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ABSTRACT

Remote sensing hyperspectral images (HSI) are quite often lo-

cally low rank, in the sense that the spectral vectors acquired from

a given spatial neighborhood belong to a low dimensional sub-

space/manifold. This has been recently exploited for the fusion of

low spatial resolution HSI with high spatial resolution multispec-

tral images (MSI) in order to obtain super-resolution HSI. Most

approaches adopt an unmixing or a matrix factorization perspective.

The derived methods have led to state-of-the-art results when the

spectral information lies in a low dimensional subspace/manifold.

However, if the subspace/manifold dimensionality spanned by the

complete data set is large, the performance of these methods de-

crease mainly because the underlying sparse regression is severely

ill-posed. In this paper, we propose a local approach to cope with

this difficulty. Fundamentally, we exploit the fact that real world HSI

are locally low rank, to partition the image into patches and solve the

data fusion problem independently for each patch. This way, in each

patch the subspace/manifold dimensionality is low enough to obtain

useful super-resolution. We explore two alternatives to define the

local regions, using sliding windows and binary partition trees. The

effectiveness of the proposed approach is illustrated with synthetic

and semi-real data.

1. INTRODUCTION

In recent years, there has been a huge improvement of spectral and

spatial resolutions in the design of remote sensing sensors. How-

ever, it seems that it is not possible to achieve both of them simul-

taneously. This is due, on the one hand, to the system trade-off re-

lated to data volume and signal-to-noise ratio (SNR) limitations and,

on the other hand, to the specific requirements of different applica-

tions [13]. Then, there is a need for super-resolution techniques that

fuse high spectral resolution images, such as hyperspectral images

(HSI), with high spatial images such as multispectral images (MSI)

or panchromatic images, in order to obtain high spectral and spatial

(super-resolution) images.

Recently, some techniques dedicated to the fusion of HSIs and

MSIs have been proposed. A general trend is to associate this prob-

lem with either linear spectral unmixing, which assumes that the un-

derlying data can be described by a mixture of a relatively small
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number of ”pure” spectral signatures, corresponding to the mate-

rials present in the scene or, with the learning of a spectral dic-

tionary that codifies the information present on the images. Since

both HSIs and MSIs capture the same scene, the underlying mate-

rials (the so-called endmembers) or the dictionaries should be the

same. Therefore, the spectral information extracted from one of the

images should also be able to explain the other one. Due to the high

spectral resolution of the HSIs, the endmembers or the dictionary are

extracted from these data, and are then used to reconstruct the MSI.

Since MSIs have high spatial resolution, the final reconstructed im-

age will be at super-resolution. Hyperspectral super-resolution could

improve the results of further analysis, such as super-resolution map-

ping [14, 15, 21, 23].

1.1. Related work

Zurita et al. [24], introduced one of the first unmixing-based ap-

proaches to the fusion of remote sensing multiband images. A re-

lated approach is proposed in [9], where a very high-resolution hy-

perspectral image is estimated from a lower-resolution hyperspec-

tral image and a high-resolution RGB image. The method starts by

identifying an unmixing matrix used to represent the hyperspectral

spectra and then uses this matrix in conjunction with the RGB in-

put to compute, via sparse regression, representation coefficients for

the high-resolution hyperspectral image. This methodology can be

viewed as a factorization of the input into a mixing matrix and a set

of maximally sparse coefficients. An approach with similar flavour

is proposed in [6]. The main difference is that the mixing matrix is

replaced by a dictionary learnt using a non-negative matrix factoriza-

tion with sparsity regularization on the code. In [7], the hyperspec-

tral data is unmixed via the K-SVD algorithm, and the multispsectral

data is reconstructed using orthogonal matching pursuit to induce

sparsity. Authors in [13] proposed a method where two dictionaries

were learned from the two different data, and then used a dictionary-

pair learning method to establish the correspondence between them.

A similar and older technique introduced in [22] alternately unmixes

both sources of data to find the signatures and the abundances of the

endmembers.

1.2. Contribution

In real world HSI, it is very likely that in a small spatial neighbour-

hood the number of different materials is small, i.e., these images

are locally low rank. We take advantage of this property to pro-

pose a local super-resolution methodology. Firstly, we propose two

approaches, one using a square sliding window of fixed size and a

second using a binary partition tree representation, to obtain a set

of patches from the image, such that the set of pixels with indices



in each patch span a subspace of lower dimensionality than that of

the whole image. Secondly, we exploit the locally low rank prop-

erty of the pixels of each patch by using an endmembers induction

algorithm (EIA) to find the low rank subspace spanned by the spec-

tral signatures of the materials present in each patch. The proposed

methodology does not need to estimate the spatial blur, as far as it is

constant across bands.

