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INTRODUCTION

Many efforts have been spent in the last decades to improve the spectral and spatial resolutions of remote sensing sensors. However, there are design constraints that result in an inverse relation between spatial and spectral resolution. Moreover, the system trade-off related to data volume and signalto-noise ratio (SNR) limitations prevent to achieve both of them simultaneously. Many practical applications require images having both high spectral and spatial resolution. Thus, there is a need for techniques that fuse high spectral resolution images, such as hyperspectral images (HS), with high spatial images such as multispectral images (MS) or panchromatic images (PAN), in order to obtain high spectral and spatial (super-resolution) images. In the literature there exist many applications combining hyperspectral and panchromatic images [START_REF] Alparone | Comparison of pansharpening algorithms: Outcome of the 2006 grs-s data fusion contest[END_REF]. These techniques, that goes under the name of pansharpening, are considered adequate when applied to multispectral and PAN images, but have many drawbacks when the low-resolution image is a hyperspectral image [START_REF] Licciardi | Fusion of hyperspectral and panchromatic images using multiresolution analysis and nonlinear pca band reduction[END_REF]. Recently, some techniques dedicated to the fusion of hyperspectral images and multispectral ones have been proposed [START_REF] Song | Spatiospectral fusion of satellite images based on dictionarypair learning[END_REF][4] [START_REF] Huang | Spatial and spectral image fusion using sparse matrix factorization[END_REF]. In general, the approach is to associate the fusion problem with linear spectral unmixing, which assumes that the underlying data can be described by a mixture of a relatively small number of pure spectral signatures, corresponding to the materials present in the scene. Since both hyperspectral and multispectral images capture the same scene, the endmembers should be the same. Therefore, the spectral information extracted from one of the images should also be able to explain the other one. Due to the high spectral resolution of a hyperspectral image, the endmembers can be extracted from this data, and then used to reconstruct the multispectral image. Since the multispectral image have high spatial resolution, the final reconstructed image will be at super-resolution. In [START_REF] Charles | Learning sparse codes for hyperspectral imagery[END_REF] the same approach has been followed with the only difference that the mixing matrix is replaced by a dictionary learnt using a non-negative matrix factorization with sparsity regularization on the code. In [START_REF] Huang | Spatial and spectral image fusion using sparse matrix factorization[END_REF], the hyperspectral data is unmixed via the K-SVD algorithm, and the multispectral data is reconstructed using orthogonal matching pursuit to induce sparsity. In [START_REF] Yokoya | Coupled nonnegative matrix factorization unmixing for hyperspectral and multispectral data fusion[END_REF] alternately unmixes both sources of data to find the signatures and the abundances of the endmembers, while in [START_REF] Song | Spatiospectral fusion of satellite images based on dictionarypair learning[END_REF] two dictionaries were learned from the two different data, and then used a dictionary-pair learning method to establish the correspondence between them. However, the effectiveness of these approaches strongly depends on how the dictionaries can be obtained. In this paper we propose an approach where the endmembers are extracted directly from the spectrally down-sampled hyperspectral image. The derived endmembers are used as input to an unmixing algorithm applied to the multispectral image. The obtained abundances are then used to reconstruct the superresolution hyperspectral image. This approach permits to reduce the spectral distortion of the enhanced image. The re-mainder of the paper is organized as follows: in Sec. 2 the proposed super-resolution methodology is introduced and in Sec. 4 experimental results are presented. Finally in Sec. 5 conclusion remarks are provided.

HYPERSPECTRAL SUPER RESOLUTION

In order to better understand the proposed approach,we define X ∈ R m×n as the super-resolution hyperspectral image having m spectral bands and n pixels. In this way it is possible to define the hyperspectral image Y h as the spatial degradation of X:

Y h = XBM + N h ( 1 
)
where B is a matrix modeling band independent sensor blur, M is a masking matrix accounting for spatial downsampling and N h is an additive perturbation. In a similar way the multispectral image Y m can be defined as the spectral degradation ofX:

Y m = RX + N m (2) 
where the matrix R models the spectral responses of the multispectral sensor, and N m is an additive perturbation. If it is possible to learn a dictionary D from the hyperspectral image Y h , then each pixel x i (for i = 1, ...n) of X can be represented as a linear combination of the elements of D:

X = DA (3) 
where A = [α 1 , ..., α n ] is defined as the code of the dictionary. Substituting Eq. (3) in Eq. ( 2), we obtain:

Y m = RDA + N m (4) 
If equation ( 4) can be solved with respect to A, then we may plug its solution into (3) and thereby obtain an estimate of X.

