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ABSTRACT

The snow coverage area (SCA) is one of the most important

parameters for cryospheric studies. The use of remote sens-

ing imagery can complement field measurements by provid-

ing means to derive SCA with a high temporal frequency and

covering large areas. Images acquired by the Moderate Res-

olution Imaging Spectroradiometer (MODIS) are perhaps the

most widely used data to retrieve SCA maps. Some MODIS

derived algorithms are available for subpixel SCA estimation,

as MODSCAG and MODImLab. Both algorithms make use

of spectral unmixing techniques using a fixed set of snow,

rocks and other materials spectra (endmembers). We aim to

improve the performance of a modified version of MODIm-

Lab algorithm by exploring advanced spectral unmixing tech-

niques. Furthermore, we make use of endmember induction

algorithms to obtain the endmembers from the data itself in-

stead of using a fixed spectral library. We validate the pro-

posed approach on a case study in the mountainous region of

the Alps.

Index Terms— Snow coverage area, SCA, spectral un-

mixing, MODIS, Alps.

1. INTRODUCTION

The snow coverage area (SCA) is one of the most impor-

tant parameters for cryospheric studies [1]. The amount of

snow fallen on the surface is of fundamental importance for

studies in many fields such as hydrology (for the retrieval of

the snow water equivalent, or flood forecasting), energy (esti-

mations of the expected hydroelectric power), glaciology (for

estimation of mass balances of glaciers) and climate change

studies (detection of anomalies and trends in the evolution of

the snow coverage over the years due to climate fluctuations).

The estimation of the SCA is usually conducted using field

measurements, either manual surveys or automatic weather

stations on the ground. Although this approach leads to ac-

curate measurements, these are limited to local scale and do

not provide data with a large spatial coverage. Remote sens-

ing imagery can complement these measurements by provid-

ing means to derive SCA with a high temporal frequency and

covering large areas through the analysis of the acquired im-

agery.

Among all the remote sensing products, images acquired

by the Moderate Resolution Imaging Spectroradiometer

(MODIS) are perhaps the most widely used data to retrieve

SCA maps. MODIS is an imaging sensor aboard the Terra

and Aqua satellites, which are viewing the entire Earths sur-

face every one to two days, acquiring data in 36 spectral

bands1. The MODIS snow products include the MODIS

fractional snow cover based on spectral unmixing (MOD-

SCAG) [2]. The MODSCAG product assumes that the mea-

sured reflectance of each pixel is given by a linear mixture of

a set of pure spectra (e.g., snow, ice, vegetation, and rocks),

which are called endmembers. Although the MODSCAG

product has proved to be more accurate than the methods

based on the normalized difference snow index [3, 4], its

wide application is limited by the selection of the endmem-

bers. Currently, these are fixed and do not comprehensively

account for the different states of the snow surface (e.g., dirty

snow is not accounted, [7]). The MODImLab algorithm in-

troduced in [5], corrects the reflectance values by considering

topographic and atmospheric effects, and obtains the SCA

with the algorithm described in [6] which performs a spectral

unmixing on a set of images at 250m by fusing the reflectance

bands at 500m with the two at 250m. Authors in [7] extended

the work in [5] by comparing different retrieval techniques

for snow grain size.

Here, we extend the approach in [7] by exploring the ap-

plication of more advanced spectral unmixing techniques for

increasing the precision in retrieving the SCA maps. We ad-

dress the spectral variability issue by using a (partially) con-

strained least squares unmixing (CLSU) algorithm. Further-

more, we make use of endmember induction algorithms to

induce the endmembers from the data instead of using a fixed

1http://modis.gsfc.nasa.gov



spectral library. By adapting the endmembers to the data we

expect to improve the unmixing results while still being capa-

ble of identifying the different snow conditions. Experimental

validation will be provided through a case study in the moun-

tainous region of the Alps.

The remainder of the paper is as follows. In Sec. 2, an

overview of spectral unmixing is given. In Sec. 3, advanced

spectral unmixing techniques and the induction of endmem-

bers from data are presented. In Sec. 4, we give experimental

validation of the improved subpixel monitoring of snow cover

by a case study in the region of the Alps. Finally, we provide

some conclusions in Sec. 5.

2. SPECTRAL UNMIXING

The Spectral Unmixing (SU) is the process by which a given

pixel is decomposed in the spectral signatures of the materials

that contains and their fractional abundances. The most com-

mon approach relies in the assumption that a pixel is formed

by a linear combination of the spectral signatures of pure ma-

terials present in the sample (endmembers), normally corre-

sponding to macroscopic objects in scene, plus some additive

noise. This is the so-called Linear Mixing Model (LMM). Let

E = [e1, . . . , em] be the pure endmember signatures, where

each ei ∈ R
q is a q-dimensional vector. Then, the LMM

states that a pixel signature, r ∈ R
q , is defined by the expres-

sion:

r =

m
∑

i=1

eiφi + n, (1)

where φ is the m-dimensional vector of fractional per-pixel

abundances and n is an independent additive noise compo-

nent. Some physical constraints can be enforced regarding the

fractional abundances. The Abundance Non-negative Con-

straint (ANC), φi ≥ 0, ∀i, ensures that there are not materi-

als with negative contributions. The Abundance Sum-to-one

Constraint (ASC),
∑m

i=1
φi = 1, makes the total contribu-

tions of the materials sum up to one. In this model, the pixels

lie inside a simplex whose vertexes are the endmembers.

