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ABSTRACT

For many remote sensing applications it is preferable to have

images with both high spectral and spatial resolutions. On this

regards, hyperspectral and multispectral images have comple-

mentary characteristics in terms of spectral and spatial reso-

lutions. In this paper we propose an approach for the fusion

of low spatial resolution hyperspectral images with high spa-

tial resolution multispectral images in order to obtain super-

resolution (spatial and spectral) hyperspectral images. The

proposed approach is based on the assumption that, since both

hyperspectral and multispectral images acquired on the same

scene, the corresponding endmembers should be the same.

On a first step the hyperspectral image is spectrally down-

sampled in order to match the multispectral one. Then an

endmember extraction algorithm is performed on the down-

sampled hyperspectral image and the successive abundance

estimation is performed on the multispectral one. Finally, the

extracted endmembers are up-sampled back to the original

hyperspectral space and then used to reconstruct the super-

resolution hyperspectral image according to the abundances

obtained from the multispectral image.

Index Terms— hyperspectral imaging, super-resolution,

spectral unmixing.

1. INTRODUCTION

Many efforts have been spent in the last decades to improve

the spectral and spatial resolutions of remote sensing sensors.

However, there are design constraints that result in an in-

verse relation between spatial and spectral resolution. More-

over, the system trade-off related to data volume and signal-

to-noise ratio (SNR) limitations prevent to achieve both of

them simultaneously. Many practical applications require im-

ages having both high spectral and spatial resolution. Thus,

there is a need for techniques that fuse high spectral resolution

images, such as hyperspectral images (HS), with high spatial

images such as multispectral images (MS) or panchromatic

images (PAN), in order to obtain high spectral and spatial

(super-resolution) images. In the literature there exist many

applications combining hyperspectral and panchromatic im-

ages [1]. These techniques, that goes under the name of pan-

sharpening, are considered adequate when applied to multi-

spectral and PAN images, but have many drawbacks when the

low-resolution image is a hyperspectral image [2]. Recently,

some techniques dedicated to the fusion of hyperspectral im-

ages and multispectral ones have been proposed [3][4][5]. In

general, the approach is to associate the fusion problem with

linear spectral unmixing, which assumes that the underlying

data can be described by a mixture of a relatively small num-

ber of pure spectral signatures, corresponding to the materials

present in the scene. Since both hyperspectral and multispec-

tral images capture the same scene, the endmembers should

be the same. Therefore, the spectral information extracted

from one of the images should also be able to explain the

other one. Due to the high spectral resolution of a hyperspec-

tral image, the endmembers can be extracted from this data,

and then used to reconstruct the multispectral image. Since

the multispectral image have high spatial resolution, the fi-

nal reconstructed image will be at super-resolution. In [4] the

same approach has been followed with the only difference

that the mixing matrix is replaced by a dictionary learnt using

a non-negative matrix factorization with sparsity regulariza-

tion on the code. In [5], the hyperspectral data is unmixed

via the K-SVD algorithm, and the multispectral data is recon-

structed using orthogonal matching pursuit to induce sparsity.

In [6] alternately unmixes both sources of data to find the sig-

natures and the abundances of the endmembers, while in [3]

two dictionaries were learned from the two different data, and

then used a dictionary-pair learning method to establish the

correspondence between them.

However, the effectiveness of these approaches strongly de-

pends on how the dictionaries can be obtained. In this pa-

per we propose an approach where the endmembers are ex-

tracted directly from the spectrally down-sampled hyperspec-

tral image. The derived endmembers are used as input to an

unmixing algorithm applied to the multispectral image. The

obtained abundances are then used to reconstruct the super-

resolution hyperspectral image. This approach permits to re-

duce the spectral distortion of the enhanced image. The re-



mainder of the paper is organized as follows: in Sec. 2 the

proposed super-resolution methodology is introduced and in

Sec. 4 experimental results are presented. Finally in Sec. 5

conclusion remarks are provided.

2. HYPERSPECTRAL SUPER RESOLUTION

In order to better understand the proposed approach,we define

X ∈ R
m×n as the super-resolution hyperspectral image hav-

ing m spectral bands and n pixels. In this way it is possible to

define the hyperspectral image Yh as the spatial degradation

of X:

Yh = XBM +Nh (1)

where B is a matrix modeling band independent sensor

blur, M is a masking matrix accounting for spatial downsam-

pling and Nh is an additive perturbation. In a similar way the

multispectral image Ym can be defined as the spectral degra-

dation ofX:

Ym = RX +Nm (2)

where the matrix R models the spectral responses of the

multispectral sensor, and Nm is an additive perturbation. If

it is possible to learn a dictionary D from the hyperspectral

image Yh, then each pixel xi (for i = 1, ...n) of X can be

represented as a linear combination of the elements of D:

X = DA (3)

where A = [α1, ..., αn] is defined as the code of the dic-

tionary. Substituting Eq. (3) in Eq. (2), we obtain:

Ym = RDA+Nm (4)

If equation (4) can be solved with respect to A, then we

may plug its solution into (3) and thereby obtain an estimate

of X .

