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a b s t r a c t

An algebraic-closure-based moment method (ACBMM) is developed for unsteady Eulerian particle sim-

ulations, coupled with direct numerical simulations (DNSs) of fluid turbulent flows, in very dilute regime

and up to large Stokes numbers StK (based on the Kolmogorov timescale) or moderate Stokes numbers St

(based on the turbulent macroscale seen by the particles). The proposed method is developed in the

frame of a conditional statistical approach which provides a local and instantaneous characterization

of the dispersed-phase dynamic accounting for the effect of crossing between particle trajectories which

becomes substantial for StK > 1. The computed Eulerian quantities are low-order moments of the condi-

tional probability density function (PDF) and the corresponding governing equations are derived from the

PDF kinetic equation in the general frame of the kinetic theory of gases. At the first order, the computa-

tion of the mesoscopic particle number density and velocity requires the modeling of the second-order

moment tensor appearing in the particle momentum equation and referred to as random uncorrelated

motion (RUM) particle kinetic stress tensor. The current work proposes a variety of different algebraic

closures for the deviatoric part of the tensor. An evaluation of some effective propositions is given by per-

forming an a priori analysis using particle Eulerian fields which are extracted from particle Lagrangian

simulations coupled with DNS of a temporal particle-laden turbulent planar jet. Several million-particle

simulations are analyzed in order to assess the models for various Stokes numbers. It is apparent that the

most fruitful are explicit algebraic stress models (2UEASM) which are based on an equilibrium assump-

tion of RUM anisotropy for which explicit solutions are provided by means of a polynomial representa-

tion for tensor functions. These models compare very well with Eulerian–Lagrangian DNSs and properly

represent all crucial trends extracted from such simulations.

1. Introduction

1.1. Overview: Lagrangian versus Eulerian approaches

Dilute particle/droplet-laden turbulent flows are of central

importance in many industrial applications as, for example, in

combustion chambers of aeronautic engines or recirculating fluid-

ized beds in chemical engineering. The highly-turbulent unsteady

nature of these mixtures, in most cases confined in complex geom-

etries, increases the complexity of their predictions and the model-

ing is still a challenge nowadays. In order for a model to be

appropriate, two requirements must be satisfied: (i) the approach

must be sufficiently accurate for providing right predictions in

such complex situations and (ii) it must be usable for real applica-

tions at industrial scale. In very dilute regime, and for mixtures of

interest to this study, particles have size smaller or comparable to

the smallest lengthscale of the turbulence and the volume fraction

and the mass loading of the dispersed phase are small enough to

neglect collisions and turbulence modulation. For these flows, for

which a point-particle approximation applies, the Eulerian–

Lagrangian direct-numerical-simulation (DNS) approach is an

uncontroversial accurate method. DNSs of the fluid turbulence

are straightforwardly coupled with Lagrangian particle simulations

by accurate interpolation of the fluid properties at the particle

location (Riley and Paterson, 1974). The Eulerian–Lagrangian DNS

method does not require further modeling efforts and it is easy

to implement in existing single-phase DNS codes. For this reason,

it has been extensively used over the years and nowadays it is con-

sidered as a reference when experimental data are not available.

However, this approach is unfeasible in most real cases and its
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use unrealistic at industrial scale. For industrial applications the

constraint is double: the computational cost of the DNS for such

flows is prohibitively expensive; realistic industrial flow configura-

tions involve a huge number of particles which, according to the

Lagrangian method, have to be tracked separately with a conse-

quent increase of computational costs. An alternative method for

predicting unsteady turbulent particle-laden flows with a high le-

vel of accuracy is the Eulerian–Eulerian large-eddy simulation

(LES) approach. This method seems indeed fulfill the two afore-

mentioned requirements of high accuracy and reasonable compu-

tational cost (the reader is referred to Fox (2012) for a review about

the LES approaches in multiphase flows).

In the Eulerian–Eulerian approach, the particles are described in

an Eulerian framework as a continuous medium, and the two-

phase governing equations are solved separately but coupled

through interphase exchange terms. In the literature, several suc-

cessful Eulerian models have been proposed to predict the disper-

sion of particles when the turbulence is modeled by using

Reynolds-averaged Navier–Stokes (RANS) methods. Among these,

we recall the phase-averaging (Elghobashi and Abou-Arab, 1983;

Chen and Wood, 1985; Zhou, 2010) and the probability density

function (PDF) (Reeks, 1991; Simonin, 1991a; Zaichik and Vinberg,

1991) approaches. As pointed out by Balzer et al. (1996), such PDF

approaches are formally consistent with particulate Eulerian mod-

els based on the granular kinetic theory, which are extensively

used in dense gas–solid flows when the particle dynamics is dom-

inated by the particle–particle or the particle–wall collisions (see,

e.g Gidaspow, 1994). In contrast, the unsteady (DNS/LES) Eulerian

modeling of dilute particulate flows is a timely topic of research. In

this paper we will focus on the unsteady Eulerian–Eulerian DNS

approach as the baseline of the Eulerian–Eulerian LES approach

(Moreau et al., 2010). The modeling suggested by this work should

not be confused with the aforementioned two-fluid RANS ap-

proaches. Some unsteady (DNS) Eulerian models available in the

literature are instead recalled below.

A local Eulerian characterization of the dispersed phase was

suggested by Maxey (1987) who using a Taylor expansion of the

particle-motion equation in powers of Stokes number provided

an expression for the particle-velocity field in terms of fluid veloc-

ity and its derivatives. In this approximation, only one equation for

the particle concentration must be resolved and the dispersed

phase would not require additional modeling. This approach was

extended by Ferry and Balachandar (2001) in order to account

for the added mass, Saffman lift and Basset history forces and eval-

uated by DNSs of homogeneous isotropic turbulence (HIT) (Rani

and Balachandar, 2003) and homogeneous turbulent mean-

sheared flows (Shotorban and Balachandar, 2006). In the literature,

it is often referred to as equilibrium Eulerian approach or fast Eule-

rian method. Successfully assessed for small particle inertia, this

approach fails for Stokes numbers, based on the Kolmogorov

lengthscale, StK, approaching unity (Rani and Balachandar, 2003;

Shotorban and Balachandar, 2006). An alternative unsteady ap-

proach was suggested by Druzhinin (1995) who used a spatial

average of the particle equations over a lenghtscale much greater

than the particle diameter and of the order of the smallest lenght-

scale of the flow. The resulting system of closed Eulerian equations

for the particle volume fraction and the particle velocity was tested

in DNSs of particle-laden circular vortex and HIT of bubbles and

particles, in one-way and two-way coupling (Druzhinin and

Elghobashi, 1998, 1999). In the frame of the modeling of poly-

dispersed flows, we also recall the multi-fluid method of Laurent

and Massot (2001), which assumes a monokinetic description of

the particle velocity. Also these approaches are restricted to small

particle inertia. For large Stokes numbers, alternative effective

models are described in Sections 1.2 and 1.3.

