cover.
An LP-relaxation for this problem is obtained by simply gihg the Boolean constraint with the constraint

x € [0,+o0c[". The dual of this LP relaxation is given by the following laxeprogram:

K
maximize Y (38)
y=(yD)1<i< x €[0,4+00[* ;
st. (Vje{l,...,N}) >y <e(s)). (39)
ie{l,...,K}
vWes

Let us denote byF,..x the maximum frequency of an element ¥y where by the ternfrequencywe mean
the number of sets this element belongs to. In this case, Weugé the primal-dual schema to derive &R..-
approximation algorithm by choosing,yimai = 1, Ydual = Fmax. This results into the following complementary
slackness conditions, which we will need to satisfy:

Primal Complementary Slackness Conditions

(Vje{l,....,Np itz >0then Y 5@ =3 (40)

ie{lL,...K}
v(i)GSj

Relaxed Dual Complementary Slackness Conditions (withixeglon factorF,,.)

(Vie{l,....,K})ify® >0then > 20 < Fa (41)

Jj€{l,...N}
v(i)ESj

A setS; with j € {1,..., N} for which }";c (1. k3 ¥ = ¢(S;) will be calledpacked Based on this definition,
U(i)GSj
and given that the primal variable$(j>)1§j§N are always kept integral (i.e., eith@ror 1) during the primal-dual

schema, Conditions (40) basically say that only packedaa@isbe included in the set cover (note that overpacked
sets are already forbidden by feasibility constraints X38)milarly, Conditions (41) require that an elemenit)
with i € {1,..., K} associated with a nonzero dual varial@ should not be covered more thdf),., times,

which is, of course, trivially satisfied given that,., represents the maximum frequency of any element.in

Algorithm 9 Primal-dual schema for set-cover.

Setxp « 0,50 < 0
Declare all elements ii¥ as uncovered
While ¥ contains uncovered elements
Select an uncovered elemenft) with i € {1,..., K} and increasg/”) until some set becomes packed
For every packed sef; with j € {1,..., N}, setz() « 1
(include all the sets that are packed in the cover)

Declare all the elements belonging to at least oneSsewith z) =1 as covered.

Based on the above observations, the iterative method whssedocode is shown in Algorithm 9 emerges

naturally as a simple variant of Algorithm 8. Upon its teration, bothz andy will be feasible given that there
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will be no uncovered element and no set that violates (39thEtmore, given that the final pafr,y) satisfies
the relaxed complementary slackness conditions wjitha = 1, Vaual = Fmax, the set cover defined by will

provide anF,,..-approximate solution.

C. Dual decomposition

We will next examine a different approach for discrete optation, which is based on the principle of dual
decomposition [1], [14], [72]. The core idea behind thimpiple essentially follows a divide and conquer strategy:
that is, given a difficult or high-dimensional optimizatigmoblem, we decompose it into smaller easy-to-handle
subproblems and then extract an overall solution by clgvewhbining the solutions from these subproblems.

To explain this technique, we will consider the general fEobof minimizing the energy of a discrete Markov
Random Field (MRF), which is a ubiquitous problem in the fietd computer vision and image analysis (applied
with great success on a wide variety of tasks from these dwrslich as stereo-matching, image segmentation,
optical flow estimation, image restoration and inpaintiog,object detection) [2]. This problem involves a graph
G with vertex setV and edge sef (i.e., G = (V,&)) plus a finite label sefL. The goal is to find a labeling
z = (2),ey € LIVl for the graph vertices that has minimum cost, that is

.. (p) (e)
e () + 5 0.2) @
peEVY ecé&

where, for everyp € V ande € &, p,: L — |—o0,+oo[ and @.: L2 — |—o0,+oo[ represent the unary and
pairwise costs (also known connectively as MRF potentials {{¢),},cv, {@c}ece}), andz(®) denotes the pair
of components of: defined by the variables corresponding to vertices condeuye: (i.e., z(¢) = (2(P), 2(0)) for
e=(p.q) €8).

