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ABSTRACT

Spectral variability is a phenomenon due, to a grand extend, to varia-

tions in the illumination and atmospheric conditions within a hyper-

spectral image, causing the spectral signature of a material to vary

within a image. Data spectral fluctuation due to spectral variabil-

ity compromises the linear mixing model (LMM) sum-to-one con-

straint, and is an important source of error in hyperspectral image

analysis. Recently, spectral variability has raised more attention and

some techniques have been proposed to address this issue, i.e. spec-

tral bundles. Here, we propose the definition of an extended LMM

(ELMM) to model spectral variability and we show that the use of

spectral bundles models the ELMM implicitly. We also show that

the constrained least squares (CLS) is an explicit modelling of the

ELMM when the spectral variability is due to scaling effects. We

give experimental validation that spectral bundles (and sparsity) and

CLS are complementary techniques addressing spectral variability.

We finally discuss on future research avenues to fully exploit the

proposed ELMM.

Index Terms— Spectral unmixing, extended linear mixing

model, spectral bundles, sparsity, CLS.

1. INTRODUCTION

Hyperpectral unmixing is one of the most important and widely used

techniques in hyperspectral image analysis. It consists in decom-

posing the hyperspectral image into a set of spectral signatures cor-

responding to macroscopically pure materials, named endmembers,

and a set of cover proportions comprised in a fractional abundance

matrix. In the Linear Mixing Model (LMM) [1], hyperspectral data

are modelled as a linear combination of the endmembers weighted

by their fractional abundances. According to the LMM definition,

data lie into a simplex whose vertexes are defined by the endmem-

bers.

However, real data present fluctuations that make them lie out-

side the simplex. These fluctuations are due to variable illumination

and atmospheric conditions, causing the spectral signature of a ma-

terial to vary within the image [2]. This is known as the spectral vari-

ability issue and, not addressing it may introduce errors that propa-

gate throughout the hyperspectral image analysis process. Recently,

authors in [2] presented an overview of the techniques to address
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spectral variability which could be roughly divided in two: a) repre-

senting the spectral variability by spectral bundles and, b) modelling

the variability by means of probabilistic distributions.

Here, we propose an extension to the LMM, called Extended

LMM (ELMM), to face spectral variability. This ELMM is based

on the model defined in [3] and relies on the definition of a pixel-

dependent function, called the spectral variability function, that de-

fines how a given endmember varies along the image. We show

that the use of spectral bundles is a methodology to implicitly model

this spectral variability function. We further prove, that given some

assumptions, the Constrained Least Squares (CLS) unmixing pro-

cess is an explicit model of this function. We overview these two

approaches, i.e., spectral bundles and CLS unmixing. In addition,

we study the use of sparsity constraints on the light of the proposed

ELMM and we discuss further research avenues to enhance the mod-

elling of spectral variability using the ELMM. We experimentally

show that both, spectral bundles and CLS, are complementary tech-

niques to address spectral variability. We also show that adding spar-

sity terms to the unmixing optimization process is helpful in combi-

nation with the spectral bundles, and that CLS is inherently enforc-

ing sparsity as some authors have pointed out before [4, 5].

The remainder of the paper is as follows: Sec. 2 introduces the

ELMM. Sec. 3 overviews spectral bundles, sparsity and CLS on the

light of the proposed ELMM. Sec. 4 provides experimental insight.

Sec. 5 presents a discussion on future research avenues to further

exploit the proposed ELMM, and finally we give some conclusion

remarks in Sec. 6.

2. THE EXTENDED LINEAR MIXING MODEL

Let E = [e1, . . . , em] denote the pure endmember signatures in the

hyperspectral image, where each ei ∈ R
q is a q-dimensional vector.

The LMM models a hyperspectral vector rj at j-th pixel as follows:

rj = sj + nj =
m
∑

i=1

eiφij + nj , (1)

where rj is given by the sum of the pixel’s signal sj and an inde-

pendent additive noise component nj ; and, φj is the m-dimensional

vector of fractional per-pixel abundances. The constraints on the

fractional abundances are given by:

(ANC) φij ≥ 0, ∀i, ∀j, (2)

(ASC)
∑m

i=1
φij = 1, ∀j. (3)

Dismissing the noise, the hyperspectral pixels in the LMM (1) lie

inside a simplex whose vertexes are the endmembers and their frac-



tional abundances can be estimated by an optimization process

φ̂j = arg min
φj≥0

∥

∥

∥

∥

∥

rj −
m
∑

i=1

eiφij

∥

∥

∥

∥

∥

2

, (4)

subject
∑m

i=1
φij = 1.