1.2. An unsteady Eulerian approach for large Stokes numbers

Recently, Février et al. (2005) showed that in order for an Eule-

rian approach to be able to model the dispersed phase composed of

particles having response times larger than the Kolmogorov time-

scale, it should account for the effect of crossing between particle

trajectories. This effect involves many different velocities in the

same volume of control violating the assumption of the uniqueness

of the particle velocity distribution. By introducing a new operator

of ensemble average over a large number of particle realizations

conditional on a given fluid flow realization, local statistics of the

dispersed phase may be derived in the framework of the condi-

tional PDF approach. The novel conditional statistical approach

(Février et al., 2005), known as mesoscopic Eulerian formalism

(MEF), is based on the idea that the particle velocity may be parti-

tioned in two contributions: (i) an Eulerian particle velocity field,

referred to as mesoscopic field, which is spatially correlated and

shared by all the particles and which accounts for correlations be-

tween particles and between particles and fluid and (ii) a spatially-

uncorrelated particle velocity component, referred to as random

uncorrelated motion (RUM) contribution, associated with each

particle and resulting from the chaotic particles’ behavior. In the

Eulerian transport equations, the RUM contribution is character-

ized in terms of Eulerian fields of particle velocity moments; the

larger is the particle inertia the more important is RUM. According

to MEF, the assumption of the uniqueness of the particle velocity

distribution is no longer a constraint since this model accounts

separately for correlated and chaotic contributions which charac-

terize the particle velocity property at large Stokes numbers. The

existence of a spatially-uncorrelated velocity due to the crossing

of particle trajectories was already pointed out by Falkovich et al.

(2002); modeling this contribution is crucial in order for an Euleri-

an model to be effective in dilute regime. In the literature, MEF was

used by IJzermans et al. (2010) and Meneguz and Reeks (2011) for

characterizing the particle segregation by a full Lagrangian method

(FLM) and by Gustavsson et al. (2012) who analyzed the relation-

ship between caustics, singularities and RUM. Vance et al. (2006)

used MEF to investigate the spatial characteristics of the particle

velocity field in a turbulent channel flow with and without inter-

particle collisions. Simonin et al. (2006) compared such an

approach with a two-point PDF method (Zaichik et al., 2003),

pointing out the ability of the latter to capture the behavior of

the dispersed phase as modeled by the MEF decomposition. In this

study, we will use the conditional PDF approach in the framework

of a moment method and we will focus on the closures of the

system of equations derived from.

1.3. The conditional PDF approach and the question of the closures

According to the conditional PDF approach (described in Sec-

tion 2), the PDF kinetic equation is closed at the same level than

the Lagrangian equation governing the discrete particle variables,

such as the drag law formulation in the dynamic equation. Unfor-

tunately, a closed kinetic equation for the PDF does not completely

solve the closure problem since this evolution equation in phase

space creates an infinite set of coupled moment equations in real

space. So any finite set of moment equations has to be supple-

mented by closure models of the unknown moments written in

terms of the computed ones. Depending on the closure, models

may be provided by using a Grad’s moment method (Grad, 1949)

or by means of quadrature-based moment methods (QBMMs) or

kinetic-based-moment methods (KBMMs) (McGraw, 1997;

Marchisio and Fox, 2005; Fox, 2008; Fox et al., 2008; Desjardins

et al., 2008; Passalacqua et al., 2010; Kah et al., 2010; Yuan and

Fox, 2011; Vié et al., 2011; Chalons et al., 2012). Grad’s, QBMM



and KBMM approaches rely on a presumed PDF written in the

phase space; mathematical arguments are then used in order to

address the closure question. These methods are particularly inter-

esting since their mathematical formulation of the problem does

not require further efforts about the formulation of physical

assumptions needed for modeling the closures. However, they

may require a large number of moments in order to converge to-

ward an accurate solution if the shape of the presumed PDF is

not sufficiently close to that of the actual PDF, with the conse-

quence that additional high-order-moment transport equations

could be necessary. This would involve additional costs which

must be considered when modeling fully unsteady three-dimen-

sional turbulent flows in realistic configurations.

An alternative is to close the unknown higher-order moments

by using algebraic closures derived by analogy with the kinetic

theory or with turbulence models. Hereinafter, we will refer to

this approach as ACBMM (algebraic-closure-based moment

method). Contrary to QBMM/KBMM or Grad’s methods, ACBMM

is a semi-empirical model derived directly in the physical space.

In isothermal conditions, Simonin et al. (2002) and Kaufmann

et al. (2008) suggested an ACBMM in which the transport equa-

tions of the low-order moments (the particle number density

and the particle mesoscopic velocity) are numerically solved.

The second-order moment appearing in the particle momentum

equation, the RUM particle kinetic stress tensor, is closed by

solving an additional equation for its isotropic part and by using

a viscosity assumption for the deviatoric part. The timescale in-

volved in the viscosity modeling is the particle response time.

The appropriateness of such a closure is investigated by the

present work. ACBMM has then been used to derive the Euleri-

an–Eulerian LES modeling (Moreau et al., 2010) in order to pre-

dict accurate unsteady particle-laden turbulent flows in more

realistic situations as, for instance, in complex geometries (Riber

et al., 2009). Indeed, the originality of the ACBMM approach

comes out in the framework of the LES modeling. Using the par-

titioning of the particle velocity in two contributions makes it

possible to separate quantities which are intrinsically different

as they stem from interactions with different scales of the tur-

bulence. Moments of these contributions show different scaling

laws when spatially filtered (Moreau, 2006) which means that

they need to be modeled separately. Recently, MEF was ex-

tended to non-isothermal conditions and ACBMM used to model

evaporating droplet-laden turbulent flows (Masi et al., 2011).

1.4. Objective

So far, the ACBMM using the aforementioned algebraic clo-

sure based on a standard viscosity assumption has shown to

be able to predict particle-laden HIT (Kaufmann et al., 2008) at

moderate Stokes numbers, StK. In the meantime and while per-

forming preliminary a posteriori tests (Riber, 2007) in mean-

sheared flow conditions and large Stokes numbers, this approach

failed. The reason must be sought in the failure of the viscosity

assumption which is no longer able to predict the RUM stress

tensor in such conditions. In very dilute regime in which the

particle velocity distribution can be far from equilibrium, such

an assumption seems indeed questionable, especially in the pres-

ence of a mean shear and large Stokes numbers. The aim of this

work is to address the concern of the algebraic closure of the

RUM stress tensor in order to enable ACBMM to successfully

predicts the unsteady dispersed phase in mean-sheared turbu-

lent flows and large Stokes numbers as well.

The manuscript is organized as follows. In Section 2 the unstea-

dy Eulerian statistical approach and the local and instantaneous

particle Eulerian equations are presented. At the first order, the

equation system needs a closure for the RUM particle kinetic stress

tensor. In order to provide such a closure, which relies on a rela-

tionship between the RUM and the particle rate-of-strain tensors,

in Section 3 the two tensors are described and a previous analysis

about their structure is recalled. Finally, several algebraic closures

are proposed and presented in Section 4. They are developed by

means of some techniques used in turbulence for closing the

one-point second-order velocity moments. Eulerian–Lagrangian

DNS and the methodology adopted for the a priori analysis are de-

scribed in Section 5. From the Eulerian particle database extracted

from the Lagrangian particle data, the closures developed by the

present study are assessed. Results of the assessment are presented

in Section 6. Summary and conclusions are given in Section 7.

2. Unsteady Eulerian statistical approach for the inertial

dispersed phase

In this section, the conditional PDF approach (Février et al.,

2005) as well as the local and instantaneous Eulerian equations

of the dispersed phase are briefly presented; they will be used in

the framework of the ACBMM approach.

2.1. The conditional PDF approach

The dispersed phase is described in terms of a conditional PDF.