The above problem is NP-hard, and much of the recent work of BRimization revolves around the following
equivalent ILP formulation of (42) [73], which is the one thwe will also use here:

L L) — ) (p) () )
minimize flz;0) = Z op(2P) zp(2'P)) + Z ©e(2'9) xe(2'Y), (43)
peEV, 2P cL ec&,z(e)cL2

where the seC(; is defined for any graplr = (V,€) as
VP € V) ZZ(P)EL xp(z(p)) =1

ve e (p’ q) (S g)(vZ(q) (S E) ZZ<"‘)E£X{Z((Z)} Xe(z(e)) = xq(z(q))

(
(
Co=qz={{zp}pev.ccr {Xe}eevaec} | (Ve = (p,q) € E) (V2P € L) Y 0reotmynp %e(2®) = 2, (2®)
(
(

Vp € V) zp(-): £~ {0,1}
Vee &) xe(+): L2 — {0,1}

(44)
In the above formulation, for every € V ande € &, the unary binary functiorr,(-) and the pairwise binary

function x..(-) indicate the labels assigned to vertexand to the pair of vertices connected by edge (p’,q’)
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respectively, i.e.,
(V2P e L) z,(2P)=1 & pis assigned labet® (45)
(vz(® = (z") 2 e £?)  x.(29)=1 & p' ¢ are assigned labels?) 2. (46)

Minimizing with respect to the vectar regrouping all these binary functions is equivalent to slgiaig for an optimal
binary vector of dimensiotV = |V||£|+|£||£|2. The first constraints in (44) simply encode the fact thaheartex
must be assigned exactly one label, whereas the rest of ttstramts enforces consistency between unary functions
z,(+), z,(-) and the pairwise functior, (-) for edgee = (p, q), ensuring essentially that if, (2(?)) = z,(2(?) = 1,
thenx, (2, 2(9)) = 1.

As mentioned above, our goal will be to decompose the MRF lprol(43) into easier subproblems (called
slave$, which, in this case, involve optimizing MRFs defined on guatphs ofG. More specifically, le{G,, =
(Vi Em) }1<m<r be a set of subgraphs that form a decompositio@'et (V, &) (i.e.,UM_,V,, =V, UM_ ¢, =
£). On each of these subgraphs, we define a local MRF with quoreling (unary and pairwise) potentig§* =
e pev,, - {07 }eee,, }» whose cost functiorf™ (z; ¢™) is thus given by

fase™ = Y epE e+ Y el @) xe(@). (47)

PEVm, 2P L eCEm,z(e)eL?
Moreover, the sum (ove) of the potential functiong™ is ensured to give back the potentigisof the original
MRF onG, i.e.?
(Vp € V)(Ve € €) Yo =, Yoo el =o. (48)
me{l,...,M}:pEV,, me{l,...,M}:e€E
This guarantees that = Z%:l f™, thus allowing us to re-express problem (43) as follows
M
mirleicrglcize mzdfm(xupm). (49)
An assumption that often holds in practice is that miningzseparately each of thg™ (over z) is easy, but
minimizing their sum is hard. Therefore, to leverage thig,fave introduce, for evenyh € {1,..., M}, anauxiliary

copyx™ € Cgq, for the variables of the local MRF defined @#,,, which are thus constrained to coincide with

the corresponding variables in vectori.e., it holdsz™ = ¢, , wherezq,, is used to denote the subvectoraof
containing only those variables associated with vertices edges of subgrapfi,,,. In this way, Problem (49) can

be transformed into

M
minimize (™ o™
z€Cq,{z"€Cq,, b1<m<m mzz:l f ( 7 )
st. (Vme{1,...,M}) ™ =g, (50)

5For instance, to ensure (48) we can simply $&tn € {1,..., M}) ¢

— $p m
= and
P = {Im'IpeV,,/ 3| Pe

= \{m/|;pees N
m
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By considering the dual of (50), using a technique similath® one described in framebox on page 9, and noticing
that
x€Cqg & (Wme{l,...,M}) a™eCgq,,, (51)

we finally end up with the following problem:

maxumze Z R (™) (52)

