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SYNCHRONIZATION AND CONTROL OF A NETWORK OF COUPLED REACTION-DIFFUSION SYSTEMS OF GENERALIZED FITZHUGH-NAGUMO TYPE *

Nous considérons un réseau de systèmes de réaction-diffusion de type FitzHugh-Nagumo généralisés. Nous nous intéressons au comportement asymptotique et à la synchronisation du réseau. Ces résultats nous permettent d'étendre d'autres résultats obtenus pour un type particulier de systèmes de FitzHugh-Nagumo.

Introduction

Let us denote by w t the time derivative of the function w. The FitzHugh-Nagumo model,

x t = c(F (x) + y + z) y t = 1 c (x -a + by)
where F is a cubic function with positive leading coefficient, z constant, and a, b, c > 0, is a simplification of the well known Hodgkin-Huxley model describing the propagation of action potential in neurons, see for example, [START_REF] Izhikevich | Dynamical systems in Neuroscience[END_REF][START_REF] Keener | [END_REF][3][START_REF] Hodgkin | A quantitative description of membrane current and its application to conduction and excitation in nerve[END_REF][START_REF] Nagumo | An active pulse transmission line simulating nerve axon[END_REF]. In [START_REF] Ambrosio | Synchronization and control of coupled reaction-diffusion systems of the FitzHugh-Nagumo type[END_REF], we considered a network of coupled reaction-diffusion systems of the following FitzHugh-Nagumo type (FHN),

ǫu t = f (u) -v + d u ∆u v t = u -δv + d v ∆v (1) 
where, f (u) = -u 3 + 3u, and where ǫ, δ > 0, are small parameters. In this case, the underlying (ODE) part of system (1) induces an asymptotic evolution to a unique limit cycle for the trajectories diferent from (0, 0). We showed some results on asymptotic behaviour and synchronization for the network. Here, we will generalize some of these results. Let us consider a network of coupled reaction diffusion systems of the following generalized FHN type,

ǫu t = f (u) -v + d u ∆u + γ v t = au -bv + d v ∆v + µ (2) 
where,

f (u) = p k=1 d k u k
is a polynomial function of odd degree with negative leading coefficient, d p < 0, p ≥ 3. The parameter ǫ > 0 is small. The underlying (ODE) part of system (1) can induce a very more complicated asymptotic behaviour. We assume that a, b, d u are positive, and d v is non negative. We look for solutions u = u(x, t), v = v(x, t) on a smooth bounded domain Ω ⊂ R n , with zero-flux Neumann boundary conditions on the boundary of Ω :

∂u ∂ν = ∂v ∂ν = 0,
where ν denotes the exterior normal to the boundary. The coupling is chosen such that, for all i = 2, ..., N , subsystem (u i-1 , v i-1 ) drives subsystem (u i , v i ). This means that the whole system reads as,

                           ǫu 1t = f (u 1 ) -v 1 + d u1 ∆u 1 + γ 1 v 1t = a 1 u 1 -b 1 v 1 + d v1 ∆v 1 + µ 1 . . . ǫu it = f (u i ) -v i + d ui ∆u i + α i (u i-1 -u i ) + γ i v it = a i u i -b i v i + d vi ∆v i + β i (v i-1 -v i ) + µ i . . . ǫu N t = f (u N ) -v N + d uN ∆u N + α N (u N -1 -u N ) + γ N v N t = a N u N -b N v N + d vN ∆v N + β N (v N -1 -v N ) + µ N (3) 
where α i , β i ≥ 0, for i = 2, ..., N .

Analytical results

Space homogeneous asymptotic behaviour

Let (u, v) be the solution of system (2), then we have the following result, 

then,

lim t→+∞ ||(u -ū|| L 2 (Ω) + ||v -v|| L 2 (Ω) = 0 (5)
where,

ū(t) = Ω u(x, t)dx |Ω| , v(t) = Ω v(x, t)dx |Ω| .
Moreover, ū,v are solutions of the following system,

ǫū t = f (ū) -v + γ + g(t) vt = aū -bv + µ (6) 
where g(t) is a function going to 0 with exponential rate when t goes to +∞ .