The statistical approach uses ensemble averages over a large num-

ber N p of particulate phase realizations Hp, slightly differing in

their initial conditions, conditional on one-fluid flow realization

Hf . According to this formalism, information concerning spatial

and/or temporal correlations between particles are maintained.

In dilute regime where there is neither turbulence modulation

nor inter-particle interactions, the one-particle conditional PDF

provides a complete description of the particle spatially-correlated

motion. It is defined as

~f ð1Þp ðx; cp; t;Hf Þ ¼ lim
N p!1

1

N p

X

N p

X

Np

m¼1

W ðmÞ
p ðx; cp; t;Hp;Hf Þ

2

4

3

5; ð1Þ

with Np the whole particle number of any realization and

W ðmÞ
p ðx; cp; t;Hp;Hf Þ ¼ dðxÿ x

ðmÞ
p ðtÞÞdðcp ÿ u

ðmÞ
p ðtÞÞ the refined-grid

density (Reeks, 1991) accounting for particles with centre xp located

in the volume [x,x + dx] and translation velocity up in [cp,cp + dcp], at

the time t. The mesoscopic average of any Lagrangian quantity gp(t)

which can be written as a function of the particle velocity,

gp(t) = c(up(t)), is obtained by integration over the particle velocity

space leading to the mesoscopic field variable ~gpðx; tÞ as

~gpðx; tÞ ¼
1

~npðx; tÞ

Z

cðcpÞ~f ð1Þp ðx; cp; t;Hf Þdcp; ð2Þ

where ~np is the mesoscopic particle number density obtained by the

integration of ~f ð1Þp . Hereinafter, for the sake of synthesis, the con-

tracted notation ~gpðx; tÞ ¼ hgpðtÞjxpðtÞ ¼ x;Hf i ¼ hgpðtÞjHf ip is used.

From the latter it is possible to write the macroscopic particle prop-

erties, obtained by the standard ensemble averaging on turbulent

two-phase realizations derived in the frame of the RANS approach

(see, e.g. Simonin, 2000) as

h�ip ¼
1

npðx; tÞ
lim

N f!1

1

N f

X

N f

~npðx; tÞh�jHf ip; ð3Þ

which corresponds to the standard, i.e. no longer conditional, one-

particle PDF

f ð1Þp ðx; cp; tÞ ¼ lim
N f ;N p!1

1

N f

X

N f

1

N p

X

N p

X

Np

m¼1

W ðmÞ
p ðx; cp; t;Hp;Hf Þ

2

4

3

5

2

4

3

5:

ð4Þ



The macroscopic average Gp(x, t) of any Lagrangian property gp(t)

can be directly linked to the ensemble average of the mesoscopic

variable on the fluid turbulent realizations as

Gpðx; tÞ ¼ hgpip ¼
1

npðx; tÞ
lim

N f!1

1

N f

X

N f

~npðx; tÞhgpðtÞjHf ip

¼ h~np~gpi
npðx; tÞ

; ð5Þ

where npðx; tÞ ¼< ~np >. In the following, we shall use the simplified

notation

h~gpip ¼
1

npðx; tÞ
h~np~gpi: ð6Þ

The above equality is consistent with Eq. (3) if h~gpip represents the

averaging of the Lagrangian property ~gpðxpðtÞ; tÞ which can be de-

fined along any particle path. Lagrangian turbulent fluctuations

are then defined as g0
pðtÞ ¼ gpðtÞ ÿ GpðxpðtÞ; tÞ. The ensemble aver-

age may also be replaced by time or spatial average in statistically

stationary or homogeneous flows respectively.

According to MEF, the instantaneous velocity of each particle is

composed of two contributions, an instantaneous Eulerian velocity

field and a residual velocity component

up;iðtÞ ¼ ~up;iðxpðtÞ; tÞ þ dup;iðtÞ: ð7Þ

The first contribution is a correlated continuous field shared by all

the particles and written in an Eulerian framework, it represents

the first-order moment of the conditional PDF, namely the meso-

scopic particle velocity

~up;iðx; tÞ ¼ hup;iðtÞjxpðtÞ ¼ x;Hf i; ð8Þ

the second contribution is a random spatially-uncorrelated compo-

nent, associated to each particle and defined along the particle path.

In the Eulerian equations, it is characterized in terms of Eulerian

fields of particle velocity moments. The second-order moment of

the conditional PDF is the RUM particle kinetic stress tensor

dRp;ijðx; tÞ ¼ hdup;iðtÞdup;jðtÞjxpðtÞ ¼ x;Hf i, whose trace is twice the

RUM particle kinetic energy, 2dhp = dRp,ii. The third-order moment

of the RUM is dQp;ijkðx; tÞ ¼ hdup;iðtÞdup;jðtÞdup;kðtÞjxpðtÞ ¼ x;Hf i.
Defining the mean mesoscopic particle velocity as Up;iðx; tÞ ¼
h~np~up;ii=h~npi ¼ h~up;iip, the Lagrangian velocity turbulent fluctuation

associated to each particle may be obtained as u0
p;iðtÞ ¼

up;iðtÞ ÿ Up;iðxpðtÞ; tÞ, and the partitioning written in terms of fluctu-

ating contributions as well u0
p;iðtÞ ¼ ~u0

p;iðxpðtÞ; tÞ þ dup;iðtÞ. Hereinafter,

the contracted notation in Eq. (6) will be retained and used

whenever defining macroscopic quantities from mesoscopic ones,

i.e. mean mesoscopic quantities.

2.2. The local instantaneous particle Eulerian equations

In the framework of the moment approach, the transport equa-

tions of the moments of the PDF are obtained by analogy with the

kinetic theory of dilute gases (Chapman and Cowling, 1939). With-

out gravity, in isothermal conditions and mono-dispersed regime,

when the particle-to-fluid density ratio is large, only the drag force

needs to be taken into account and the PDF transport equation is

written as

@

@t
~f ð1Þp þ @

@xj
½cp;j~f ð1Þp � ¼ þ @

@cp;j

ðcp;j ÿ uf@p;jÞ
sp

~f ð1Þp

� �

þ @~f ð1Þp

@t

 !

coll

: ð9Þ

The first term on the r.h.s. accounts for the effect of external forces

acting on the particle. It is closed according to the same assump-

tions used for closing the Lagrangian particle equations (see, e.g.

Zaichik, 1999, and the particle Lagrangian description recalled in

Appendix A). The last term in Eq. (9) accounts for the modification

in the distribution function due to the particle interactions (colli-

sions, coalescence). In very dilute regimes, it may be neglected pro-

vided that the typical collision time is much greater than the

particle response time. Nevertheless, the formalism may theoreti-

cally include inter-particle collisions assuming that they do not di-

rectly induce spatial correlations in the particle velocity

distribution. Local and instantaneous Eulerian equations are then

obtained from Eq. (9) by multiplying by any function c(up) and

integrating over the particle-velocity space. In order to account

for non-linearities between fluid and particle properties, a meso-

scopic particle response time is also introduced ~sp ¼< 1=spjHf>
ÿ1
p

where sp is the well known single-particle response time recalled

in Appendix A. At the first order, the local and instantaneous

dispersed phase is described by the evolution of the mesoscopic

particle number density and velocity (Simonin et al., 2002):

@~np

@t
þ @~np~up;i

@xi
¼ 0; ð10Þ

@~np~up;i

@t
þ @~np~up;i~up;j

@xj
¼ ÿ

~np

~sp
ð~up;i ÿ uf ;iÞ ÿ

@~npdRp;ij

@xj
: ð11Þ

In Eq. (11), the first term on the r.h.s. accounts for the effects of the

drag force and the second term is the transport due to RUM. At

the second order, the statistical modeling leads to an equation for

the RUM particle kinetic stress tensor (Moreau, 2006):