1.3. Outline

The remainder of the paper is organized as follows: in Sec. 2 the

super-resolution problem is formulated, in Sec. 3 the proposed lo-

cal super-resolution methodology is introduced and finally, in Sec. 4

experimental results and some concluding remarks are provided.

2. PROBLEM FORMULATION

Let X ∈ R
nh×n denote a HSI with nh spectral bands (rows of

X) and n = nx × ny pixels (columns of X). We may interpret

X either as a collection of nh images (or bands) of size nx × ny ,

each one associated to a given wavelength interval, or as a collection

of n spectral vectors of size nh, each one associated with a given

pixel. In this work, we are concerned with the estimation of X,

which we term the original HSI, from two degraded observations

of X: a) a low spatial resolution HSI, Yh ∈ R
nh×(nx/d)×(ny/d),

where d > 1 denotes a spatial downsampling factor, and b) a MSI,

Ym ∈ R
nm×nx×ny , where nm ≪ nh. We assume that Yh is

generated as

Yh = XBM+Nh, (1)

where B ∈ R
n×n is a matrix modeling band independent sensor

blur, M ∈ R
n×(n/d2) is a masking matrix accounting for spatial

downsampling of size d on both spatial dimensions, and Nh is an

additive perturbation. Concerning the MSI, Ym, we assume the gen-

eration model

Ym = RX+Nm, (2)

where the matrix R ∈ R
nm×nh holds in its columns the nh spectral

responses of the multispectral sensor, and Nm is an additive pertur-

bation.

Let us suppose that it is possible to learn a dictionary D ∈
R

nh×nd from the hyperspectral image Yh, and that the columns X,

denoted by xi, for i = 1, . . . , n, may be sparsely represented as lin-

ear combinations of the columns of D. That is, given xi for i ∈ S,

there is a sparse vector αi ∈ R
nd (i.e., only a few components of

αi are non-zero) such that:

xi = Dαi. (3)

By replacing (3) in (2), we obtain:

Ym = RDA+Nm, (4)

where A ≡ [α1, . . . ,αn], is often termed as code in dictionary

learning and sparse regression applications. If equation (4) can be

solved with respect to A, then we may plug its solution into (3) and

thereby obtain an estimate of X.

The success of a dictionary-based approach depends fundamen-

tally on the ability to solve (4) with respect to A. The difficulty

in solving this system comes from the fact that the system ma-

trix RD ∈ R
nm×nd is often fat, i.e., nm < nd, yielding an

undetermined system of equations. A typical multispectral sensor

has less than 10 bands, quite often 4 in the wavelength interval

[0.4, 2.5]microns where most hyperspectral sensors operate, whilst

nd is often of the order of a few tens. The ill-posedness of (2) when

nm < nd may be cured by exploiting the sparsity of the codes

αi, for i ∈ S, which opens the door to all sort of sparse regres-

sion techniques, many of them recently introduced in compressive

sensing [2] applications. Nevertheless, we still face a difficulty:

in hyperspectral applications, the columns of D tend to be highly

correlated, implying that the mutual coherence of the columns of

RD is close to 1. This makes (2) ill-posed even when codes αi, for

i ∈ S, are sparse [8, 4].

In the next section, we introduce two local dictionary-based

techniques conceived to cope with the ill-posedness with origin in

the matrix system RD. The main idea, in the vein of the local ap-

proaches to image restoration, is to decompose the HSI into patches

and build patch-dependent dictionaries such that nm ≥ nd in each

patch. Thereby, the inverse problem of solving (2) in each patch is

well-posed.

3. LOCAL DICTIONARY BASED HSI

SUPER-RESOLUTION

3.1. Local spatial patches definition

Let Pj denote the set of patches obtained from an image, Yh, such

that the set of pixels with indices in each patch, Yj ≡ [yi, i ∈ Pj ],
span a subspace of lower dimensionality than that of Yh. Next, we

introduce two approaches to obtain such patches. The first approach

uses a sliding window and the second approach relies on a binary

partition tree (BPT) representation [12].