(v"™)1<m<m EA

where, for everym € {1,..., M}, the dual variable™ consists of{{v/"} ey, , {v"}ece,, } Similarly to ™, and

function A™ is related to the following optimization of a slave MRF 6h,:

hm m — m . m m . 53
(™) = min f"(a"e™ +0™) (53)
The feasible sel is given by
(Vp € V) (V2P € L) > vgl(z(”)) =0,
mée{l,....M}:peV,,
. - (Ve € )(Vz(®) € £?) > v (2(¢)) =0
A=<Lv= {{Up }pevm, {Ve }e€5m}1gm§M me{l,....M}:e€&,

(Yme{l,...,M})(Vpe V) v*(-): L= R
(Yme{l,...,M})(Ve € &) v*(-): L2— R

(54)

The above dual problem provides a relaxation to the origprablem (43)-(44). Furthermore, note that this
relaxation leads to a convex optimization probleralthough the original one is not. As such, it can always be
solved in an optimal manner. A possible way of doing this &iasof using a projected subgradient method.
Exploiting the form of the projection onto the vector spacegields Algorithm 10 wherg~,,),en IS @ summable
sequence of positive step-sizes ah&;’fn}pevm, {X", }cee,, } corresponds to a subgradient of functibft with
m € {1,..., M} computed at iteration [14]. Note that this algorithm requiremly solutions to local subproblems
to be computed, which is, of course, a task much easier thidefunore can be executed in a parallel manner. The

solution to the master MRF is filled in from local solutiofi$z7", } e v, , {X%, beee,, after convergence

1<m<M
of the algorithm.

For a better intuition for the updates of variable!”, }pev,, . { @, }eee, . in Algorithm 10, we

' }1<m<M,neN
should note that their aim is essentially to bring a conse@asuong the solutions_of_the local subproblems. In other
words, they try to adjust the potentials of the slave MRFshed in the end the corresponding local solutions are
consistent with each other, i.e., all variables correspantb a common vertex or edge are assigned the same value
by the different subproblems. If this condition is satisf{gd., there is a full consensus) then the overall solution
that results from combining the consistent local solutisnguaranteed to be optimal. In general, though, this might

not always be true given that the above procedure is solvithg @relaxation of the original NP-hard problem.

8In order to see this, notice that™(v™) is equal to a pointwise minimum of a set of linear functionsvé?, and thus it is a concave

function.
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Algorithm 10 Dual decomposition for MRF optimization.

Choose a decompositiofGrn = (Vin, Em) bi<m<m Of G

Initialize potentials of slave MRFs:

(Ym € {1,...,M})(Vp € Vm) ¢po = Waﬁv (Ve € Em) 9o = qufﬁ
forn=0,...

Compute minimizers of slave MRF problents'm € {1,..., M}) {{Z}}pevn,, {Xe'n}ece,n } € Argmin f™(z™; ¢17)
z™meCq,,

Update potentials of slave MRFs:
(vm € {1,..., M})(¥p € Vi) fini1 = @hnsr + 7 (T — Frshelyiir )

Xm:ectm e
(Vm S {1, .. ,M})(Ve S 6771) (PZLnJrl = (PZLn + Yn (ﬂ’fn — W) .

MASTER-SLAVE COMMUNICATION
During dual decomposition a communication between a master process and the slaves (local subproblems) can
be thought of as taking place, which can also be interpreted as a resource allocation/pricing stage.

Resource allocation Pricing

master | master I
M ~ >

G g2 Y
B T

&«

7 2|...}w|

slave MRFs slave MRFs

Resource allocation: At each iteration, the master assigns new MRF potentials (i.e., resources) (¢™)1<m< s t0
the slaves based on the current local solutions (Z™)1<m< -

Pricing: The slaves respond by adjusting their local solutions (2™ )<< (i-€., the prices) so as to maximize

their welfares based on the newly assigned resources ()1 <m<nm-
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DECOMPOSITIONS AND RELAXATIONS
Different decompositions can lead to different relaxations and/or can affect the speed of convergence. We show
below, for instance, 3 possible decompositions for an MRF assumed to be defined on a 5 x 5 image grid.

