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ABSTRACT

The linear mixing model (LMM) is a widely used methodology

for the spectral unmixing (SU) of hyperspectral data. In this model,

hyperspectral data is formed as a linear combination of spectral sig-

natures corresponding to macroscopically pure materials (endmem-

bers), weighted by their fractional abundances. Some of the draw-

backs of the LMM are the presence of multiple mixtures and the

spectral variability of the endmembers due to illumination and atmo-

spheric effects. These issues appear as variations of the spectral con-

ditions of the image along its spatial domain. However, these effects

are not so severe locally and could be at least mitigated by working

in smaller regions of the image. The proposed local SU works over

a partition of the image, performing the spectral unmixing locally

in each region of the partition. In this work, we first introduce the

general local SU methodology, then we propose an implementation

of the local SU based on a binary partition tree representation of the

hyperspectral image and finally we give an experimental validation

of the approach using real data.

Index Terms— Hypespectral imaging, local spectral unmixing,

spectral bundles, binary partition trees.

1. INTRODUCTION

The spectral unmixing (SU) decomposes a hyperspectral image into

a set of spectral signatures corresponding to macroscopically pure

materials, named endmembers, and a set of cover proportions com-

prised in a fractional abundance matrix. The linear mixing model

(LMM), is the most widely used formulation of the spectral unmix-

ing problem, where the endmembers and fractional abundances lin-

early combine to form the image. A common way to perform the

spectral unmixing is to determine the endmembers in the scene by

picking them from a spectral library or by inducing them directly

from the image, and estimating their corresponding abundances in a

second step, for all pixels in the image.

The capability of the LMM to accurately obtain the set of end-

members and the abundances depends to a large extent on the pres-

ence of multiple mixtures [1] and the spectral variability of the end-

members due mainly to illumination and atmospheric effects [2].

Some algorithms such as the Multiple Endmember Spectral Mix-

ture Analysis (MESMA) [3] address the former issue, but they are

computationally expensive and make use of spectral libraries. The

latter has been addressed by either statistical methods that treat the

endmembers as multivariate statistical variables [4], or by the use of
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spectral bundles [5] (i.e., sets of spectral signatures that implicitly

define the spectral variability of an endmember). The high dimen-

sionality and between-bands correlation of hyperspectral data make

the use of statistical methods very challenging. The use of spectral

bundles requires the imposition of hard sparse constraints in order to

obtain the abundances.

Here we propose a novel approach that faces these issues by

performing the spectral unmixing locally, that is, in subsets of the

image spatial domain, and then combines the results of the multiple

local spectral unmixing processes to obtain the spectral and spatial

decomposition of the image. The motivation behind this approach is

two-fold: i) the illumination variabilities and atmospheric effects are

less severe locally than when the whole image is considered, and ii)

we assume that the existence of multiple mixtures is related to their

spatial location and then, it is likely that in a local context we are

dealing with a single mixture. By independently unmixing each of

the regions in a partition of the image, we avoid the difficulties due

to effects that appear globally, when the whole image is unmixed.

In order to find a meaningful partition of the image to perform the

local spectral unmixing (LSU), we propose the use of a binary par-

tition tree (BPT) representation of the image and a pruning strategy

directed by the estimated quality of the unmixing process. We show

that the use of a LSU approach obtains better reconstruction errors

than the global approach over a real data set.

The remainder of the paper is as follows: in Secs. 2 and 3 we

overview the linear spectral unmixing and the binary partition tree

representation of hyperspectral images, respectively. In Sec. 4 we

define the local spectral unmixing approach, and in Sec. 5 the pro-

posed BPT-based local spectral unmixing. In Sec. 6 and 7 we present

the experimental methodology and give the experimental results, re-

spectively. Finally, we make some conclusion remarks in Sec. 8.

2. SPECTRAL UNMIXING

Let E = [e1, . . . , em] be the pure endmember signatures in the hy-

perspectral image, where each ei ∈ R
q is a q-dimensional vector.