@~npdRp;ij

@t
þ @~npdRp;ij~up;k

@xk
¼ ÿ2

~np

~sp
dRp;ij ÿ ~npdRp;jk

@~up;i

@xk

ÿ ~npdRp;ik

@~up;j

@xk
ÿ @

@xk
~npdQp;ijk: ð12Þ

In Eq. (12), the first term on the r.h.s. is the dissipation of the RUM

stresses by the fluid drag. Second and third terms represent the pro-

duction of RUM by mesoscopic velocity gradients; however, they

may have local negative sign corresponding to an inverse energy ex-

change. The last term in Eq. (12) is the contribution to the transport

by the third-order RUM correlation. System (10)–(12), represents an

unclosed set of equations which requires the modeling of the third-

order velocity moment in order to be used for predicting the local

and instantaneous dispersed phase. As an alternative, the first order

modeling (i.e. Eqs. (10) and (11)) may be used, provided that a clo-

sure for the RUM stress tensor is given. In this work, a first-order

ACBMM is developed. Its success depends on the accuracy of the

RUM algebraic closure.

3. The RUM particle kinetic stress tensor

The goal of this study is to provide a constitutive relation which

makes it possible to write the RUM tensor as a function of known

quantities. A quantity that seems to be appropriate for this purpose

is the particle rate-of-strain tensor. In this section the two tensors

are described and some important results of a previous analysis

carried out on the structure of the tensors briefly exposed (further

details may be found in Masi et al. (2010)).

3.1. Analogy with the kinetic theory and RANS algebraic closures

The RUM tensor, dRp,ij, may be considered as the equivalent of

the stress tensor in the Navier–Stokes (NS) equations, similarly

derived by using the Boltzmann kinetic theory. It consists of an

isotropic and a deviatoric parts:

dRp;ij ¼
1

3
dRp;kkdij þ dR�

p;ij ¼
2

3
dhpdij þ dR�

p;ij: ð13Þ

By analogy with fluids, the isotropic part may be assimilated to a

mechanical pressure and the deviatoric part to a viscous contribu-

tion. The isotropic part, involving the RUM kinetic energy dhp,



may be obtained by an additional transport equation (Simonin

et al., 2002)

@~npdhp

@t
þ @~npdhp~up;m

@xm
¼ ÿ~npdRp;nm

@~up;n

@xm
ÿ 2

~np

~sp
dhp

ÿ 1

2

@

@xm
~npdQp;nnm ð14Þ

and only the deviatoric part needs to be modeled (in addition with

the contracted triple velocity correlation dQp,nnm for which closures

are given elsewhere (Moreau, 2006; Kaufmann et al., 2008)).

In order to close the stress tensor in the NS equations, the well-

known hypotheses leading to formulate the constitutive relations

for Stokesian and Newtonian fluids are formulated. To the general

principles of determinism, indifference from the reference frame

and local effect, a linear relationship between the stresses and

the rate-of-strain tensor, for Newtonian fluids, is assumed. It may

be supposed that the behavior of the dispersed phase (modeled

as a continuum) is instead far from that of Newtonian fluids. If

time-history and non-local effects could be disregarded as a first

approximation, a linear relationship between the RUM and the par-

ticle rate-of-strain tensors seems instead inadequate. For the NS

stress tensor, Chen et al. (2004) provided an analytical expression

using a Chapman–Enskog expansion applied to the Boltzmann

equation. They showed that the first-order approximation leads

to the well-known constitutive relation for Newtonian fluids, while

the second-order approximation leads to a ‘‘non-Newtonian’’

expression in which the stresses are related to a ‘‘memory-effect’’

term, represented by the Lagrangian derivative of the strain, and

to non-linear tensorial terms. Assuming analogy between thermal

fluctuations and turbulent fluctuations of the fluid (DNS versus

RANS tensor), Chen et al. (2004) provided an expression for the

Reynolds stresses accounting for the second-order approximation

in the Chapman–Enskog expansion. It is noteworthy that this

expression turned out very similar to the second-order turbulence

models, encouraging the analogy between turbulent eddies and

thermal fluctuations. Using a similar analogy for the dispersed

phase, but in reverse (RANS versus DNS), linear and non-linear con-

stitutive relations for the RUM tensor may be provided by means of

algebraic closures which are derived by analogy with first-order

and second-order approximation models in turbulence. However,

the reader is cautioned against confusing the RUM particle kinetic

stress tensor, which is local and instantaneous, with a Reynolds-

like stress tensor, which is not. In this work, the non-linearity as-

pect of the constitutive relation will be emphasized.

3.2. RUM, anisotropy, and particle rate-of-strain tensors

The particle rate-of-strain tensor, Sp,ij, represents the symmetric

part of the mesoscopic particle velocity-gradient tensor which is

defined as follows:

@~up;i

@xj
¼ 1

2

@~up;i

@xj
þ @~up;j

@xi

� �

þ 1

2

@~up;i

@xj
ÿ @~up;j

@xi

� �

¼ S�p;ij þ
1

3
Sp;kkdij

� �

þXp;ij; ð15Þ

the deviatoric part of the strain, S�p;ij, accounts for shearing or distor-

tion of any element of the dispersed phase while the isotropic part,
1
3
Sp;kkdij, accounts for contraction or expansion. The angular rotation

of any element of the dispersed phase is then represented by the

antisymmetric contribution of the particle velocity-gradient tensor,

namely the mesoscopic particle vorticity tensor, Xp,ij. Hereinafter,

matrix notation will be frequently used. When associated with a

tensor, bold notation denotes three-dimensional second-order ten-

sors, curly brackets {�} represent the trace, and the asterisk means

traceless tensor. The inner product of two second-order tensors is

then defined in a matrix notation as C = AB = AikBkj = Cij, B2 = BB

and I is the identity matrix.