Given the endmembers, the spectral unmixing aims to

estimate their fractional abundances for each pixel indepen-

dently. This can be modelled as an inversion problem:

φ̂ = argmin
φ

∥
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∥

∥

∥
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m
∑
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∥

∥

∥

∥

∥

2

, (2)

subject to ANC and ASC abundance constraints. A solu-

tion to (2) is given by the full constrained (FC) least squares,

which in the spectral unmixing context is known as the FC-

least squares unmixing (FCLSU).

3. ADVANCED SPECTRAL UNMIXING AND

ENDMEMBERS INDUCTION

3.1. Spectral variability

In real scenarios, the LMM and the fractional abundances es-

timated by the FCLSU are seriously affected by spectral vari-

abilities due to variable illumination and environmental, at-

mospheric, and temporal conditions. By ignoring these vari-

ations, errors are introduced and propagated through hyper-

spectral image analysis [8]. A simple way to address spectral

variations is by dropping the ASC constraint, and solving (2)

by (partially) constrained least squares unmixing (CLSU).

In this model, variabilities can be modelled as a scaling

factor, λ > 0, that affects each endmember at a given pixel:

r =

m
∑

i=1

eiαiφi + n. (3)

In this extended LMM model, the hyperspectral pixels lie in-

side the positive hypercone defined by the endmembers. The

CLSU implements the extended LMM (3) by solving the fol-

lowing inversion problem, r =
∑m

i=1
eiai + n, where the

estimated weighting factors, ai, are ANC but not ASC. The

estimated weighting factors incorporate the information from

the spectral abundances, θi and the scaling factors, αi, that is,

ai = αiφi. In order to retrieve the fractional abundances, it

is possible to assume that the scaling factor is the same for all

the endmembers, αi = α, ∀i, and estimate it as α =
∑m

i=1
ai.

Then, the fractional abundances are obtained by normalizing

the vector of weighting factors by the estimated scaling factor,

φi = ai/α.

3.2. Endmembers induction algorithms

Most of the times, the spectral signatures of the materials are

unknown, and the set of endmembers must be built by either

selecting spectral signatures from a spectral library, or by in-

ducing them from the image itself. Both can be performed

manually or in an automatic way. In order to automatically in-

duce the set of endmembers from the image, the use of some

endmember induction algorithm (EIA) is required. The hy-

perspectral literature features plenty of such algorithms [9].

Among them, algorithms exploiting the geometrical char-

acteristics of the LMM provide a simple and powerful ap-

proach to endmember induction. These algorithms look for a

simplex set that contains the data. Therefore, finding the end-

members is equivalent to identifying the vertices of the sim-

plex. The vertex component analysis (VCA) algorithm [10],

presents a great trade-off between performance and compu-

tational complexity. VCA iteratively projects data onto a di-

rection orthogonal to the subspace spanned by the endmem-

bers already determined. The new endmember signature cor-

responds to the extreme of the projection. The algorithm iter-

ates until all endmembers are exhausted.



4. A STUDY CASE IN THE ALPS

We explored a case study with MODIS images in the moun-

tainous region of the Alps. We followed the processing

chain detailed in [7] and compared the use of FCLSU with

respect to CLSU given a spectral library of 8 endmembers

(see Fig. ??). We also compared the use of an endmember

induction algorithm before applying CLSU. In the latter case,

we used the VCA algorithm. The MODIS acquisitions com-

prises five snow seasons: 2005-06, 06-07, 09-10, 10-11 and

11-12. After removing those images where the scene was

fully covered by clouds, 854 acquisition days remained.

Fig. 1. Spectral library of 8 endmembers used to unmix the

data.

Fig. 2 shows the average Spectral Angle Mapper (SAM),

average ERGAS and average Q index reconstruction errors.

These are common quality measures in unmixing literature,

whereas for the former two, zero is the best value; while for

the latter, one is the best. The CLSU outperforms the FCLSU

in terms of reconstruction quality, and the use of CLSU with

the set of endmembers induced by the VCA gives the best

reconstructions. It can be noted that the errors in some ac-

quisitions are particularly bad for the FCLSU and CLSU ap-

proaches. This is due to particularly bad climatological condi-

tions (wide cloud covering). The EIA+CLSU approach over-

comes this issue due to the adaptation of the induced end-

members to the particularities of the data.

Fig. 3 shows the average fractional abundances obtained

by FCLSU and CLSU approaches respectively. It is interest-

ing to note that the FCLSU approach reports a higher abun-

dance of glacier snow, while the CLSU approach reports old

coarse and ice instead. The peaks of 100% abundance corre-

sponds to the cloudy acquisition days.

5. CONCLUSIONS

We have preform a preliminary study of the possibilities and

challenges of using a partially constrained unmixing instead

of the conventional fully constrained one, in order to address

Fig. 2. Average reconstruction errors for the Arves dataset:

(top) SAM, (middle) ERGAS, (bottom) Q index.

issues related to spectral variabilities. We also considered the

use of endmember induction algorithms instead of a spec-

tral library. The CLSU and the EIA+CLSU approaches re-

sults in an unmixing that fits the data better than the conven-

tional FCLSU approach. However, the fractional abundances

reported by the CLSU considerably differ from the ones re-

ported by the FCLSU approach, where the latter reports an

abundance of glacier snow, while the former reports abun-

dances of old coarse and ice. This aspect will be further in-

vestigated by considering snow cover maps obtained from the

high spatial resolution SPOT sensor and on field ground truth

measures obtained by MeteoFrance. Also, the meaning of the

endmembers induced by the EIA will be considered.



Fig. 3. Average reconstruction errors for the Arves dataset:

(top) FCLSU, (bottom) CLSU.
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