G
m N et
: {G3)
1 [ o o s [ o
1 o R o o [ [
o e R o [ o
N O O OO0

Tighter relaxation

Decompositions {G}.}, {G2,}, {G2,} consist respectively of one suproblem per row and column, one subproblem
per edge, and one subproblem per 2 x 2 subgrid of the original 5 x 5 grid. Both {G},} and {G2,} (due to using
solely subgraphs that are trees) lead to the same LP relaxation of (43), whereas {G3,} leads to a relaxation that
is tighter (due to containing loopy subgraphs).

On the other hand, decomposition {G},} leads to faster convergence compared with {G2,} due to using larger

subgraphs that allow a faster propagation of information during message-passing.

Interestingly, if we choose to use a decomposition comgjsbinly of subgraphs that are trees, then the resulting
relaxation can be shown to actually coincide with the stashtl®-relaxation of linear integer program (43) (generated
by replacing the integrality constraints with non-negéficonstraints on the variables). This also means that when
this LP-relaxation is tight, an optimal MRF solution is comted. This, for instance, leads to the result thaal
decomposition approaches can estimate a globally optimiati®n for binary submodular MRF&lthough it should
be noted that much faster graph-cut based techniques existilbmodular problems of this type - see framebox on
page 30). Furthermore, when using subgraphs that are wa@mimizer to each slave problem can be computed
efficiently by applying the Belief Propagation algorithmd[7which is a message-passing method. Therefore, in this
case, Algorithm 10 essentially reduces to a continuousan@h of messages between the nodes of géapBuch
an algorithm relates to or generalizes various other mespagsing approaches [15], [75]-[79]. In general, besides
tree-structured subgraphs, other types of decompositipssbproblems can be used as well (such as binary planar
problems, or problems on loopy subgraphs with small tredtiwifor which MRF optimization can still be solved

efficiently), which can lead to even tighter relaxationse(§f@mebox on page 29) [80]-[85].
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GRAPH-CUTS AND MRF OPTIMIZATION
For certain MRFs, optimizing their cost is known to be equivalent to solving a polynomial mincut problem [86], [87]. These
are exactly all the binary MRFs (|£| = 2) with submodular pairwise potentials such that, for every e € &,

©e(0,0) + @e(1,1) < 9c(0,1) + @e(1,0). (55)

Due to (55), the cost f(z) of a binary labeling x = (z(p))lgpg‘w € {0,1}!V! for such MRFs can always be written (up to
an additive constant) as
flz) = Z apz®) + Z a® (1 - 2®) + Z ap.qr® (1 — z(D), (56)
pPEVP PEVN (p,a)€€
where all coefficients (ap)pey and (ap,q)(p,q)ce are nonnegative (Vp C V, Vy C V).
In this case, we can associate to f a capacitated network that has vertex set V; = V U {s, t}. A source vertex s and a
sink one t have thus been added. The new edge set £, is deduced from the one used to express f:

Er={mt)p€Vp}U{(s,p) | pEVN}UE,

and its edge capacities are defined as (Vp € Vp UVN) ¢cp,t = cs,p = ap, and (V(p,q) € €) cp,q = ap,q-
A one-to-one correspondence between s-t cuts and MRF labelings then exists:

z € {0,1}V! & cut(z) = {s} U {p|z® =1}

for which it is easy to see that
f(z) = Z cu,uo = cost of cut(x) .
uecut(z),v¢cut(z)
Computing a mincut, in this case, solves the LP relaxation of (43), which is tight, whereas computing a max-flow solves
the dual LP.