In order to study the structure of the deviatoric RUM, R⁄, and

the particle rate-of-strain, S⁄, tensors the authors (Masi et al.,

2010) used a local dimensionless parameter, s⁄, originally proposed

by Lund and Rogers (1994) and employed by several authors in-

volved in one-phase turbulent flow analyses (see, e.g. Tao et al.,

2002; Higgins et al., 2003). This parameter, originally called

‘‘strain-state parameter’’ and used to study the ‘‘shape’’ of the

deformation caused by the fluid rate-of-strain tensor, may be used

to investigate the structure of any traceless real and symmetric

tensor giving local information about the relative magnitude of

the tensor eigenvalues, reproducing information similar to that

provided by the invariant Lumley’s map (Lumley, 1978) but for

local and instantaneous (not averaged) tensors. An important finding

of the authors’s analysis was to show that in very dilute regime the

tensors R⁄ and S⁄ behave, in principal axes, as in a state of axisym-

metric contraction and expansion respectively, regardless of the

particle inertia. The state of axisymmetric expansion of S⁄ (particle

strain) was found to be the most probable among all the possible

states of the tensor during the simulation. It is comparable to the

state of axisymmetric expansion of the fluid rate-of-strain tensor

(turbulent local and instantaneous strain); the latter observation

is consistent with the study of Lund and Rogers (1994) who found

the expansion the most probable state of the fluid strain in HIT. But

most important, the authors showed that, in very dilute regime,

the RUM tensor behaves as in a one-component state which repre-

sents the limit case of an axisymmetric contraction (based on the

shape of the RUM tensor, implying that the smallest eigenvalues

of RUM tend to zero). From a physical point of view, this means

that the RUM agitation develops in one preferred (local and instan-

taneous) direction while it is damped in the others. In turbulent

fluid flows, the one-component limit is the long-time asymptotic

solution provided by the rapid distortion theory (Rogers, 1991) of

a HIT submitted to a strong shear. Then, a redistribution of energy

between the stresses is ensured by the action of the pressure-strain

correlations. The authors conjectured that in very dilute regimes,

where inter-particle collisions are negligible, the dispersed phase

submitted to a strong shear develops anisotropy which achieves

and preserves the theoretical asymptotic values of the one-compo-

nent limit, as no redistribution between stresses is possible

neglecting collisions. In contrast, accounting for collisions should

introduce a new term in the RUM stress transport equation which

accounts for a redistribution effect. In the frame of the Grad’s the-

ory, this term may be modeled (Simonin, 1991b) similarly to the

return-to-isotropy Rotta’s model developed for pressure-strain

correlation in turbulent flows (Rotta, 1951). For larger values of

the solid volume fraction, the dispersed phase should move away

from the one-component limit state as the collision frequency in-

creases. This effect of redistribution by collisions has been clearly

shown by Vance et al. (2006) in their numerical simulations of a

fully developed particle-laden turbulent channel flow. From a

modeling point of view, the one-component limit state is very

helpful as, in this case, the eigenvalues of anisotropy are known

with the consequence that also its invariants are. Indeed, according

to Lumley (1978), the eigenvalues of the (generic) anisotropy ten-

sor g� ¼ G
fGg ÿ 1

3
I ¼ G�

fGg corresponding to the one-component limit

state are k1 ¼ 2
3
, k2 ¼ k3 ¼ ÿ 1

3
. The same applies for the local and

instantaneous RUM particle anisotropy tensor which is defined as

follows:

b
�
p;ij ¼

dRp;ij

2dhp
ÿ 1

3
dij: ð16Þ

These information will be used for building some of the constitutive

relations proposed in Section 4 and for an analysis purpose.



4. Modeling the deviatoric RUM particle kinetic stress tensor

This section is devoted to the modeling of the deviatoric RUM

particle kinetic stress tensor. A brief description of existing alge-

braic closures is given and new algebraic closures are developed.

4.1. Local equilibrium assumption of the stresses

In order to close the deviatoric RUM tensor, an equilibrium

hypothesis over the tensor components is first retained. The equa-

tion for dR�
p;ij may be obtained by subtracting Eq. (14) (multiplied

by 2
3
dij) from Eq. (12). The equilibrium assumption then entails

neglecting transport terms and equation reduces to the form

dR�
p;ij ¼ ÿ

~sp
2

2

3
dhp

@~up;i

@xj
þ @~up;j

@xi
ÿ 2

3

@~up;m

@xm
dij

� �� �

ÿ
~sp
2

dR�
p;jk

@~up;i

@xk
þ dR�

p;ik

@~up;j

@xk
ÿ 2

3
dR�

p;mn

@~up;m

@xn
dij

� �

: ð17Þ

This expression may be further simplified assuming light anisot-

ropy; in this case the second-order approximation in Eq. (17) may

be neglected and the expression turns into the well known viscos-

ity-like model proposed, for the dispersed phase, by Simonin et al.

(2002). It may be reformulated in terms of a RUM viscosity as

dR�
p;ij ¼ ÿ2mtS

�
p;ij; ð18Þ

where mt ¼ ~spdhp=3. Hereinafter, Eq. (18) will be referred to as VIS-

CO model.

4.2. Viscosity-like model from axisymmetric tensors

The model presented in this section is based on the work of

Jovanović and Otić (2000) originally proposed for turbulent flows.

According to numerical observations (Masi et al., 2010) tensors

are assumed axisymmetric with respect to a (same) direction and

written in a bilinear form (Batchelor, 1946; Chandrasekhar, 1950)

as

S�p;ij ¼ Adij ÿ 3Akikj; ð19Þ
dR�

p;ij ¼ Cdij ÿ 3Ckikj: ð20Þ

Defining the magnitude of the particle rate-of-strain tensor as

S ¼ II1=2S , where IIS = {S⁄2} is the second dimensional invariant of

the tensor, the quantity A may be expressed as a function of S and

used to re-formulate Eq. (19) as a function of the unique unknown

quantity kikj. The latter is then explicitly obtained and injected into

Eq. (20) from which the deviatoric RUM stress tensor is obtained,

provided that the magnitude of the anisotropy tensor is known

(i.e. its second invariant). Further manipulations (detailed in Masi

et al. (2010)) lead to the expression

dR�
p;ij ¼ signðIIISÞ

2

3

� �1=2

2dhp
S�p;ij
S

; ð21Þ

where IIIS = {S⁄3} is the third (dimensional) invariant of the particle

rate-of-strain tensor. In the above model, the axisymmetry of the

tensors, their alignment, and the one-component limit state of

stresses are assumed. Under such assumptions, the sign of IIIS
reproduces both positive and negative viscosities corresponding to

an axisymmetric particle rate-of-strain tensor which moves from

a configuration of expansion to contraction and vice versa. Con-

tracting Eq. (21) by multiplying by the tensor S�p;ij gives an expres-

sion for the scalar quantity dR�
p;ijS

�
p;ij which represents the

production of the RUM kinetic energy by shear (corresponding to

the deviatoric-RUM contribution of the first r.h.s. term in Eq. (14))

multiplied by ÿ1=~np. This makes it possible to write dR�
p;ijS

�
p;ij as a

function of the second invariant of the particle rate-of-strain tensor,

the RUM kinetic energy, both positive quantities, and the sign of IIIS.

The correlation between the sign of IIIS and that of dR�
p;ijS

�
p;ij will be

investigated in Section 6. Hereinafter, the model (21) will be re-

ferred to as AXISY-C. For a comparison purpose, it will be also tested

accounting for only a positive viscosity (negative sign into the mod-

el which represents the most probable sign), and the model referred

to as AXISY.

4.3. Quadratic algebraic approximation

Assuming equilibrium of the components of the RUM stress

tensor, as in Section 4.1, Zaichik (2009) suggested a model which,

from Eq. (17), applies an iteration procedure invoking the isotropic

approximation at the zero-order iteration (i.e. dR�ð0Þ
p;ij ¼ 0), assuming

that � ¼ ~spS is a small parameter. The first-order approximation is

equivalent to the model suggested by Simonin et al. (2002) and re-

called in Section 4.1, namely the model VISCO. The second-order

approximation is obtained from Eq. (17) using the first-order

approximation (18), leading to

dR�
p;ij ¼ ÿ2~spdhp

3
S�p;ij þ

2~s2pdhp
6

S�p;ik
@~up;j

@xk
þ S�p;jk

@~up;i

@xk
ÿ 2

3
S�p;mn

@~up;m

@xn
dij

� �

: ð22Þ

According to Zaichik (2009), Eq. (22) agrees with the second-or-

der approximation obtained by solving the BGK form Bhatnagar

et al. (1954) of the Boltzmann kinetic equation by means of a

Chapman–Enskog expansion technique (Chapman and Cowling,

1939). Chen et al. (2004) used such an expansion to obtain devi-

ations from equilibrium at various orders of the Knudsen number

ðKÞ. The latter was defined as the ratio between the turbulent

time and a representative timescale of the mean field, and used

as a small parameter in their perturbation expansion of the tur-

bulent Boltzmann equation (similarly to the parameter � of the

Zaichik’s model). The small parameter legitimates the use of a

perturbation expansion around a state of equilibrium and defines

the accuracy of the truncated approximate solution. In the model

of Chen et al. (2004), developed to provide high-order terms for

the Reynolds stress tensor, the BGK equation is expanded neglect-

ing only the terms due to the finite compressibility. In their sec-

ond-order approximation, a term accounting for the Lagrangian

time derivative of the rate-of-strain tensor appears, unlike the

Zaichik’s model. The difference is due to the fact that in the Zaic-

hik’s model the iteration procedure is applied to an equilibrium

expression devoid of transport terms as a starting point, while

in Chen et al. (2004) the differential operators included in the ori-

ginal transport equation are also expanded. The Lagrangian time

derivative of the rate-of-strain tensor would make appear addi-

tional terms in the constitutive relation. This point will not be

addressed in the frame of a quadratic algebraic approximation.