Démonstration. Let,

φ(t) = 1 2 aǫ Ω |∇u| 2 + Ω |∇v| 2 , then, φ = Ω (ǫa∇u∇u t + ∇v∇v t ) = Ω (a∇u∇(f (u) -v + d u ∆u) + ∇v∇(au -bv + d v ∆v)) = Ω (a(f ′ (u)|∇u| 2 -d u (∆u) 2 ) -b|∇v| 2 -d v (∆v) 2 )
Now, we use the following spectral property of laplacian operator with zero-flux Neumann boundary conditions, see for example [START_REF] Conway | Large-time behaviour of solutions of systems of non linear reaction-diffusion equations[END_REF],

Ω (∆u) 2 ≥ λ Ω ∇|u| 2 .
Then,

φ ≤ a Ω M |∇u| 2 -λd u Ω |∇u| 2 -b Ω |∇v| 2 -λd v Ω |∇v| 2 ≤ a(M -λd u ) Ω |∇u| 2 -(λd v + b) Ω |∇v| 2 . Now, since λd u > M we have, φ ≤ -2 min λd u -M ǫ , λd v + b φ,
and thus,

φ(t) ≤ φ(0)e -c1t
where,

c 1 = 2 min λd u -M ǫ , λd v + b . Furthermore, ||u -ū|| 2 L 2 (Ω) + ||v -v|| 2 L 2 (Ω) ≤ 1 λ Ω |∇u| 2 + Ω |∇v| 2 ≤ 2 λ max 1 aǫ , 1 φ(t)
which implies [START_REF] Hodgkin | A quantitative description of membrane current and its application to conduction and excitation in nerve[END_REF]. In the remaining of the proof, we show that ū et v are solutions of (6). We have,

ǫū t = 1 |Ω| Ω f (u) -v + γ vt = aū -bv + µ thus, ǫū t = 1 |Ω| Ω (f (u) -f (ū)) + f (ū) -v + γ vt = aū -bv + µ.
Let us denote,

g(t) = 1 |Ω| Ω (f (u) -f (ū)).
Then, we obtain :

ǫū t = g(t) + f (ū) -v + γ vt = -bv + µ. But, |g(t)| = | 1 |Ω| Ω (f (u) -f (ū))| ≤ L |Ω| Ω |u -ū| ≤ L |Ω| 1 2 ||u -ū|| L 2 (Ω) ,
where,

L = sup t∈R + |f ′ (ū(t))|,
since from a result in [START_REF] Marion | Finite-Dimensionnal attractors associated with partly dissipative reaction-diffusion systems[END_REF], we know that (u, v) ∈ L (Ω) × L ∞ (Ω). It follows that :

lim t→+∞ g(t) = 0.
Which completes the proof.

Let (u i , v i ), 1 ≤ i ≤ N be the solution of system (3) Théorème 2.2. Let λ be the smallest non-zero eigenvalue of the Laplacian operator, with zero flux Neumann boundary conditions. Assume that,

M -λd u1 < 0 and M -λd ui -α i < 0 ∀i ∈ 2, .., N , (7) (8) 
then,

lim t→+∞ N i=1 ||u i -ūi || L 2 (Ω) + ||v i -vi || L 2 (Ω) = 0, (9) 
where,

ūi (t) = Ω u i (x, t)dx |Ω| , vi (t) = Ω v i (x, t)dx |Ω| , ∀i ∈ 1, ..., N with (ū i ,v i ) satisfying, ǫū it = f (ū i ) -vi + γ i + g i (t) + α i (ū i-1 -ūi ) vit = a i ūi -b i vi + µ i + β i (v i-1 -vi ) ( 10 
)
and where, g i (t) → 0 when t → +∞ with exponential rate decay.

Démonstration. It comes from an induction argument, by using similar techniques as those given in the proof of Theorem 2.1. More precisely, let,

φ i = 1 2 ǫa i Ω |∇u i | 2 + Ω |∇v i | 2 ,
we show that for all i ∈ 1, ..., N there exists positive constants K i , c i such that,

φ i (t) ≤ K i e -cit .
From the proof of Theorem 2.1, we know that this result is true for i = 1, that is,

φ 1 (t) ≤ φ 1 (0)e -c1t .
Let us assume that the result is true until i -1, by algebraic computations we obtain,

φi ≤ a i (M -λd ui -α i + α i κ i 2 ) Ω |∇u i | 2 -(λd vi + b i + β i 2 ) Ω |∇v i | 2 + a i α i 2κ i Ω |∇u i-1 | 2 + β i 2 Ω |∇v i-1 | 2 ≤ a i (M -λd ui -α i + α i κ i 2 ) Ω |∇u i | 2 -(λd vi + b i + β i 2 
)