Furthermore, besides the projected subgradient methed;amalternatively apply an ADMM scheme for solving
relaxation (52) (see Section IlI-B). The main differencethis case, is that the optimization of a slave MRF problem
is performed by solving a (usually simple) local quadratiogbem, which can again be solved efficiently for an
appropriate choice of the decomposition (see Section)lIffRis method again penalizes disagreements among
slaves, but it does so even more aggressively than the sliegtanethod since there is no longer a requirement
for step-sizegvy,,).en CONverging to zero. Furthermore, alternative smoothedlacated schemes exist and can be
applied as well [88]-[90].

V. APPLICATIONS

Although the presented primal-dual algorithms can be applirtually to any area where optimization problems

have to be solved, we now mention a few common applicatiortbaxe techniques.

A. Inverse problems

For a long time, convex optimization approaches have beecessfully used for solving inverse problems such
as signal restoration, signal reconstruction, or intexpoh of missing data. Most of the time, these problems are
ill-posed and, in order to recover the signal of interest isadisfactory manner, some prior information needs to
be introduced. To do this, an objective function can be mizéth which includes a data fidelity term modelling

knowledge about the noise statistics and possibly invadvisear observation matrix (e.g. a convolutive blur), and a
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regularization (or penalization) term which corresporaithe additional prior information. This formulation casal
often be justified statistically as the determination of axMam A Posteriori (MAP) estimate. In early developed
methods, in particular in Tikhonov regularization, a quidr penalty function is employed. Alternatively, hard
constraints can be imposed on the solution (for examplend®on the signal values), leading to signal feasibility
problems. Nowadays, a hybrid regularization [91] may begresl so as to combine various kinds of regularity
measures, possibly computed for different representatairthe signal (Fourier, wavelets,...), some of them like
total variation [25] and its nonlocal extensions [92] betaglored for preserving discontinuities such as image
edges. In this context, constraint sets can be translategp@malization terms being equal to the indicator funcion
of these sets (see (2)). Altogether, these lead to globalfenstions which can be quite involved, often with many
variables, for which the splitting techniques describe&attion IlI-F are very useful. An extensive literature &xis
on the use of ADMM methods for solving inverse problems (esge [29]-[33]). With the advent of more recent
primal-dual algorithms, many works have been mainly foduse image recovery applications [46]-[49], [51], [54],
[55], [58], [62], [64], [93]-[97]. Two illustrations are nw provided.

In [98], a generalization of the total variation is defined & arbitrary graph in order to address a variety of

inverse problems. For denoising applications, the opttion problem to be solved is of the form (19) where
1
f=0, g=oc, h:x»—>§||x—y||2, (57)

x is a vector of variables associated with each vertex of ahtedygraph, ang € R" is a vector of data observed
at each vertex. The matrik € RX*N is equal toDiag(v/@,, . .., v ) A where(wi, ... wk) € [0, +oo[~ is the
vector of edge weights and € RX*¥ is the graph incidence matrix playing a role similar to a geatloperator
on the graph. The sét is defined as an intersection of closed semi-balls in suchyathat its support function ¢
(see (9)) allows us to define a class of functions extendiedgdtal variation semi-norm (see [98] for more details).
Good image denoising results can be obtained by buildinggteph in a nonlocal manner following the strategy
in [92]. Results obtained for Barbara image are displaye#iin 6. Interestingly, the ability of methods such as
those presented in Section IlI-D to circumvent matrix is@ns leads to a significant decrease of the convergence
time for irregular graphs in comparison with algorithms dzh®n the Douglas-Rachford iteration or ADMM (see
Fig. 7).