Instead, an improved model which does not rely on neglecting

transport terms in the stress transport equations and which con-

tains additional tensors is developed by the next section. Herein-

after, Eq. (22) will be referred to as QUAD model.

4.4. Self-similarity assumption: 2UEASM models

Inspired from the well-known model suggested by Rodi (1972)

for closing the Reynolds stress tensor in turbulence, an equilibrium

assumption over the components of the RUM anisotropy is pro-

posed. This model relies on the assumption that the RUM stress

tensor is a self-similar tensor which means that its temporal and

spatial variations are related to that of its trace. The self-similarity

assumption leads to write

D

Dt
b
�
p;ij ¼ 0 with

D

Dt
¼ @

@t
þ ~up;k

@

@xk
: ð23Þ



Using definition (16), the above relation is re-written as follows

D

Dt
dRp;ij ¼

dRp;ij

dhp

D

Dt
dhp: ð24Þ

Then, injecting Eqs. (12) and (14) into Eq. (24) yields

dRp;jk

@~up;i

@xk
þ dRp;ik

@~up;j

@xk
þ 2

~sp
dRp;ij þ

1
~np

@

@xk
~npdQp;ijk

¼ dRp;ij

dhp
dRp;nm

@~up;n

@xm
þ 2

~sp
dhp þ

1

2

1
~np

@

@xm
~npdQp;nnm

� �

: ð25Þ

Finally, assuming equality between third-order correlations and

rearranging some terms, the equation takes the form

dRp;ij ÿ dRp;nm

2dhp

@~up;n

@xm

� �

¼ ÿ1

2
dRp;jk

@~up;i

@xk
ÿ 1

2
dRp;ik

@~up;j

@xk
: ð26Þ

The term within the parentheses represents the normalized (by

2dhp) production of the RUM kinetic energy by shear and compres-

sion, which may be written as ÿfb�
S�g ÿ 1

3
fSg. Before tackling the

problem of the solution of the system (26), the system is re-written

in terms of anisotropy and particle rate-of-strain and vorticity ten-

sors, by using definitions (15) and (16). Dividing Eq. (26) by 2dhp,

subtracting the trace from both the l.h.s. and r.h.s. tensors and

accounting for compressibility (the trace of S is not null), the equa-

tion takes the form

b
�ðÿ2fb�

S�gÞ ¼ ÿ2

3
S� ÿ ðb�

S� þ S�b
� ÿ 2

3
fb�

S�gIÞ þ ðb�
XÿXb

�Þ:

ð27Þ

The system (27) is nonlinear and implicit since the production term

(on the l.h.s.) also involves the anisotropy tensor, and because the

system is expressed in terms of b⁄, as well as of S⁄ and X. Eq.

(27) is a novel implicit 2UASM closure for the RUM stress tensor.

Hereinafter, all the models arisen from an explicit solution of this

set of linearized equations will be referred to as 2UEASM models.

It is worth of note that a hypothesis of self-similarity of the RUM

stress tensor leads to an Eq. (26) devoid of drag dissipation terms.

Indeed, as the dissipations in Eqs. (12) and (14) are linear terms, un-

der a self-similarity hypothesis their contribution disappear. For

this reason, the particle response time is no longer accounted for

into the model. This result is extremely important as it shows that

an assumption of equilibrium of anisotropy does not rely directly on

the particle inertia. This finding will reveal a focal point of the

modeling.

4.4.1. The problem of the explicit algebraic solution

Since a numerical solution of the implicit 2UASM closure (27) is

not straightforward and may be computationally expensive, an ex-

plicit solution is sought. In this section we describe the explicit

solution of the system assuming to be linear, tackling in a second

time the problem of the linearization. Eq. (27) is rewritten as

follows:

b
þ ¼ ÿSþ ÿ b

þ
Sþ þ Sþb

þ ÿ 2

3
fbþ

SþgI
� �

þ b
þ
X

þ ÿX
þb

þÿ �

ð28Þ

where b
þ ¼ 3

2
b
�
, and S+ = S⁄/(ÿ2{b⁄S⁄}) and X

+ =X/(ÿ2{b⁄S⁄}) are

the normalized traceless particle rate-of-strain and vorticity ten-

sors, respectively. According to Pope (1975), the anisotropy can be

expressed by the form

b
þ ¼

X

1

G1T1 ð29Þ

which represents the linear combination of a set of non-dimen-

sional independent, symmetric and deviatoric second-order tensors

T1, using scalar coefficients G1 which are functions of the invariants

of S+ and X
+. Using the Cayley–Hamilton theorem, Pope (1975)

showed that a set of ten (1 = 10) tensors T1 needs to form an

integrity basis Spencer (1971) in order to express every symmetric

deviatoric second-order tensor formed by S+ and X
+. The ten ten-

sors are recalled in Table 1. Concerning coefficients G1, Gatski and

Speziale (1993) gave the general solution for fully three-dimen-

sional flows involving ten coefficients. They are functions of the five

invariants

g1 ¼ fSþ2g; g2 ¼ fXþ2g; g3 ¼ fSþ3g;
g4 ¼ fSþXþ2g; g5 ¼ fSþ2

X
þ2g: ð30Þ

According to Eq. (29), the resulting solution is fully explicit and its

implementation straightforward. The use of the complete ten-ten-

sor basis is referred to as 3D form of the model. As an alternative,

a two-dimensional approximation using only a three-tensor basis

may also apply for three-dimensional flows. Two-dimensional flows

are mean-quantity free in one of the three directions. According to

Gatski and Speziale (1993), in that case only three tensors are

needed as integrity basis, which are T1, T2, T3. Moreover under the

two-dimensional assumption the invariants g3 and g4 are zero

and g5 is equal to 1
2
g1g2. The resulting 2D expression is

b
þ ¼ ÿ 3

3ÿ 2g1 ÿ 6g2

Sþ þ Sþ
X

þ ÿX
þSþ

ÿ �

ÿ 2 Sþ2 ÿ 1

3
fSþ2gI

� �� �

:

ð31Þ

Eq. (31) is easier to handle than Eq. (29) when the denominator van-

ishes and singularities appear (details may be found in Gatski and

Speziale (1993)). A regularization procedure is indeed available

for the 2D form (Gatski and Speziale, 1993) while, to the best of

our knowledge, no regularization procedure exists for the fully

three-dimensional solution because of its cumbersome form. In

our case, because of the assumptions detailed in Section 4.4.2, no

regularization procedure is necessary.

