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ABSTRACT

In this work we propose a hierarchical clustering methodol-

ogy for hyperspectral data based on the Hotelling’s T 2 statis-

tic. For each hypespectral sample data, the statistical sam-

ple mean is calculated using a window-based neighborhood.

Then, the pairwise similarities between any two hyperspec-

tral samples are computed based on the Hotelling’s T 2 statis-

tic. This statistic assumes a Gaussian distribution of the data

while hyperspectral data have been observed to be long tailed

distributed. In order to improve the statistic robustness we

use the Fixed Point estimates, and compare them to the clas-

sical sample mean estimator. The similarities are then used

to hierarchically cluster the hyperspectral data. We give some

preliminary qualitative results of the proposed approach over

the Indian Pines hyperspectral scene. Results show that the

use of the Fixed Point estimator does not significantly affect

the clustering results. Further work will be focused on the use

of the robust Hotelling statistic.

Index Terms— hypespectral imaging, hierarchical clus-

tering, Fixed Point estimates

1. INTRODUCTION

Hyperspectral data have been observed not to be multivariate

normal but long tailed distributed [1]. In order to take into

account these features, the class of elliptical contoured dis-

tributions (ECD) is considered to describe clutter statistical

behavior. It provides a multivariate location-scatter family of

distributions that primarily serves as heavy tailed alternative

to the multivariate normal model. A m-dimensional random

vector y = [y1y2...ym]T with mean µ and scatter matrix Σ

has an elliptical distribution if its probability density function

(PDF) has the following form:

fy(y) = |Σ|−1hm((y − µ)TΣ−1(y − µ)), (1)

where T denotes the transpose operator and hm(.) is any

function such as (1) defines a PDF in R
m .
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The ECD class includes a large number of distributions,

notably the Gaussian distribution, multivariate t distribu-

tion, K-distribution or multivariate Cauchy. Thus it al-

lows for heterogeneity of the background power with the

texture. Although non-Gaussian models are assumed for

background modelling and test design, the parameters es-

timation is still performed using classical Gaussian based

estimators; as for the covariance matrix, it is generally deter-

mined according to the Sample Covariance Matrix (SCM),

M̂SCM =
∑N

i=1
yiy

T
i . We use here the Fixed Point (FP) es-

timators [2] as a robust alternative for background statistical

characterization.

In [3], authors propose a general approach for high-

resolution polarimetric SAR (POLSAR) data classification in

heterogeneous clutter, based on a statistical test of equality

of covariance matrices. In hyperspectral domain the infor-

mation provided by the mean is of high relevance. Thus, we

propose here a similar approach for hyperspectral data using

the Hotelling’s T 2 statistic as a statistical test of equality of

means [4]. We define a pairwise similarity between two pix-

els by using the output of the Hotelling’s test for the means

of the pixels calculated using a sliding window. As a prelim-

inary test, we segment the hyperspectral scene by means of

a hierarchical clustering algorithm [5] whose input is given

by the previously calculated pairwise distances. We test the

proposed approach in the Indian Pines hyperspectral scene.

2. THE FIXED POINT ESTIMATES

The Fixed Point estimates proposed by Tyler in [2] belong to

the wider class of robust M-estimates [6]. According to the

FP approach, the joint estimation of the scatter matrix, M,

and the mean vector, µ, leads to [2]:

M̂FP =
m

N

N
∑

n=1

(yn − µ̂)(yn − µ̂)H

(yn − µ̂)HM̂−1

FP (yn − µ̂)
(2)



and

µ̂ =

N
∑

n=1

yn
(

(yn − µ̂)TM̂−1

FP (yn − µ̂)
)1/2

N
∑

n=1

1
(

(yn − µ̂)TM̂−1

FP (yn − µ̂)
)1/2

(3)

where N denotes the number of secondary data and yn the

vector under observation. For the matrix estimate, existence

and uniqueness have been established in [7]. Although the

proof for simultaneous scatter and location estimates is still

an open question, they have been found to be useful and reli-

able for the estimation of ECD parameters because of its easy

implementation. They are specified by implicit equations and

can be easily computed using a recursive algorithm. We refer

to [8] for a detailed performance analysis of the FP covariance

matrix estimate. The main results of the statistical properties

of the M̂FP are summarized: M̂FP is a consistent and unbiased

estimate of M; its asymptotic distribution is Gaussian and is

the same as the asymptotic distribution of a Wishart matrix

with mN/(m + 1) degrees of freedom. They provide a ro-

bust alternative to the classical estimators and its definition

on hyperspectral detection framework was introduced in [9].