Then, the LMM states that an hyperspectral signature xj at j-th pixel

is defined by the expression:

xj =

m
∑

i=1

eiφji + nj , (1)

where nj denotes an independent additive noise component, and

φj = [φj1, . . . , φjm] is the m-dimensional vector of fractional

per-pixel abundances. The fractional abundances are constrained to

match physical properties by the abundance non-negative (ANC),

φij ≥ 0, ∀i, ∀j, and the abundance sum-to-one (ASC),
∑m

i=1 φij =
1, ∀j, constraints. Without the noise, the hyperspectral pixels in



the LMM (1) lie inside a simplex whose vertexes are the endmem-

bers. This geometrical property has led to the development of

multiple endmember induction algorithms (EIA) that estimate the

endmembers from the hyperspectral data set [6, 7]. Once the set of

endmembers, Ê, has been estimated from the data or selected from

a spectral library, their fractional abundances can be obtained by an

optimization process:

φ̂j = arg min
φj≥0

∥

∥

∥
rj − Êφj

∥

∥

∥

2

2
+ τ

∥

∥φj

∥

∥

1
, (2)

s.t.
∑m

i=1 φij = 1, where ‖·‖
p

denotes the p-norm. The second term

in (2) is a sparsity term that depends on the value of the sparsity

factor, τ . When τ = 0, Eq. (2) reduces to the classic constrained

least squares form.

3. BINARY PARTITION TREES

In the BPT representation, the leaf nodes correspond to an initial

partition of the image, which can be the individual pixels, or a

coarser segmentation map [8]. From this initial partition, an itera-

tive bottom-up region merging algorithm is applied until only one

region remains. This last region represents the whole image and

corresponds to the root node. All the nodes between the leaves and

the root result of the merging of two adjacent children regions. An

example of BPT is displayed in Fig. 1. If the initial partition contains

n leaf nodes, the final BPT contains 2n− 1 nodes.

Fig. 1. Construction of the Binary Partition Tree (BPT).

Two notions are of prime importance when defining a BPT: i)

the region model Mk which specifies how a region Xk is modelled,

and ii) the merging criterion O(Mα,Mβ), which is a distance mea-

sure between the region models of any two regions Xα and Xβ .

Each merging iteration involves the search of the two adjacent re-

gions which achieve the lowest pair-wise similarity among all the

pairs of adjacent regions in the current segmentation map. Those

two regions are consequently merged. Given a hyperspectral region

Xk, with Nk hyperspectral samples xk, k ∈ 1 . . . Nk, the first-order

parametric model Mk [9] is defined by the sample mean vector of

the hyperspectral samples µ̂k:

Mk : µ̂k =
1

Nk

Nk
∑

k=1

xk. (3)

Using the first-order parametric model (3), a merging criterion is de-

fined as the spectral angle distance, dSAD, between the sample mean

vectors of any two adjacent regions [10]:

O (Mα,Mβ) : dSAD

(

µ̂α, µ̂β

)

, (4)

where dSAD (a,b) = arccos
(

a
T
b

‖a‖‖b‖

)

.

The building of a BPT may suffer from small and meaningless

regions resulting in a spatially unbalanced tree. To overcome this

limitation, a priority term is included in the merging criterion that

forces those regions smaller than a given percentage of the average

region size to be merged first [11]. Often, the BPT is pruned to

achieve a segmentation where the nodes of the pruned tree represent

an optimal partition for some kind of applications.

4. LOCAL SPECTRAL UNMIXING

Let P denote a partition of a hyperspectral image X:

P (X) = {Xk}
K

k=1 , (5)

s.t. Xi

⋂

Xj = ∅, ∀i, j = 1, . . . ,K, i 6= j; and
⋃K

k=1 Xk =
X. The LSU methodology consists of estimating, independently

for each region, Xk, the endmembers, Êk, and the fractional abun-

dances, Φ̂k =
{

φ̂kj

}

, using the pixels indexed by the region, xj ∈

Xk. The locally estimated abundances, Φ̂k, form a partition of the

image abundance matrix, P
(

Φ̂

)

=
{

Φ̂k

}K

k=1
.