As it can be noted, the quality of the super-resolution im-

age can be strongly influenced by the dictionary. In particular,

the elements of the dictionary D should be consistent with the

multispectral image Ym. This means that, since the elements

of D are derived from Yh, to match the spectral resolution of

Ym they should be spectrally downsampled. It is then easy to

understand that the spectral downsampling of the dictionary

is a critical point in terms of quality of the super-resolution

image. From a practical point of view, the elements of the

dictionary D correspond to the endmembers extracted from

the spectrally downsampled hyperspectral image. However,

a not perfect model of the spectral responses of the sensors

may lead to endmembers that could not match the endmem-

bers extracted from the multispectral image. Thus, is desir-

able to have endmembers can be extracted directly from Yh in

order to reduce the spectral distortion of the super resolution

image.

Another critical point is related to the fact that the product

RD may lead to an undetermined system of equations. This

because the number of elements of the dictionary D may be

higher than the number of spectral bands of Ym. However, the

images are locally low rank, meaning that in a small spatial

area the subspace dimensionality is low enough to be repre-

sented by a number of elements of D lower than the number

of bands of Ym.

To overcome these problems, in this paper we propose pro-

pose a local approach where the images are partitioned into

patches. Then the endmembers are extracted independently

from each patch. The abundance estimation is then performed

on Ym using the elements of the local dictionary obtained

for each patch. In particular, given a set of patches Pj , j =
1; ...;P ; for each Pj , we identify a mixing matrix Dj by

means of the NFINDR algorithm in order to extract a set of

endmembers from each patch [7]. Once determined the local

dictionary Dj , the code A is estimated by solving the follow-

ing constrained least squares (CLS) problems:

minAj>0‖Ym,j −RDjAj‖
2

F
(5)

where Aj and Ym,j represent the columns of A and Ym,

respectively, with indices corresponding to the pixels Xj in

Pj , while ‖ · ‖F denotes the Frobenius norm. In order to

solve (5), we use the SUnSAL algorithm [8] to effectively

solve a large number of constrained least squares problems

sharing the same matrix system. Once the abundances have

been found, the super-resolution hyperspectral image can be

retrieved by substituting the hyperspectral endmembers cor-

responding to the local endmembers found in each patch.

3. EXPERIMENTAL RESULTS

In this section, the proposed method has been applied to two

real datasets. The super-resolution images obtained in both

experiments will be quantitatively evaluated by means of Rel-

ative Dimensional Global Error (ERGAS) and Spectral Angle

Mapper (SAM) quality indexes. ERGAS and SAM will both

produce positive values with an ideal value of 0. However,

values that are around 3 are referred to a good image enhance-

ment. SAM is a useful measure of the spectral quality in-

troduced by the fusion process, while ERGAS measure both

spectral and spatial quality. A qualitative analysis, through

visual inspection, will also be discussed.

3.1. Hyperion-ALI

On a first experiment the super-resolution image has been ob-

tained by fusing Hyperion and ALI images, both carried by

the EO-1 satellite and acquired simultaneously over the city

of Paris. Hyperion is a grating imaging spectrometer provid-

ing 242 hyperspectral bands (from 0.4 to 2.5 µm) with a 30



meter spatial resolution. The ALI instrument provides 9 spec-

tral bands (from 0.43 to 2.35 µm) with 30-meter resolution.

Since the two sensors are carried by the same satellite, and the

images are acquired simultaneously, then the super-resolution

image will not be affected by differences in terms of angle of

view, atmospherical path, illumination as well as misregistra-

tion. Moreover, in order to evaluate the method following the

”Wald” protocol [9], the Hyperion image has been degraded

to a lower resolution, so that the resultant super-resolution

image is at the same resolution as the starting reference and

hence statistical analysis can be made between the reference

and the super-resolution images.

Given the Hyperion image, we simulate a low-spatial resolu-

tion hyperspectral image Yh, by applying a Gaussian blurring

(B) and downsampling the blurred image by a factor of four

(M ). A spectrally downsampled image Yhd is obtained apply-

ing the spectral responses models R to Yh in order to match

the spectral resolution of the ALI image Ym. A sliding win-

dow of a fixed size is then defined so that the pixels lying in-

side the window form a patch. In order to assess the proposed

method, different window sizes have been evaluated. Then,

for each patch we extracted a set of 10 local endmembers

from the spectrally downsampled image Yhd through the use

of NFINDR algorithm. The abundances are then estimated

by solving Eq. (5). Finally, the fractional abundances are

linearly combined with the corresponding endmember of Yh

and the super-resolution pixels are obtained for each patch.