Ω |∇v i | 2 + s 1 K i-1 e -ci-1t ≤ -s 2 φ + K i-1 e -ci-1t
where κ i is a positive constant satisfying

κ i < 2 λd ui + α i -M α i ,
and

s 1 = max( α i ǫκ i , β i ), s 2 = 2 min( λd ui + α i (1 -κi 2 ) -M ǫ , λd vi + b i + β i 2 ), K i-1 , c i-1 are positive constants.
By integration, this yields,

φ i (t) ≤ K i e -cit .
The remaining of the proof is similar as this of Theorem 2.1.

Synchronization

Définition 2.3. Let S i = (u i , v i ). We say that S i and S j synchronize if, lim t→+∞

(||u i -u j || L 2 (Ω) + ||v i -v j || L 2 (Ω) ) = 0.
The quantity,

(||u i -u j || 2 L 2 (Ω) + ||v i -v j || 2 L 2 (Ω) ) 1 2
is called the norm of synchronization error between S i and S j . Let S = (S 1 , S 2 , ..., S N ). We say that S synchronize if,

lim t→+∞ N -1 i=1 (||u i -u i+1 || L 2 (Ω) + ||v i -v i+1 || L 2 (Ω) ) = 0
The quantity,

N -1 i=1 (||u i -u i+1 || 2 L 2 (Ω) + ||v i -v i+1 || 2 L 2 (Ω) ) 1 2
is called the norm of synchronization error of S.

Let us consider the system (3) with d ui = d uj , d vi = d vj and b i = b j = b, a i = a j = a, γ i = γ j , µ i = µ j , for all i, j ∈ {1, ..., N }. Let us recall that f is a polynomial function of odd degree with negative leading coefficient,

f (u) = p k=1 d k u k , d p < 0, p ≥ 3. Let, M = sup u∈B,x∈R p k=1 f (k) k! (u)x k-1 ,
where B is a compact interval in which u 1 remains strictly. Démonstration. Let

ψ i (t) = 1 2 aǫ Ω (u i -u i-1 ) 2 + Ω (v i -v i-1 ) 2 .
Our proof is based on an induction idea. We show that for all i ∈ 2, ..., N,

ψ i (t) ≤ K i e -cit .
We first consider the subsystem (u 2 , v 2 ). By derivating ψ 2 and using Green formula, we obtain,

ψ2 (t) ≤ Ω a(f (u 2 ) -f (u 1 ) -α 2 (u 2 -u 1 ))(u 2 -u 1 ) -(b + β 2 )(v 2 -v 1 ) 2 ≤ Ω a(f ′ (u 1 ) -α 2 + p k=2 f (k) (u 1 ) k! (u 2 -u 1 ) k-1 )(u 2 -u 1 ) 2 -(b + β 2 )(v 2 -v 1 ) 2 , ≤ a(M -α 2 ) Ω (u 2 -u 1 ) 2 -(b + β 2 ) Ω (v 2 -v 1 ) 2 this yields, ψ2 (t) ≤ -c 2 ψ.
where

c 2 = min( α2-M ǫ , b + β 2
) is a positive constant. Thus, we obtain,

ψ 2 ≤ ψ 2 (0)e -c2t .
Assume the result true until i -1, then by algebraic computations we obtain,

ψi (t) ≤ Ω a(f (u i ) -f (u i-1 ) -α i (u i -u i-1 ) + α i-1 (u i-1 -u i-2 ))(u i -u i-1 ) -(b + β i )(v i -v i-1 ) 2 + β i-1 (v i-1 -v i-2 )(v i -v i-1 ) ≤ Ω a(M -α i )(u i -u i-1 ) 2 + aα i-1 (u i-1 -u i-2 )(u i -u i-1 ) -(b + β i )(v i -v i-1 ) 2 + β i-1 (v i -v i-1 )(v i-1 -v i-2 ) ≤ Ω a(M -α i )(u i -u i-1 ) 2 + a 2 ( α 2 i-1 α i -M (u i-1 -u i-2 ) 2 + (α i -M )(u i -u i-1 ) 2 ) -(b + β i )(v i -v i-1 ) 2 + 1 2 ( β 2 i-1 β i (v i-1 -v i-2 ) 2 + β i (v i -v i-1 ) 2 ) ≤ Ω a M -α i 2 (u i -u i-1 ) 2 -(b + β i 2 )(v i -v i-1 ) 2 + a 2 
α 2 i-1 α i -M (u i-1 -u i-2 ) 2 + β 2 i-1 2β i (v i-1 -v i-2 ) 2 ≤ -s 1 ψ i + s 2 K i-1 e -ci-1t .
where