However, in real scenarios, spectral variabilities seriously affect

the LMM. These variabilities can be modelled as a pixel-dependent

function of the endmembers, f : Rq → R
q , so the LMM in (1) is

redefined as:

rj =
m
∑

i=1

fj (ei)φij + nj . (5)

The model in (5) will be hereafter named as the Extended LMM

(ELMM).

3. ASSESSING SPECTRAL VARIABILITY

The use of the ELMM (5) to model spectral variability can be ad-

dressed in two ways: i) by implicitly encompassing the spectral vari-

ability in the scene and, ii) by explicitly modelling the variability

function, fj (ei), in (5). The use of spectral bundles is a solution to

the former while, under some assumptions, the partially constrained

least squares (CLS) solution to (1) is a solution to the latter one, as

we prove below.

3.1. Spectral bundles and sparsity

Spectral bundles are sets of spectral signatures that implicitly repre-

sent spectral variability. A given spectral bundle:

Bi = {ẽik}
K

k=1
, (6)

is composed of a set of K spectral signatures, {ẽik}, that account for

the spectral variability of an endmember, ei. The spectral bundles

approach does not explicitly model the variability function, fj (ei),
but it works as a collection of outcomes of the variability function

that implicitly represent the spectral variability along the whole im-

age.

In order to build the spectral bundles from the data, B =
⋃m

i=1
Bi, one can run an endmember induction algorithm over

multiple subsets of the data set obtained by sampling with replace-

ment [6]. An alternative approach consists in a local definition of the

bundles by using a sliding window [7]. Anyway, the spectral bun-

dles are usually a large collection of spectra. Therefore, the spectral

unmixing of the data by spectral bundles is usually accompanied

with a sparsity constraint which enforces that only a few spectral

signatures in the bundle take positive abundance values:

φ̂j = arg min
φj≥0

∥

∥

∥

∥

∥

rj −
L
∑

l=1

ẽlφlj

∥

∥

∥

∥

∥

2

2

+ τ‖φj‖1, (7)

subject
∑m

i=1
φij = 1, where τ ≥ 0 is a regularization parameter

and ‖·‖
p

denotes the p-norm.

3.2. Partially constrained least squares (CLS)

Since spectral variability is dominated by scaling factors [8], we

adopt the following spectral variability function:

fj (ei) = λijei, (8)

Fig. 1. A false color representation of the Cuprite hyperspectral data

set.

where λij ≥ 0 denotes a scaling factor. Substituting (8) into the

ELMM (5):

rj =

m
∑

i=1

eiλijφij + nj . (9)

In (9), the hyperspectral pixels lie inside the positive hypercone de-

fined by the endmembers. The CLS is an approximate solution to (9)

which is solved by the following optimization problem:

âj = arg min
aj≥0

∥

∥

∥

∥

∥

rj −

m
∑

i=1

eiaij

∥

∥

∥

∥

∥

2

, (10)

The estimated weighting factors incorporate the information from

the spectral abundances, φij and the scaling factors, λij , that is:

âij = λ̂ij φ̂ij . (11)

In order to retrieve both informations from (11), it is possible to

assume that the scaling factor is the same for all the endmembers,

λij = λj , ∀i, and then, estimate it as:

λ̂j =
m
∑

i=1

âij . (12)

This makes sense only when the variability is due to illumina-

tion/topographic factors [9]. Then, the fractional abundances can

be obtained by normalizing the vector of weighting factors by the

estimated scaling factor, φ̂ij = âij/λ̂j , so the ASC (3) is fulfilled.

The CLS is a simple approach to address the spectral variability

assuming this is given by a scaling factor that affects equally to all

the endmembers present in a pixel.

4. EXPERIMENTAL VALIDATION

Here we intent to experimentally get an insight on the capability of

the spectral bundles, sparsity and CLS methodologies to address the

spectral variability issue. We test the aforementioned approaches

on the Cuprite data set [10] (see Fig. 1). The scene was taken by

the NASA’s AVIRIS sensor and covers the Cuprite mining district in

western Nevada, USA.