3. HOTELLING’S T 2 HYPOTHESIS TESTS

Let X ∼ ECD(µ
1
,Σ1, hm,1) and Y ∼ ECD(µ

2
,Σ2, hm,2)

be two independent random vectors, elliptically distributed.

We intend to decide if they belong to the same class compar-

ing their mean vectors µ
1

and µ
2
. The classification problem

can be formulated as a binary hypothesis test. Symbolically,

we aim to distinguish between:
{

H0 : µ
1
= µ

2

H1 : µ
1
6= µ

2

where the decision on the hypothesis test is made according

to some statistical based criteria. We propose a similarity

function based on the parameters estimation.

Hotelling’s T 2 statistic. Assuming x1, ...,xN1
and

y1, ...,yN2
are i.i.d. samples from X ∼ Nm(µ

1
,Σ) and

Y ∼ Nm(µ
2
,Σ) respectively. And the mean vector com-

puted as, µ̂x = 1

N1

∑N1

i=1
xi and µ̂y = 1

N2

∑N2

i=1
yi and the

covariance matrix estimated according to:

W =

∑N1

i=1
(xi − µ̂x)(xi − µ̂x)

T +
∑N2

i=1
(yi − µ̂y)(yi − µ̂y)

T

N1 +N2 − 2

which correspond to the unbiased pool estimate. Then the

Hotelling T 2statistic test is defined as:

t2 =
N1N2

N1 +N2

(µ̂x − µ̂y)
TW−1(µ̂x − µ̂y). (4)

This expression is easily derived from the likelihood function

of a multivariate normal model when H0 is assumed, see e.g.

[4]. The distribution of the test under the null hypothesis can

be related to the F-distribution according to

N1 +N2 −m− 1

(N1 +N2 − 2)m
t2 ∼ F (m,N1 +N2 − 1−m).

A different situation arises when samples do not fit on a mul-

tivariate gaussian distribution. We can improve the robustness

of the test replacing the mean and matrix estimates for some

robust alternative (e.g. the FP) if its asymptotic distribution is

gaussian. The equality of the covariances matrices is a sim-

plification that will certainly modify the test, as the resulting

matrix estimate will not correspond to a Wishart distribution

(1/N1Σ1+1/N2Σ2). The results found on statistics literature

for robust Hotelling and for both matrix and mean comparison

will be further investigated.

4. STATISTICAL HIERARCHICAL CLUSTERING

A hierarchical clustering algorithm returns a hierarchy of

clusters built by merging smaller components into bigger

clusters (agglomerative clustering) or by splitting the whole

image into smaller regions (divisive clustering). In order to

do that, a pairwise similarity function is necessary, i.e. the

angular distance, to compare each pair of components. Then,

a linkage function indicates which of any possible pair of

components is merged to (or split from) a bigger cluster.

A common linkage is the Unweighted Pair Group Method

with Arithmetic Mean (UPGMA) method which consists in

averaging all distances between the samples in each node, that

is, the mean distance between elements of each cluster. Given

two nodes A and B, the UPGMA linkage distance between

the nodes, denoted l (A,B) is given by:

l (A,B) =
1

|A| |B|

∑

x∈A

∑

y∈B

d (x,y) (5)

where |·| denotes the cardinality of a set and d (x,y) is

any pairwise distance. In this work we propose to use the

Hotelling’s T 2 statistic (4) as the pairwise distance. The re-

sult is a hierarchy of clusters that can be represented as a den-

drogram. A common criterion to stop merging (splitting) is to

a priori set the number c of clusters one is looking for.