The sets of endmembers identified for each region can be

grouped together in a single set, E =
⋃K

k=1 Êk, that contains a

sampling of the spectral variability within the whole image. Then,

the endmembers in E can be clustered, i.e. by means of a spectral

angle distance-based K-Means, to obtain a set of spectral bundles

representing the spectral variability of the materials in the image:

Bi = {ẽil}
Li

l=1 , (6)

s.t. Bi

⋂

Bj = ∅, ∀i, j = 1, . . . ,m; and
⋃m

i=1 Bi = E , where

ẽi denotes a spectral variation of an endmember ei due to illumi-

nation or atmospheric effects, and Li denotes the total number of

spectral variations for the i-th endmember. Thus, the LSU works

as a methodology to locally estimate the spectral bundles represen-

tation of the endmembers in a hyperspectral image. Note that even

if the spectral meaning of the LSU is explained as spectral bundles,

this is a posterior step to the unmixing process and then, it differs

from the common use of spectral bundles for spectral unmixing.

5. BPT-BASED LOCAL SPECTRAL UNMIXING

Let Ω = {P (X)} be the set of all possible partitions of the hyper-

spectral image X given by a BPT representation of the image. In the

following, we propose two pruning criteria based on the LSU of the

partitions in Ω. The pruning criteria serve to obtain a partition of the

image that is optimal in terms of its local spectral unmixing. Each

proposed pruning criterion searches for the partition minimizing ei-

ther the average or the maximum of a reconstruction error quality

measure, ǫ (x, x̂), where x̂ = Êφ̂ is the reconstruction of the hy-

perspectral vector x by the estimated endmembers and correspond-

ing fractional abundances. Any reconstruction error quality measure

could be used, i.e. the root mean squared error or the spectral angle

distance. The pruning criterion based on the average of the error is

defined as:

P⋆
avg (X) = arg min

P(X)∈Ω

1

N

∑

Xk∈P(X)

∑

x∈Xk

ǫ(x, x̂), (7)

where N is the number of pixels in the image. Similarly, the partition

minimizing the overall maximum reconstruction error is defined as

P⋆
max (X) = arg min

P(X)∈Ω
max

x

ǫ(x, x̂), ∀x ∈ P (X) . (8)



Fig. 2. A false color representation of the Cuprite scene.

It is sometimes interesting to constrain the set of valid partitions, Ω,

to those containing regions above a minimum spatial size. In these

cases, the set Ω of valid partitions in (7) and (8) is replaced by the

subset of size-constrained valid partitions, Ωc:

Ωc = {P (X) ∈ Ω, s.t. ∀R ∈ P (X) , |R| ≥ c} , (9)

where |R| denotes the cardinality (number of pixels) of region R
and c ≥ 0 is a threshold on the region size.

6. EXPERIMENTAL METHODOLOGY

We compare the proposed LSU approach to the conventional one

using the whole image, and hereafter, named as global spectral

unmixing (GSU), to induce the endmembers and estimate the corre-

sponding abundances. We test the two approaches using the Cuprite

dataset [12] (see Fig. 2). The scene was taken by the NASA’s

AVIRIS sensor and covers the Cuprite mining district in western

Nevada, USA.

We define the experimental unmixing process as the application

of the Vertex Component Analysis (VCA) [13] to induce the end-

members from a given set of pixels. The VCA is run 10 times per

region in order to avoid issues due to its stochastic nature, retain-

ing the set of endmembers with maximum simplex volume. Then,

the unmixing process estimates the abundances corresponding to the

induced endmembers and the given set of pixels by solving the opti-

mization problem in (2) with sparsity, τ = 10−3, and without spar-

sity, τ = 0.