As it can be noted, the quality of the super-resolution image can be strongly influenced by the dictionary. In particular, the elements of the dictionary D should be consistent with the multispectral image Y m . This means that, since the elements of D are derived from Y h , to match the spectral resolution of Y m they should be spectrally downsampled. It is then easy to understand that the spectral downsampling of the dictionary is a critical point in terms of quality of the super-resolution image. From a practical point of view, the elements of the dictionary D correspond to the endmembers extracted from the spectrally downsampled hyperspectral image. However, a not perfect model of the spectral responses of the sensors may lead to endmembers that could not match the endmembers extracted from the multispectral image. Thus, is desirable to have endmembers can be extracted directly from Y h in order to reduce the spectral distortion of the super resolution image. Another critical point is related to the fact that the product RD may lead to an undetermined system of equations. This because the number of elements of the dictionary D may be higher than the number of spectral bands of Y m . However, the images are locally low rank, meaning that in a small spatial area the subspace dimensionality is low enough to be represented by a number of elements of D lower than the number of bands of Y m . To overcome these problems, in this paper we propose propose a local approach where the images are partitioned into patches. Then the endmembers are extracted independently from each patch. The abundance estimation is then performed on Y m using the elements of the local dictionary obtained for each patch. In particular, given a set of patches P j , j = 1; ...; P ; for each P j , we identify a mixing matrix D j by means of the NFINDR algorithm in order to extract a set of endmembers from each patch [START_REF] Winter | N-findr: an algorithm for fast autonomous spectral end-member determination in hyperspectral data[END_REF]. Once determined the local dictionary D j , the code A is estimated by solving the following constrained least squares (CLS) problems:

min Aj >0 Y m,j -RD j A j 2 F (5)
where A j and Y m,j represent the columns of A and Y m , respectively, with indices corresponding to the pixels X j in P j , while • F denotes the Frobenius norm. In order to solve (5), we use the SUnSAL algorithm [START_REF] Bioucas-Dias | Alternating direction algorithms for constrained sparse regression: Application to hyperspectral unmixing[END_REF] to effectively solve a large number of constrained least squares problems sharing the same matrix system. Once the abundances have been found, the super-resolution hyperspectral image can be retrieved by substituting the hyperspectral endmembers corresponding to the local endmembers found in each patch.

EXPERIMENTAL RESULTS

In this section, the proposed method has been applied to two real datasets. The super-resolution images obtained in both experiments will be quantitatively evaluated by means of Relative Dimensional Global Error (ERGAS) and Spectral Angle Mapper (SAM) quality indexes. ERGAS and SAM will both produce positive values with an ideal value of 0. However, values that are around 3 are referred to a good image enhancement. SAM is a useful measure of the spectral quality introduced by the fusion process, while ERGAS measure both spectral and spatial quality. A qualitative analysis, through visual inspection, will also be discussed.

Hyperion-ALI

On a first experiment the super-resolution image has been obtained by fusing Hyperion and ALI images, both carried by the EO-1 satellite and acquired simultaneously over the city of Paris. Hyperion is a grating imaging spectrometer providing 242 hyperspectral bands (from 0.4 to 2.5 µm) with a 30 meter spatial resolution. The ALI instrument provides 9 spectral bands (from 0.43 to 2.35 µm) with 30-meter resolution. Since the two sensors are carried by the same satellite, and the images are acquired simultaneously, then the super-resolution image will not be affected by differences in terms of angle of view, atmospherical path, illumination as well as misregistration. Moreover, in order to evaluate the method following the "Wald" protocol [START_REF] Wald | Data fusion. definitions and architectures -fusion of images of different spatial resolutions[END_REF], the Hyperion image has been degraded to a lower resolution, so that the resultant super-resolution image is at the same resolution as the starting reference and hence statistical analysis can be made between the reference and the super-resolution images. Given the Hyperion image, we simulate a low-spatial resolution hyperspectral image Y h , by applying a Gaussian blurring (B) and downsampling the blurred image by a factor of four (M ). A spectrally downsampled image Y hd is obtained applying the spectral responses models R to Y h in order to match the spectral resolution of the ALI image Y m . A sliding window of a fixed size is then defined so that the pixels lying inside the window form a patch. In order to assess the proposed method, different window sizes have been evaluated. Then, for each patch we extracted a set of 10 local endmembers from the spectrally downsampled image Y hd through the use of NFINDR algorithm. The abundances are then estimated by solving Eq. ( 5). Finally, the fractional abundances are linearly combined with the corresponding endmember of Y h and the super-resolution pixels are obtained for each patch. For sake of comparisons, the performances of the proposed local method have been compared with those obtained with the same approach but applied globally. Quantitative results are reported in table 1 in terms of SAM and ERGAS measures as the size of the patches changes. As expected, the quality of the super resolution image increases as the size of the patch decreases. However, on a qualitative analysis of the images in Fig. 1, it can be also noted that the image obtained with a 10x10 patch size seems to be the most affine with the reference image.