5. EXPERIMENTS AND RESULTS

5.1. Indian Pines scene

The Indian Pines scene1 was gathered by airborne AVIRIS

sensor over North-western Indiana and consists of 145× 145
pixels and 224 spectral reflectance bands in the wavelength

range 0.4-2.5 µm . We have reduced the number of bands to

200 by removing bands covering the region of water absorp-

tion: [104-108], [150-163], 220. Since the scene is taken in

June some of the crops present, corn, soybeans, are in early

stages of growth with less than 5% coverage. The ground

1https://engineering.purdue.edu/ biehl/MultiSpec/



Fig. 1. Reduced groundtruth for the Indian Pines scene

truth available is designated into sixteen classes with variable

number of samples for each class. In order to simplify the

problem in this preliminary stage, we have grouped some sim-

ilar classes (see Fig.1). The grouped classes are Corn (corn,

corn-notill and corn-mintill), Grass (grass-pasture, grass-

pasture-mowed and grass-trees) and Soybean (soybean-notill,

soybean-mintill and soybean-clean).

5.2. Experimental design and results

We compare the use of the classic estimator for the sample

mean and SCM to the FP estimator for the clustering of the

Indian Pines scene using the Hotelling’s T 2 statistic (4) and

the hierarchical clustering with UPGMA linkage function (5).

For each pixel in the image we calculate its mean and co-

variance matrix by the classic estimator and the FP estimator

using a 15 × 15 sliding window in order to ensure enough

samples for the estimation stage (N > 2m). Those pixels on

the borders of the image for which the window is incomplete

are discarded resulting in a sample matrix of size 131× 131.

We have performed two clustering experiments, a first one

using the entire dataset (17161 samples) and a second one

using only those data samples for which there is available

groundtruth (9343 samples). For the latter, the statistics have

been estimated using the entire dataset, but the linkage given

by UPGMA algorithm have been built using only the samples

from the groundtruth subset. Figure 2 shows the clustering re-

sults for the former and figure 3 does it for the latter. In order

to visualize the results we have assigned to each cluster the

RGB color resulting of averaging the groundtruth RGB color

(see Figure 1) of the pixels of each cluster. Thus, a cluster

with a color similar to any groundtruth color represents that

the cluster is almost contained in a single groundtruth class.

Clusters grouping several different groundtruth classes will

present a mixed color.

The obtained results show that the use of the Hotelling’s

T 2 statistic yields to meaningful clusters, specially if we al-

low some overclustering (see figures 2 and 3 e-j). Moreover,

it is possible to visually appreciate a better preformance of

the FP estimator for a small number of clusters (see figures 2

and 3 a-d). The use of robust Hotelling’s test will be further

investigated to deal with the ECD assumption.

6. CONCLUSIONS

We have presented an approach to statistically characterize

the hyperspectral data and then use the Hotelling’s T 2 statis-

tic to define a pairwise similarity function. The definition of a

pairwise similarity allows to use a hierarchical clustering al-

gorithm to segment the hyperspectral image. We have shown

that even when the Hotelling’s statistic Gaussian assumption

differs from the actual ECD, the clustering results are mean-

ingful. The use of a robust FP estimator shows a better per-

formance than the use of the classic estimator. The use of

a robust Hotelling’s estimator capable of dealing with non-

Gaussian assumption will be further investigated.
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(a) Classic, c = 20 (b) Fixed Point, c = 20

(c) Classic, c = 30 (d) Fixed Point, c = 30

(e) Classic, c = 50 (f) Fixed Point, c = 50

(g) Classic, c = 100 (h) Fixed Point, c = 100

(i) Classic, c = 150 (j) Fixed Point, c = 150

Fig. 2. Results of the hierarchical clustering over the entire

dataset using the Hotelling T 2 test with the classic estimator

(left column) and the Fixed Point estimator (right column).

Each row identifies with a different value of the number of

clusters, c.



(a) Classic, c = 20 (b) Fixed Point, c = 20

(c) Classic, c = 30 (d) Fixed Point, c = 30

(e) Classic, c = 50 (f) Fixed Point, c = 50

(g) Classic, c = 100 (h) Fixed Point, c = 100

(i) Classic, c = 150 (j) Fixed Point, c = 150

Fig. 3. Results of the hierarchical clustering over the reduced

dataset using the Hotelling T 2 test with the classic estimator

(left column) and the Fixed Point estimator (right column).

Each row identifies with a different value of the number of

clusters, c.