Another application example of primal-dual proximal algfums is Parallel Magnetic Resonance Imaging (PMRI)
reconstruction. A set of measurement vectars << is acquired from/ coils. These observations are related to
the original full FOV (Field Of View) imager € C"V corresponding to a spin density. An estimaterdé obtained

by solving the following problem:

J
minimize f(z) + g(La) + Y [SFS;z — 2% (58)
zeCN =1 J
h(x)
where (V5 € {1,...,J}) | - HQJ__l = (~)HA;1(-), A; is the noise covariance matrix for thethe channelS;

CN*N is a diagonal matrix modelling the sensitivity of the cdil,c CV*V is a 2D discrete Fourier transform,
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(a) Original image (b) Noisy SNR =14.47 dB (c) Nonlocal TV SNR =20.78 dB

Fig. 6: Nonlocal denoising (additive white zero-mean Gaussian noise with arish= 20).
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Fig. 7: Comparison of the convergence speed of a Douglas-Rachford ladgarithm (PPXA [65]) (blue) and an FBF-based
primal-dual algorithm (red) for image denoising using a non-regulaplyr Matlab implementation on an Intel Xeon 2.5GHz

8-core system.

¥ € {0,1}L%)*N is a subsampling matrix; € I'y(CX) is a sparsity measure (e.g. a weighteehorm), L € CE*N

is a (possibly redundant) frame analysis operator, Aigithe indicator function of a vector subspace®f serving

to set to zero the image areas corresponding to the back#@ifoDpnmbining suitable subsampling strategies in the
k-space with the use of an array of coils allows us to redueeattguisition time while maintaining a good image
quality. The subsampling factd® > 1 thus corresponds to acceleration factar For a more detailed account on
the considered approach, the reader is refered to [99]] [A08 the references therein. Reconstruction results are
shown in Fig. 8. Fig. 9 also allows us to evaluate the convergdime for various algorithms. It can be observed
that smaller differences between the implemented primal-dtrategies are apparent in this example. Due to the
form of the subsampling matrix, the matrix inversion invadvat each iteration of ADMM however requires to
make use of a few subiterations of a linear conjugate gradnathod.

Note that convex primal-dual proximal optimization algbms have been applied to other fields than image
7(-)H denotes the transconjugate operation arjddesignates the lower rounding operation.
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(b)

@)
Fig. 8: (a) Effects of the sensitivity matrices in the spatial domain in the absence shsyiling: the moduli of the images

corresponding tdS;7)2<;<3 are displayed for 2 channels out of 3®) Reconstruction quality: moduli of the original slice
z and the reconstructed one with SNR26.03 dB (from left to right) using polynomial sampling of order 1 wifh = 5, a

wavelet frame, and afy regularization.
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Fig. 9: Signal-to-Noise Ratio as a function of computation time using ADMM, and FBR¥-based primal-dual methods for

a given slice, Matlab implementation on an Intel i7-3520M CPU@2.9 GHteBys

recovery, in particular to machine learning [5], [101], t&ys identification [102], audio processing [103], optimal
transport [104], empirical mode decomposition [105], Seii106], database management [107], and data streaming

over networks [108].

B. Computer vision and image analysis
The great majority of problems in computer vision involveaipe observation data that are of very high di-

mensionality, inherently ambiguous, noisy, incomplete] aften only provide a partial view of the desired space.
Hence, any successful model that aims to explain such datlysequires a reasonable regularization, a robust
data measure, and a compact structure between the varadhgsrest to efficiently characterize their relationship
Probabilistic graphical models, and in particular diseféfarkov Random Fields, have led to a suitable methodology
for solving such visual perception problems [12], [16]. Fkype of models offer great representational power, and
are able to take into account dependencies in the data, eqeom knowledge, and model (soft or hard) contextual
constraints in a very efficient and modular manner. Furtiogemthey offer the important ability to make use of
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(b) ‘Tsukuba’ stereo matching (from left to right: left imadeastPD output, time comparison plot)
Fig. 10: FastPD [126] results for an image denoising (top) and stereo-matdbarigi) problem. The plot in each row compares
the corresponding running time per iteration of the above primal-duakitiigo with the a-expansion algorithm, which is a

primal-based method (experiments conducted on a 1.6 GHz CPU).

very powerful data likelihood terms consisting of arbiyraxonconvex and non-continuous functions that are often
crucial for accurately representing the problem at hand.aA®sult, MAP-inference for these models leads to
discrete optimization problems that are (in most cased)lyigonconvex (NP-hard) and also of very large scale
[109], [110]. These discrete problems take the form (42)enehtypically the unary termg,(-) encode the data
likelihood and the higher-order terms.(-) encode problem specific priors.