In the literature of turbulent fluid flows, explicit solutions of an

equilibrium anisotropy assumption are often referred to as EASM

(as explicit algebraic stress models) or EARSM (as explicit algebraic

Reynolds stress models). In the past decades, several studies on the

theoretical and numerical aspects of these models have been

carried out; an overview may be gained from the works of Pope

(1975), Rodi (1976), Taulbee (1992), Speziale and Xu (1996),

Girimaji (1997a), Wallin and Johansson (2002), Weis and Hutter

(2003), Gatski and Wallin (2004), Grundestam et al. (2005) in

which many different aspects of the modeling have been addressed

as, for example, non-equilibrium flows, invariance from the frame

of reference, numerical methods. This bibliography is clearly not

exhaustive, but it is enough to understand the multitude of ques-

tions arisen from the EASM approaches. Concerning an analogous

formulation for modeling the local deviatoric RUM particle kinetic

stress tensor in the framework of an Eulerian approach for the

dispersed phase, no literature exists. This is why we stay on the

simpler original idea on which the approach is based, leaving as

a perspective the handling of more sophisticate aspects of such

models.

Table 1

The integrity basis for fully three-dimensional flows.

T1 = S+ T6 ¼ X
þ2Sþ þ SþXþ2 ÿ 2

3 fS
þ
X

þ2gI
T2 = S+X+ ÿX

+S+ T7 =X
+S+X+2 ÿX

+2S+X+

T3 ¼ Sþ2 ÿ 1
3 fS

þ2gI T8 = S+X+S+2 ÿ S+2X+S+

T4 ¼ X
þ2 ÿ 1

3 fXþ2gI T9 ¼ X
þ2Sþ2 þ Sþ2

X
þ2 ÿ 2

3 fS
þ2

X
þ2gI

T5 =X
+S+2 ÿ S+2X+ T10 =X

+S+2X+2 ÿX
+2S+2X+



4.4.2. Modeling the non-linearity

Unfortunately, the explicit solution procedure described in Sec-

tion 4.4.1 does not address the concern of the system linearization.

Indeed, Gatski and Speziale (1993) needed to add further assump-

tions to express their analogous term P/�, evoking equilibrium for

homogeneous turbulent flows which leads to set P/� as a constant.

Similarly, in order to use this method, we need an expression for

the term ÿ2{b⁄S⁄}. As recalled in Section 3, a previous analysis

about the structure of the tensors showed that R⁄ and S⁄ are both

axisymmetric, behaving as in a one-component limit and as in axi-

symmetric expansion (as most probable state), respectively. In this

case, the eigenvalues of RUM anisotropy are k1 ¼ 2
3
; k2 ¼ k3 ¼ ÿ 1

3

and that of the rate-of-strain tensor are k1 = ÿ2Sk, k2 = k3 = Sk
where Sk is the largest eigenvalue of S⁄. Then assuming alignment

between tensors and between axisymmetric directions, the con-

tracted product b
�
p;ijS

�
p;ij may be written in principal axes as

b
�
p;ijS

�
p;ij ¼ ÿ2Sk. Similarly, we write the contracted product

S�p;ijS
�
p;ij ¼ 6S2k ¼ IIS. Relating these two expressions we finally obtain

ÿ2fb�
S�g ¼ 2

2

3

� �1=2

II1=2S : ð32Þ

This term is invariant by definition, hence it may be used in any

coordinate system. Injecting Eq. (32) into the fully 3D form (29)

or into the 2D form of the model (31), the system is then linearized

and a solution may be explicitly obtained. While there is no math-

ematical guarantee that singularities do not occur in the 3D solu-

tion, we can demonstrate that in our case, in which tensors are

normalized using Eq. (32), the 2D form is always nonsingular. In-

deed, writing the denominator D = 3 ÿ 2g2 + 6f2 using the quanti-

ties g ¼ ffiffiffiffiffi

g1

p
and f ¼ ffiffiffiffiffiffiffiffiffiÿg2

p
which explicitly account for the sign

of the invariants, in the limit case in which f2 is zero, otherwise it

is always greater than zero because positive, it should be g2 < 1.5

in order to avoid that D vanishes. Computing g2 = g1 from the nor-

malized tensor S+, it is clear that this condition is always accom-

plished. Therefore, stable solutions may always be obtained using

the linearized explicit 2D-form of the system, Eq. (31), in conjunc-

tion with approximation (32). In this study, only the 2D-model pre-

dictions will be presented and referred to as 2UEASM1 model.

Indeed, results from the 3D form of the model have shown that

no improvement is obtained when the full-tensor basis is used in

conjunction with the approximation (32). The 3D form is therefore

discarded.

4.4.3. An explicit solution accounting for the non-linearity

In the literature of turbulent fluid flows, fully-explicit and self-

consistent solutions directly accounting for the nonlinearity were

suggested, for example, by Girimaji (1996) and Wallin and Johans-

son (2000). In the framework of the two-dimensional approxima-

tion, these two techniques lead to the same solution. However,

the technique of Wallin and Johansson (2000) additionally pro-

vides a three-dimensional form of the model and it is thus retained

in this study. Originally conceived for the turbulence equations, it

is here applied to our 2UASM model (27). In order to facilitate the

reading, we will use the same notation as in Wallin and Johansson

(2000). According to the Wallin & Johansson’s notation, the dis-

persed-phase anisotropy equation is written as

Nb
� ¼ ÿA1S

þ ÿ A2 b
�
Sþ þ Sþb

� ÿ 2

3
fb�

SþgI
� �

þ ðb�
X

þ ÿX
þb

�Þ

ð33Þ

where N, by analogy with Wallin and Johansson (2000), is defined

as N = A3 + A4 (ÿ{b⁄S+}), and S+ and X
+ are the dimensionless (by

the quantity II1=2S , for example) particle rate-of-strain and vorticity

tensors (note that dimensional tensors may also be used; in that

case dimensional invariants have to be employed). Comparing the

systems (27) and (33), the coefficients take the values

A1 ¼ 2
3
; A2 ¼ 1; A3 ¼ 0; A4 ¼ 2. The Wallin and Johansson’s

technique consists in injecting the general form of the anisotropy

(29) (in which b
þ ¼ b

�
) into Eq. (33). This leads to formulate the

ten coefficients as a function of N and the latter becomes the only

unknown term which needs to be solved. The ten scalar coefficients

are functions of the five invariants (30). For fully three-dimensional

flows, the solution gives a sixth-order polynomial in N, which is

complex to handle. Alternatively, a two-dimensional solution, con-

sisting in a third-order polynomial in N, may be retained and used

in both the 2D and 3D forms of the model. The latter may be consid-

ered as an approximate 3D solution and it will be referred to as

3D-A. In very dilute regime in which A3 is zero, the third-order

polynomial is depressed to a pure quadratic equation as follows

N2 ¼ A1A4 þ
2

3
A2
2

� �

g1 þ 2g2

� �

¼ 2g1 þ 2g2: ð34Þ

For fully-three dimensional flows the ten coefficients provided by

Wallin and Johansson (2000) are recalled in Table 2 where Q is

Q ¼ þ3N5 þ ÿ15

2
g2 ÿ

7

2
A2
2g1

� �

N3 þ ð21A2g4 ÿ A3
2g3ÞN2

þ 3g2
2 ÿ 8g1g2A

2
2 þ 24A2

2g5 þ A4
2g

2
1

� �

N þ 2

3
A5
2g1g3

þ 2A3
2g4g1 ÿ 2A3

2g2g3 ÿ 6g4A2g2: ð35Þ

Instead, according to the two-dimensional approximation the coef-

ficients become

G1 ¼ ÿA1N

Q
; G2 ¼ ÿA1

Q
; G3 ¼ 2

A1A2

Q
; Gi ¼ 0;