Hyperion-ASTER

On a second experiment data fusion was applied to Hyperion and ASTER images taken over San Francisco on 31 July, 2002. ASTER sensor provides images in 14 spectral bands (from 0.52 to 11.65 µm) with spatial resolutions between 15 to 90 meters. However, due to the differences in spectral coverages, only the first three bands of ASTER (0.52 to 0.860 µm), with 15 m ground sampling distance, were used for the fusion. Moreover, we used a Hyperion/VNIR dataset hav-ing30 m ground sampling distance and 50 bands (0.43 to 0.92 µm). Since the two images are already at different spatial resolution, a further reduction of the Hyperion image to a lower resolution will lead to no significant information left. For this reason we preferred to not perform any downsampling of the hyperspectral image in order to avoid further distortions. Similarly to the previous experiment, the proposed superresolution method is applied both locally and globally. However, in this case, since the number of bands of the multispectral image is limited to three, we set the number of endmembers to be extracted from the spectrally downsampled image Y hd to 4. From a quantitative point of view, analyzing the values in table 1, it is possible to affirm that he quality of the super resolution image increases as the size of the patch decreases. A further analysis has also been conducted on two different test areas characterized by different spectral features. In particular, the test area 1 is characterized by few spectral endmembers, while test area 2 presents several spectrally different elements. Analyzing the quality indexes in table 1, it can be noted that the best results are obtained on test area 1. This is also evident by analyzing the images in Fig. 1, where the super resolution image relative to the test area 2 is spectrally consistent with the original one but on the other hand, is not as sharp as expected. This problem may be explained by analyzing the spectral separability of the pixels within each patch. In particular, if a patch presents homogeneous pixels, the extracted endmembers may be very similar, and the resulting super-resolution pixels will have very similar values. 

CONCLUSIONS

In this paper we have presented an approach for the superresolution of hyperspectral images by fusing them with multispectral images. Since both hyperspectral and multispectral images capture the same scene, they should also be able to detect the same endmembers with different spectral resolutions.

Based on this assumption, spectrally downsample hyperspectral endmembers should then correspond to the multispectral endmembers. In this work NFINDR was used to extract a set of endmembers from the Spectrally downsample hyperspectral image while the abundance are obtained by solving a constrained least squares problem applied to the multispectral image. In order to improve the quality of super-resolution images and also to avoid that the number of endmembers may be higher than the number of spectral bands , we proposed a local approach, where the images are partitioned into patches and the method is applied independently on each patch. Experiments on two real datasets demonstrate the effectiveness of the proposed approach to produce super resolution hyperspectral images with low spectral distortion and spatially consistent. 
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Fig. 1 .

 1 Fig. 1. Hyperion-ALI dataset: False-color images of the original hyperspectral image (a), and the super-resolution images obtained with the proposed approach on the whole image (b) and with a patch size of 40x40 (c), 20x20 (d), 10x10 (e) and 5x5 (f), respectively.

Table 1 .

 1 Hyperion-ALI dataset: ERGAS and SAM quality indexes for the super-resolution images obtained using the global and local version of the proposed approach as the size of the patches change.

		Global 40x40 20x20 10x10	5x5
	ERGAS 3.3276 4.4785 4.3290 3.1335 1.1895
	SAM	3.4763 2.8132 2.6104 2.4523 2.1392

Table 2 .

 2 Hyperion-ASTER dataset: ERGAS and SAM quality indexes for the super-resolution images obtained using the global and local version of the proposed approach as the size of the patches change.

			50x50	25x25 10x10	5x5
	Complete image	
	ERGAS 8.1943	7.0391 5.3764 3.5339 2.4634
	SAM	9.4422	8.3400 6.1084 3.5651 2.2675
	Test area 1		
	ERGAS 8.1943	4.9006 3.5222 6.8840 1.8681
	SAM	8.6509	5.1341 3.2178 2.3629 1.5009
	Test area 2		
	ERGAS 11.8908 11.0363 9.8373 3.5339 4.8053
	SAM	10.7797 10.1970 8.7004 5.0406 2.9463