For the case of the GSU, the unmixing process is run over the

whole data set. For the LSU, we have implemented the proposed

BPT-based LSU (Sec. 5), where the BPT representation is built us-

ing the first order parametric model (3) and the merging criterion de-

fined in (4). Then, the unmixing process is independently run over

each node of the BPT representation in order to find the optimal par-

tition given by the two pruning strategies (7) and (8) using as the

reconstruction error, ǫ (x, x̂), the root mean squared error (RMSE)

and the spectral angle distance (SAD):

ǫRMSE (x, x̂) =

√

√

√

√

1

q

q
∑

t=1

(x(t) − x̂(t))
2

(10)

ǫSAD (x, x̂) = arccos

(

x
T
x̂

‖x‖‖x̂‖

)

. (11)

The pruning criteria were constrained by a region minimum size pa-

rameter (9) set in the range c ∈ [100 : 1000] with step size of 5.

7. RESULTS

Figs. 3 and 4 show the average reconstruction errors (RMSE and

SAD, respectively) obtained by the LSU and GSU approaches. The

horizontal axis shows the number of regions in the partition obtained

by the pruning criterion according to the value of the region size con-

straint c. As the value of c increases, the obtained partitions contain

a lower number of regions, but eventually a range of close c val-

ues yields to the same optimal partition. The value obtained for the

global approach is shown as a constant value for a better visual com-

parison, but there is only one region as the global approach is applied

to the whole image. The BPT-based LSU approaches outperform the

global ones in all cases except for the maximum RMSE pruning cri-

terion with sparse-constrained abundance estimation, where the av-

erage SAD values are worse. The pruning criteria based on the min-

imization of the mean reconstruction error (7) obtain in most cases

the best average RMSE and SAD results independently of the recon-

struction error selected for the optimization, with partitions contain-

ing few regions (less than 20) in the case of the abundances obtained

without sparsity.
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Fig. 3. Average RMSE reconstruction errors of the LSU with the

different pruning strategies and the GSU. The t parameter denotes

the sparsity factor set for the abundance estimation.
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Fig. 4. Average SAD reconstruction errors of the LSU with the dif-

ferent pruning strategies and the GSU. The t parameter denotes the

sparsity factor set for the abundance estimation.

Fig. 5 shows the segmentation maps obtained by the mean

RMSE pruning criterion when the size constraint is set to c = 100,

that is, the reconstruction errors corresponding to the rightmost



points of the LSU plots in Figs 3 and 4 (dark and light blue dia-

monds). When no sparsity is enforced, most of the regions in the

obtained partition are covering the variability located in the right-

most part of the image. However, when sparsity is enforced, there

are also a set of regions covering the leftmost part of the image. In

both cases the largest region covers the most homogeneous area of

the image. This suggests that even if the reconstruction errors are

slightly better for the non-sparse pruning, the use of sparsity could

be more reasonable in terms of spectral variability representation

and abundance estimation.

(a) (b)

Fig. 5. Partition obtained from the BPT representation by the mean

RMSE pruning criterion with region size constraint set to c = 200:

a) without sparsity (t = 0) and, b) with sparsity (t = 10−3).

The computational times required to build the BPT represen-

tations and populate them with the unmixing information using a

64bits 4 core Intel Xeon(R) CPU at 2.80GHz is about 28 mins. The

computational time is mainly due to the unmixing process (which

is run ten times for each region), since the computational cost of

the BPT construction and the posterior pruning is almost negligible.

However, this approach is well suited for parallelization, and further

efforts will be done to reduce the computational burden by taking

advantage of the hierarchical structure to populate the tree with the

unmixing information.

8. CONCLUSIONS

We have introduced a novel general approach based on the local

spectral unmixing of hyperspectral images in order to overcome the

limitations of the classical global spectral unmixing when there are

several mixtures of materials or spectral variability due to illumina-

tion and atmospheric effects. We have also proposed a BPT-based

implementation of local spectral unmixing. Results show that the

proposed approach yield better reconstruction errors, suggesting that

it is able to cope with these issues. We concluded that this a promis-

ing methodology that requires of further work to completely under-

stand the nuances of the proposed BPT-based local spectral unmix-

ing. We will focus on the use of BPT representations built over an

unmixing-based model and merging criterion, on the evaluation of

the proposed local spectral unmixing in more depth, with real and

synthetic data, in terms of reconstruction quality but also in terms

of abundances estimation. Also, we need to explore the unmixing

information contained through the spatial scales, and make an effort

to reduce the computational burden.
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