Primal-dual approaches can offer important computati@usantages when dealing with such problems. One
such characteristic example is the FastPD algorithm [1Bickvcurrently provides one of the most efficient methods
for solving generic MRF optimization problems of this ty@dso guaranteeing at the same time the convergence
to solutions that are approximately optimal. The theoettiberivation of this method relies on the use of the
primal-dual schema described in Section IV, which resuftghis case, into a very fast graph-cut based inference
scheme that generalizes previous state-of-the-art apipegasuch as the-expansion algorithm [111] (see Fig. 10).
More generally, due to the very wide applicability of MRF netglto computer vision or image analysis problems,
primal-dual approaches can and have been applied to a blasslaf both low-level and high-level problems from
these domains, including image segmentation [112]-[1stBfeo matching and 3D multi-view reconstruction [116],
[117], graph-matching [118], 3D surface tracking [119]tical flow estimation [120], scene understanding [121],
image deblurring [122], panoramic image stitching [123]{egory-level segmentation [124], and motion tracking
[125]. In the following we mention very briefly just a few exples.

A primal-dual based optimization framework has been rdgegmtoposed in [127], [128] for the problem of
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Fig. 11: Color encoded visualization of the surface distance between warpedxgedt segmentation after affine (left), FFD-
based [129] (middle), and primal-dual based registration (right) fBtfain 1 data set. The color range is scaled to a maximum
and minimum distance of 3 mm. The average surface distance (ASD)raffistration for the gray matter is 1.66, 1.14, and
1.00 mm for affine, FFD-based, and primal-dual method, respdgtiFor the white matter the resulting ASD is 1.92, 1.31, and
1.06 mm. Note also that the FFD-based method is more than 30 times sl@amethth primal-dual approach.

deformable registration/fusion, which forms one of the te@mtral and challenging tasks in medical image analysis.
This problem consists of recovering a nonlinear dense deftion field that aligns two signals that have in general an
unknown relationship both in the spatial and intensity domikm this framework, towards dimensionality reduction
on the variables, the dense registration field is first exggesising a set of control points (registration grid) and
an interpolation strategy. Then, the registration cosixjgessed using a discrete sum over image costs projected
on the control points, and a smoothness term that penalimed tleviations on the deformation field according
to a neighborhood system on the grid. One advantage of thdtings optimization framework is that it is able
to encode even very complex similarity measures (such amaled mutual information and Kullback-Leibler
divergence) and therefore can be used even when seekingfamasations between different modalities (inter-
deformable registration). Furthermore, it admits a braathe of regularization terms, and can also be applied to
both 2D-2D and 3D-3D registration, as an arbitrary undagygraph structure can be readily employed (see Fig. 11
for a result on 3D inter-subject brain registration).

Another application of primal-dual methods is in sterecorestruction [130], where given as input a pair of left
and right imaged,, Iz we seek to estimate a functian: Q@ — T representing the depth(s) at a points in the
domainQ) C R? of the left image (her& = [Umin, Vmax] denotes the allowed depth range). To accomplish this,

the following variational problem is proposed in [130]:

minimize /f(u(s%s)ds—i—/ [Vu(s)|ds, (59)
“ Q Q

where f(u(s), s) is a data term favoring different depth values by measutirgatbsolute intensity differences of
respective patches projected in the two input images, ande¢bond term is a TV regularizer that promotes spatially
smooth depth fields. The above problem is nonconvex (dueetaisk of the data terrfi), but it turns out that there

exists an equivalent convex formulation obtained by Igtihhe original problem to a higher-dimensional space, in
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Fig. 12: Estimated depth map (right) for a large aerial stereo data set of Grag tirprimal-dual approach in [130]. One of
the images of the corresponding stereoscopic pair (of 5598 x 1400) is shown on the left.