3.1.1. Using a sliding window of fixed size

The sliding window methodology has been broadly used in image

processing. It consists in defining a square window of fixed size so

the pixels lying inside the window form a patch. The window then

slides over the whole image in a standard zig-zag way, be it with

some overlapping or not, eventually covering the whole image and

defining the image patches, Pj .

3.1.2. Using a BPT representation

The BPT is a hierarchical region-based representation of an image in

a tree structure [12]. In the BPT representation, the leaf nodes corre-

spond to an initial partition of the image, which can be the individual

pixels, or a coarser segmentation map. From this initial partition, an

iterative bottom-up region merging algorithm is applied until only

one region remains. This last region represents the whole image and

corresponds to the root node. All the nodes between the leaves and

the root result of the merging of two adjacent children regions.

Two notions are of prime importance when defining a BPT, the

region model, MR, which specifies how a region R is modelled,

and the merging criterion, O(MRα ,MRβ
), which is a distance

measure between the region models of any two regions Rα and Rβ .

Each merging iteration involves the search of the two neighbouring

regions which achieve the lowest pair-wise dissimilarity among all

the pairs of neighbouring regions in the current segmentation map.

Those two regions are consequently merged. To build the BPT rep-

resentation from the hyperspectral image [17, 18, 19], Yh, we use



the first-order parametric model MR:

MR
d
= x̄ =

1

NR

NR∑

i=1

xi,

where NR is the number of pixels on the region; and, in order to

merge regions, the spectral angle distance:

O
(
MRα ,MRβ

) d
= dSAM (x̄α, x̄β) = arccos

(
x̄αx̄β

‖x̄α‖‖x̄β‖

)
.

Once the BPT representation is built, the BPT is pruned to achieve

a partition of the image such that the regions of the partition define

the image patches, Pj . We use the vote-based pruning approach

from [16], where each region of the BPT representation is voted by

its children. A region receives a number of votes equal to the leaves

of a children node if the distance between the region model and the

children model is above some threshold. Once all the regions have

collected their number of votes, the BPT is pruned so the partition

cardinality is maximized constrained to the regions of the partition

having received at least half the total number of votes.

3.2. Local dictionary-based super-resolution

Given a set of patches Pj , j = 1, . . . , P ; for each Pj , we identify a

mixing matrix Dj by applying an EIA to extract a set of endmembers

from the set of pixels Xj , identified by the corresponding patch.

Having identified the dictionaries, Dj , the code A is estimated by

solving the following constrained least squares (CLS) problems:

min
Aj≥0

‖Ym,j −RDjAj‖
2
F j = 1, . . . , P, (5)

where Aj ∈ R
nd×|Pj | and Ym,j ∈ R

nm×|Pj | gathers, respec-

tively, the columns of A and Ym with indices corresponding to the

pixels Xj in Pj . The inequality Aj ≥ 0 is to be understood in the

component-wise sense, and ‖ · ‖F denotes the Frobenius norm. The

constraint Aj ≥ 0 in (5) is used because, in the linear mixing model,

the codes Aj represent abundances of materials which are necessar-

ily non-negative [10]. It is possible to add the abundances sum-to-

one constraint, AT
j I = 1|Pj |, but this constraint is usually dropped

due to possible scale model mismatches [4]. We remark that, since

our observations are spectral vectors and thus non-negative (apart

from the noise contribution), the non-negativity constraint in (5) is

equivalent to a form of constrained ℓ1 regularization and therefore,

to some kind of sparsity enforcement (see [5] for the details).

In order to solve (5), we use the SUnSAL algorithm [3], which

is an instance of the C-SALSA methodology introduced in [1] to ef-

fectively solve a large number of CLS problems sharing the same

matrix system. Fig. 1 shows the pseudocode of the proposed HSI

Super Resolution via Local Dictionary Learning using EIAs (HSR-

LDL-EIA). The algorithm operates on each patch independently.

Each patch indexes the set of pixels in the hyperspectral image,

Yh,j , and in the multispectral image, Ym,j . From the hyperspec-

tral set of pixels, the subspace matrix, Dj , is obtained using any

EIA. Then, the SUnSAL algorithm is used to estimate the fractional

abundances, Âj , from the multispectral set of pixels. The fractional

abundances are linearly combined with the estimated subspace to

estimate the super-resolution pixels of the patch, X̂j . The estimated

super-resolution pixels of all the patches are combined to form the

estimated super-resolution image, X.