s 1 = min( αi-M ǫ , 2b + β i ) and s 2 = max( α 2 i-1 ǫ(αi-M ) , β 2 i-1
βi ). Then, we obtain the result by integration. Corollaire 2.5. Assume that f is a cubic function,

f (u) = d 3 u 3 + d 2 u 2 + d 1 u with d 3 < 0. If, α i > d 1 - d 2 2 2d 3 , i = 2, ..., N,
then the network S = ((u 1 , v 1 ), (u 2 , v 2 ), ..., (u N , v N )) synchronize in the sense of definition (2.3).

Démonstration. In this case, by computation, we obtain that,

M ≤ d 1 - d 2 2 2d 3 .

Numerical simulations

We consider the system (3) for N = 3 with for all i ∈ {1, 2, 3},

d ui = d vi = 1, a i = 1, b i = 0.4.
Moreover for i ∈ {2, 3}, we fix β i = 0, α i > 0 and ǫ = 0.1. Thus, we consider the following network of three coupled generalized FHN systems, Our numerical simulations, see figure 1, 2, 3, 4, show that system (11) synchronize for a coupling strength α 2 = α 3 belonging to the interval [0.3, 0.4]. In these figures, the initial conditions are (u 1 (x, 0), v 1 (x, 0)), particular functions leading to multiple spiral pattern formation, see [START_REF] Ambrosio | Wave propagation in excitable media : numerical simulations and analytical study[END_REF][START_REF] Ambrosio | Synchronization and control of coupled reaction-diffusion systems of the FitzHugh-Nagumo type[END_REF], and (u 2 (x, 0), v 2 (x, 0)) = (u 3 (x, 0), v 3 (x, 0)) = 1. Numerical simulations have been performed using an explicit finite difference scheme, with C++ language and with a time step discretization equal to 0.01 and space step discretization equal to 1. 

               ǫu 1t = f (u 1 ) -v 1 + ∆u 1 v 1t = au 1 -bv 1 + ∆v 1 ǫu 2t = f (u 2 ) -v 2 + ∆u 2 + α 2 (u 1 -u 2 ) v 2t = au 2 -bv 2 + ∆v 2 ǫu 3t = f (u 3 ) -v 3 + ∆u 3 + α 3 (u 2 -u 3 ) v 3t = au 3 -bv 3 + ∆v 3 ( 

Théorème 2 . 1 .

 21 Let, M = sup x∈R f ′ (x), and λ be the smallest non zero eigenvalue of the Laplacian operator (-∆) with zero flux Neumann boundary conditions. If, Mλd u < 0,

Théorème 2 . 4 .

 24 If, α i > M, i = 2, ..., N,then the network S = ((u 1 , v 1 ), (u 2 , v 2 ), ..., (u N , v N )) synchronize in the sense of definition (2.3).

Figure 1 .

 1 Figure 1. Network of three systems of generalized FHN type. Isovalues, of (a)u 1 (x, t), (b)u 2 (x, t), (c)u 3 (x, t) at fixed time t = 190 for the coupling strength α 2 = α 3 = 0.3.

Figure 2 .

 2 Figure 2. Network of three systems of generalized FHN type. The norm of synchronization error given by the definition 2.3 on the interval of time [0, 200] for the coupling strength α 2 = α 3 = 0.3 : (a) between S 1 and S 2 , (b) between S 2 and S 3 .

Figure 3 .

 3 Figure 3. Network of three systems of generalized FHN type. Isovalues, of (a)u 1 (x, t), (b)u 2 (x, t), (c)u 3 (x, t) at fixed time t = 190 for the coupling strength α 2 = α 3 = 0.4.

Figure 4 .

 4 Figure 4. Network of three systems of generalized FHN type. The norm of synchronization error given by the definition 2.3 on the interval of time [0, 200] for the coupling strength α 2 = α 3 = 0.4 : (a) between S 1 and S 2 , (b) between S 2 and S 3 .
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