which u is represented in terms of its level sets

migie%ize /E(|V¢(8,U)| + f(s,v)|0,P(s,v)|)dsdv. (60)

In the above formulation. = Q xT', ¢: ¥ — {0,1} is a binary function such that(s,v) equalsl if u(s) > v and
0 otherwise, and the feasible set is definedlas- {¢: ¥ — {0,1} | (Vs € Q) ¢(S, Umin) = 1, #(S, Umax) = 0}. A
convex relaxation of the latter problem is obtained by usibhy = {¢: X — [0,1] | (Vs € Q)
¢(s,Umin) = 1,0(5,Umax) = 0} instead of D. A discretized form of the resulting optimization probleranc
be solved with the algorithms described in Section 111-Qy.Hi2 shows a sample result of this approach.

Recently, primal-dual approaches have also been devefopdiscrete optimization problems that involve higher-
order terms [131]-[133]. They have been applied succdggtulvarious tasks, like, for instance, in stereo matching
[131]. In this case, apart from a data term that measuredasityibetween corresponding pixels in two images, a
discontinuity-preserving smoothness prior of the fapifs;, s2, s3) = min(|s; —2s2+ s3], &) with £ € |0, +o00[ has
been employed as a regularizer that penalizes depth saréddeigh curvature. Indicative stereo matching results
from an algorithm based on the dual decomposition prindil@scribed in Section IV-C are shown in Fig. 13.

It should be also mentioned that an advantage of all primal-dlgorithms (which is especially important for
NP-hard problems) is that they also provide (for free) pstance approximation bounds, specifying how far the
cost of an estimated solution can be from the unknown opticost. This directly follows from the fact that
these methods are computing both primal and dual solutishgh (in the case of a minimization task) provide
respectively upper and lower limits to the true optimum. Séh@pproximation bounds are continuously updated
throughout an algorithm execution, and thus can be diracthd for assessing the performance of a primal-dual
method with respect to any particular problem instance (aitdout essentially any extra computational cost).
Moreover, often in practice, these sequences converge twrenon value, which means that the corresponding

estimated solutions are almost optimal (see, e.g., the pioEig. 13).

VI. CONCLUSION

In this paper, we have reviewed a number of primal-dual agtition methods which can be employed for solving

signal and image processing problems. The links existirtigyden convex approaches and discrete ones were little
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(a) ‘Teddy’ (b) ‘Cones’
Fig. 13: Stereo matching results for ‘Teddy’ (a) and 'Cones’ (b) when usihggher-order discontinuity preserving smoothness
prior. We show plots for the corresponding sequences of upper avetr loounds generated during the primal-dual method.
Notice that these sequences converge to the same limit, meaning that thetesstiolution converges to the optimal value.

explored in the literature and one of the contributions &f gaper is to put them in a unifying perspective. Although

the presented algorithms have been proved to be quite igéfiéntnumerous problems, there remains much room for
extending their scope to other application fields, and ajsoniproving them so as to accelerate their convergence.
In particular, the parameter choices in these methods meg &astrong influence on the convergence speed and
it would be thus interesting to design automatic procedimessetting these parameters. Various techniques can
also be devised for designing faster variants of these mistfjoreconditioning, activation of blocks of variables,

combination with stochastic strategies, distributed enpdntations...). Another issue to pay attention to is the
robustness to numerical errors although it can be mentidhat most of the existing proximal algorithms are

tolerant to summable errors. Concerning discrete optitilzanethods, we have shown that the key to success lies
in tight relaxations of combinatorial NP hard problems. dixting these methods to more challenging problems,
e.g. those involving higher-order Markov fields or extreynlelrge label sets, appears to be of main interest in this
area. More generally, developing primal-dual stratedies turther bridge the gap between continuous and discrete
approaches, as well as for solving other kinds of nonconysinization problems such as those encountered in
phase reconstruction or blind deconvolution opens the wappealing investigations. So, the ground is yours now

to play with duality!
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