For sake of comparisons, the performances of the proposed

local method have been compared with those obtained with

the same approach but applied globally. Quantitative results

are reported in table 1 in terms of SAM and ERGAS mea-

sures as the size of the patches changes. As expected, the

quality of the super resolution image increases as the size of

the patch decreases. However, on a qualitative analysis of the

images in Fig. 1, it can be also noted that the image obtained

with a 10x10 patch size seems to be the most affine with the

reference image.

3.2. Hyperion-ASTER

On a second experiment data fusion was applied to Hyperion

and ASTER images taken over San Francisco on 31 July,

2002. ASTER sensor provides images in 14 spectral bands

(from 0.52 to 11.65 µm) with spatial resolutions between

15 to 90 meters. However, due to the differences in spectral

coverages, only the first three bands of ASTER (0.52 to 0.860

µm), with 15 m ground sampling distance, were used for the

fusion. Moreover, we used a Hyperion/VNIR dataset hav-

ing30 m ground sampling distance and 50 bands (0.43 to 0.92

µm). Since the two images are already at different spatial res-

olution, a further reduction of the Hyperion image to a lower

resolution will lead to no significant information left. For this

reason we preferred to not perform any downsampling of the

hyperspectral image in order to avoid further distortions.

Fig. 1. Hyperion-ALI dataset: False-color images of the original

hyperspectral image (a), and the super-resolution images obtained

with the proposed approach on the whole image (b) and with a patch

size of 40x40 (c), 20x20 (d), 10x10 (e) and 5x5 (f), respectively.

Similarly to the previous experiment, the proposed super-

resolution method is applied both locally and globally. How-

ever, in this case, since the number of bands of the multi-

spectral image is limited to three, we set the number of end-

members to be extracted from the spectrally downsampled

image Yhd to 4. From a quantitative point of view, analyzing

the values in table 1, it is possible to affirm that he quality

of the super resolution image increases as the size of the

patch decreases. A further analysis has also been conducted

on two different test areas characterized by different spectral

features. In particular, the test area 1 is characterized by

few spectral endmembers, while test area 2 presents several

spectrally different elements. Analyzing the quality indexes

in table 1, it can be noted that the best results are obtained

on test area 1. This is also evident by analyzing the images

in Fig. 1, where the super resolution image relative to the

test area 2 is spectrally consistent with the original one but

on the other hand, is not as sharp as expected. This problem

may be explained by analyzing the spectral separability of

the pixels within each patch. In particular, if a patch presents

homogeneous pixels, the extracted endmembers may be very

similar, and the resulting super-resolution pixels will have

very similar values.

Global 40x40 20x20 10x10 5x5

ERGAS 3.3276 4.4785 4.3290 3.1335 1.1895

SAM 3.4763 2.8132 2.6104 2.4523 2.1392

Table 1. Hyperion-ALI dataset: ERGAS and SAM quality indexes

for the super-resolution images obtained using the global and local

version of the proposed approach as the size of the patches change.



4. CONCLUSIONS

In this paper we have presented an approach for the super-

resolution of hyperspectral images by fusing them with mul-

tispectral images. Since both hyperspectral and multispectral

images capture the same scene, they should also be able to de-

tect the same endmembers with different spectral resolutions.

Based on this assumption, spectrally downsample hyperspec-

tral endmembers should then correspond to the multispectral

endmembers. In this work NFINDR was used to extract a

set of endmembers from the Spectrally downsample hyper-

spectral image while the abundance are obtained by solving

a constrained least squares problem applied to the multispec-

tral image. In order to improve the quality of super-resolution

images and also to avoid that the number of endmembers may

be higher than the number of spectral bands , we proposed a

local approach, where the images are partitioned into patches

and the method is applied independently on each patch. Ex-

periments on two real datasets demonstrate the effectiveness

of the proposed approach to produce super resolution hyper-

spectral images with low spectral distortion and spatially con-

sistent.

Global 50x50 25x25 10x10 5x5

Complete image

ERGAS 8.1943 7.0391 5.3764 3.5339 2.4634

SAM 9.4422 8.3400 6.1084 3.5651 2.2675

Test area 1

ERGAS 8.1943 4.9006 3.5222 6.8840 1.8681

SAM 8.6509 5.1341 3.2178 2.3629 1.5009

Test area 2

ERGAS 11.8908 11.0363 9.8373 3.5339 4.8053

SAM 10.7797 10.1970 8.7004 5.0406 2.9463

Table 2. Hyperion-ASTER dataset: ERGAS and SAM quality in-

dexes for the super-resolution images obtained using the global and

local version of the proposed approach as the size of the patches

change.
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