Algorithm HSR-LDL-EIA

Input:

1. Yh, Ym, R, Pj , nd

2. for j = 1 to P

3. Ym,j := [Ym,i, i ∈ Pj ]
4. Yh,j := [Yh,i, i ∈ Pj ]
5. Dj := EIA(Yh,j , nd)

6. Âj := argminAj≥0 ‖Ym,j −RDjAj‖
2
F

7. X̂j := DjÂj

8. X̂ :=
{
X̂j

}
, j = 1, . . . , P

Fig. 1. HSI Super Resolution via Local Dictionary Learning using

Endmember Induction Algorithms (HSR-LDL-EIA).

(a) (b)

Fig. 4. False color representations of the experimental datasets: (a)

Synthetic dataset and, (b) Pavia University dataset.

4. EXPERIMENTAL RESULTS AND CONCLUSIONS

4.1. Experimental methodology

In order to assess the performance of the proposed local super-

resolution methods, we followed the experimental methodology

derived from the Wald’s protocol proposed in [20]: 1) Given a

denoised super-resolution image, X, we simulate a low-spatial res-

olution hyperspectral image, Yh, by applying a Gaussian blurring

(B) and downsampling the blurred image by a factor of four (M).
2) We also simulate a high-spatial resolution multispectral image,

Ym, by applying a spectral response matrix (R) to the original

super-resolution image. 3) White noise was added to both images,

Yh and Ym, with 30db and 40db respectively. 4) Then, we esti-

mate the super-resolution image, X̂, by applying a super-resolution

methodology to both images, Yh and Ym. 5) After denoising the

estimated super-resolution image, we compare it to the original one

using the SAM, the ERGAS and the Q quality measures [13]. The

SAM measures the spectral difference being 0 the best. The ERGAS

is a spectral-spatial quality measure being 0 the best. The Q index is

a correlation measure being 1 the best.

We compared the proposed local super-resolution approach,

HSR-LDL-EIA, to the global one, HSR-GDL-EIA, by means of 50

Monte Carlo runs. For the proposed local approach, we also com-
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Fig. 2. Results obtained for the synthetic dataset: (a) Average SAM, (b) Average ERGAS and (c) Q index.
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Fig. 3. Results obtained for the Pavia University dataset: (a) Average SAM, (b) Average ERGAS and (c) Q index.

pared the sliding window (SW) and BPT-based approaches to obtain

the image patches. For the SW approach, we set the windows size to

60 with a 0.2% overlap (12 pixels). We used the Vertex Component

Analysis (VCA) EIA [11] to induce the set of endmembers.

4.2. Datasets

Synthetic dataset: a synthetic image composed of multiple geo-

metric shapes (ellipses and rectangles) of different sizes and ori-

entations, where each geometrical element and the background are

formed using a different linear mixture of 5 endmembers from the

USGS spectral library, for a total of 45 different endmembers in the

image. This image simulates a high spectral variability scenario.

The multi-spectral image was simulated using the spectral response

of the Ikonos sensor. In this case, we fixed the number of induced

endmembers to p = 5 for the local approaches, and p = 45 for

the global one. Fig. 4a depicts a false color image of the synthetic

dataset.

Pavia University dataset: this dataset is a real image represent-

ing an urban area mainly composed of buildings, urban vegetation

and parking lots. The multi-spectral image was simulated using the

spectral response of the first multi-spectral three bands of the Ikonos

sensor. For the local approaches, we fixed the number of induced

endmembers to p = 3. For the global approach, this value was set to

p = 10. Fig. 4b depicts a false color image of the Pavia University

dataset.

4.3. Results and conclusions

Figures 2 and 3 show the results of the 50 Monte Carlo runs ob-

tained for the synthetic and Pavia University datasets respectively.

Results show that the local sliding window approache outperforms

the global one in the synthetic scene and partially in the Pavia Uni-

versity scene. The local BPT approach shows a potential improving

over the global and local sliding window approaches, but it presents

a high variance over the Monte Carlo runs. This issue could be due

to the effects of noise on the BPT representation or to the voting

pruning strategy. The lack of space prevents us from showing the

obtained super-resolution images for visual comparison. We encour-

age the interested reader to access the results extended report at first

author’s website1. We’ll further work on the validation of the pro-

posed methodologies and on the study of the patches definition by

means of other BPT representations and pruning strategies. We’ll

also face the problem of estimate the spectral response matrix, R,

from the data.

1http://www.gipsa-lab.grenoble-inp.fr/page_pro.

php?vid=1728
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