We made use of the Vertex Component Analysis (VCA) algo-

rithm [3] to induce the endmembers from the data. We built three

sets of endmembers: the classical approach running the VCA over

the whole dataset, denoted as E, and two spectral bundles using the
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Fig. 2. Spectral signatures of the set of endmembers E (blue) and

the two bundle sets, R (red) and W (green), and their assignation to

one of the five ground truth endmembers (black).

sampling with replacement and the sliding window methods, respec-

tively denoted as R and W. In order to solve the unmixing opti-

mization problems, we use the SUnSAL algorithm [11], which is an

instance of the C-SALSA methodology introduced in [12] to effec-

tively solve a large number of constrained LS problems sharing the

same matrix system.

Fig. 2 shows the spectra of the set of endmembers E and the two

spectra bundles, R and W. We assigned each spectral signature to

the closest spectral signature of the materials known to be present in

the scene, in terms of spectral angle distance. The spectral signatures

has been obtained from the USGS spectral library. In total, the set E

contains 17 endmembers while the bundles R and W contain 1669
and 1353 spectral signatures respectively. It can be noted that the

bundle sets cover an abroad spectral variability range. The Kaolinite

endmember seems difficult to retrieve. This could be due to scarcity

of the material or to its mixture with Alunite which presents a sim-

ilar spectral pattern. Nevertheless, the sampling with replacement

bundle is able to induce a few spectral signatures corresponding to

this endmember.

Fig. 3 shows the average reconstruction errors obtained for the

three different endmember induction approaches combined to the

FCLS or CLS unmixing, with or without sparsity, where t denotes

the value assigned to the sparsity factor. The CLS approach outper-

forms the FCLS approach as it was expected, and it is specially re-

markable for the E set, where there is no implicit information about

spectra variability in the form of a bundle. The use of spectral bun-

dles also yields to a great improvement of the reconstruction errors.

Sparsity only works if there is enough spectral variability, that is,

when the spectral bundles are used, but in these cases helps to obtain

a better reconstruction. However, setting the sparsity factor to a high

value (t = 10−2), has a counter-effect yielding to poor reconstruc-

tion results. Finally, the sliding window approach obtains the best

results, showing that the use of locality in the bundles construction

is meaningful. In Fig. 4 it is shown the distributions of the number

of spectral signatures that take positive abundance values (φ > 0)

for each approach. This strengthens the above idea that, in order to

enforce sparsity, it is necessary to model the spectral variability by

the set of endmembers. Also, it can be shown that the CLS approach

indirectly enforces some sparsity as it was noted in [4, 5].

The experimental results reinforces the notion that both spectral

bundles and CLS are valuable approaches to address spectral vari-

ability, and that sparsity could help as well when it is combined with
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Fig. 4. Active endmembers

the spectral bundles, that is, when there is enough implicit spectral

variability in the set of spectra used to solve the unmixing optimiza-

tion problem.

5. DISCUSSION

The proposed ELMM (5) is a natural extension of the LMM (1)

in order to model spectral variability. The ELMM is based on the

definition of a spectral variability function that expresses the pixel-

dependent variability of each endmember. Here, we have discussed

spectral bundles and CLS techniques on the light of this extended

model, and we have shown how they implicitly or explicitly model

it. Following, we discuss some avenues for further work: 1) The

spectral bundles implicitly model fj (ei), but it could be possible to

use the spectral bundles to estimate fj (ei) from the data, i.e. us-

ing parametric models. 2) The CLS approach makes use of strong

assumptions to solve fj (ei). Further work will make emphasis in

more relaxed assumptions that will require additional information,

i.e. spatial smoothness of the scaling factor across the image. 3) In

the text, in order to keep the explanation as clear as possible, it has

been avoided to define the spectral variability function in terms of the

spectral bands. However, it is reasonable that the spectral variability

varies according to the spectral wavelengths (ω): fω
j (eωi ). However,

this adds an extra complexity to the model. 4) In this paper we have

focused on the use of deterministic sets (endmembers and bundles)

to define the spectral information.

6. CONCLUSIONS

We have shown on the light of a new Extended LMM that spectral

bundles and CLS are two different ways to model the spectral vari-

ability in a hyperspectral image. We also have provided experimental

results that highlights the performance of these approaches respect

to the classical approach based on a set of endmembers. The use of

sparsity has been also considered and shown that it plays a role only

when spectral variability is included in the set of spectral signatures.

Finally, we have discussed future research avenues in order to further

exploit the proposed Extended LMM.
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