i 2 ½4;10�; with Q ¼ N2 ÿ 2g2 ÿ
2

3
A2
2g1: ð36Þ

For both the 2D and 3D forms, an explicit solution for the anisotropy

tensor is finally obtained inserting coefficients (36) and Table 2,

respectively, into the tensor polynomial expression (29), using the

integrity basis in Table 1. However, only the 2D form of the model

ensures nonsingular solutions. Indeed, injecting Eq.(34) into the

definition of the denominator (36), it is clear that Q never vanishes

if g1 – 0. Examinations of Eq.(34) leads to conclude that as g2 is al-
ways negative, the polynomial admits real solutions only for

g2 P f2. In order to use this model, local negative values of the dis-

criminant will be set to zero. The legitimacy of such an approxima-

tion will be checked in Section 6. Alternatively, one could assume

dilute rather than very dilute regime. The latter implies that the in-

ter-particle collision time is much larger than the particle relaxation

time, so that collisions may be neglected. If the two timescales are

instead of the same order of magnitude and the volume-fraction

rate is small (ap 6 0.01), the regime can still be considered as dilute,

i.e.no modulation of the turbulence by the presence of the particles

occurs, but collisions should be taken into account. In this case the

model coefficient A3 is no longer zero, as it accounts for the effects

of collisions on the anisotropy, and N is found as the solution of a

third-order polynomial. This concern is not addressed by the pres-

ent study as we assumed very dilute regime.Concerning the sign of

Table 2

Coefficients associated to the integrity basis.

G1 ¼ ÿ 1
2A1N 30A2g4 ÿ 21Ng2 ÿ 2A3

2g3 þ 6N3 ÿ 3A2
2g1N

� �

=Q G6 = ÿ9A1N
2/Q

G2 ¼ ÿA1 2A3
2g3 þ 3A2

2Ng1 þ 6A2g4 ÿ 6Ng2 þ 3N3
� �

=Q G7 = 9A1N/Q

G3 ¼ ÿA1A2 6A2g4 þ 12Ng2 þ 2A3
2g3 ÿ 6N3 þ 3A2

2g1N
� �

=Q G8 ¼ 9A1A
2
2N=Q

G4 ¼ ÿ3A1 2A2
2g3 þ 3NA2g1 þ 6g4

� �

=Q G9 = 18A1 A2N/Q

G5 = ÿ9A1A2N
2/Q G10 = 0



N, the following considerations are done. According to the two-

dimensional approximation, the general representation of the

three-dimensional anisotropy tensor is b
� ¼ G1S

þþ
G2ðSþXþ ÿX

þSþÞ þ G3 Sþ2 ÿ 1
3
fSþ2gI

� �

. Multiplying the latter by

the particle rate-of-strain tensor and taking the trace by invoking

the two-dimensional property for cubic terms leads to

writeb
�
p;ijS

þ
p;ij ¼ G1S

þ
p;ijS

þ
p;ij ¼ G1g1 (Girimaji, 1996). According to the

definition of the production of the RUM kinetic energy by shear,

ÿ{R⁄S⁄}, and to the expression of G1 (36), in the simplest case N

should be taken as positive. In this study both the 2D and the

3D-A forms will be assessed. For both we will use the same

second-order polynomial in N (34). Hereinafter this model will be

referred to as 2UEASM2.

4.5. Model correction

In Sections 4.2 and 4.4.3 it has been shown, with restriction to

two-dimensional flows, that a reverse sign in the energy exchange

is related to the sign of the coefficient G1 which is the same of the

scalar quantities {R⁄S⁄} and {b⁄S⁄}. This sign was shown to be neg-

ative in turbulence, in the domain of the applicability of the ‘‘weak-

equilibrium’’ assumption (Girimaji, 1996). Instead, for the dis-

persed phase interacting with turbulent flows, it is usual to have

a reverse exchange of energy from the RUM to the mesoscopic con-

tribution (Moreau et al., 2010) which corresponds to a reverse sign

of the first-order approximation coefficient. The model 2UEASM1

cannot predict such a state since the term {b⁄S⁄} is modeled in that

special case in which the two tensors R⁄ and S⁄ behave as in axi-

symmetric contraction and expansion respectively (negative sign)

being observed as the most probable state. The models 2UEASM2

admits instead both positive and negative signs of G1 since the

solution is obtained by means of a polynomial in N which is de-

pressed to a pure quadratic equation. As we have no additional

information, we first choose the most probable sign on the base

of the above considerations. In Section 4.2 it has been shown that

the sign of the third invariant of S⁄ may be used to reproduce a re-

verse sign into model AXISY in that special case in which this is due

to a change of state, from expansion to contraction, of the particle

rate-of-strain tensor. In this section we will use the same quantity

for modeling reverse energy exchanges in 2UEASMmodels. Its per-

tinence will be checked in Section 6. Accounting for the correction,

Eq. (32) corresponding to the model 2UEASM1 is replaced by

ÿ2fb�
S�g ¼ ÿ2signðIIISÞ 2

3

ÿ �1=2
II1=2S , and the quantity N (34) corre-

sponding to the models 2UEASM2 by N ¼ ÿsignðg3Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2g1 þ 2g2

p

.

IIIS and g3 are dimensional or dimensionless invariants, depending

on the model. Besides the model AXISY, also 2UEASM1 and

2UEASM2 will be assessed with and without correction. When

accounting for the correction, models will get the notation -C.

4.6. Characteristic timescale analysis

In Section 4.1 the viscosity model VISCO was recalled. This

model assumes that the deviatoric RUM and the particle rate-

of-strain tensors are related by a linear relationship through an

eddy viscosity which uses the particle relaxation time as a typical

timescale. This assumption may be compared to the fundamental

hypothesis of the kinetic theory of dilute gases which is at the

origin of the constitutive relation for Newtonian fluids. It involves

the molecular motion adjusts rapidly to the change imposed by the

local strain. Hence, for similarity, the basic assumption from which

the viscosity model arises is violated when the ratio between the

particle relaxation time and the mesoscopic strain timescale is

large, i.e. ~spS > 1. This ratio is classically referred to as Knudsen

number. The question about the domain of validity of a local

eddy-viscosity assumption for large values of such a number,

was already raised by Sakiz and Simonin (1998) and Simonin

et al. (2002). In fact, when the strain is high, models which use

the particle relaxation time as a typical timescale have little chance

to work, in particular at large particle inertia. In order to address

the question of the timescales, the two viscosity models presented

in this manuscript are here compared. The models VISCO and AXI-

SY are, respectively,

dR�
p;ij ¼ ÿ2

3
~spdhpS

�
p;ij and dR�

p;ij ¼ ÿII1=2b 2dhp
S�p;ij
S

: ð37Þ

It is easy to recognize that the difference resides in the two different

timescales used by the models, that is ~sp=3 versus II1=2b =S. In the one-

component limit state, the relation between the times may be

rewritten as

~sp !
ffiffiffi

6
p

Sÿ1 ð38Þ

showing that VISCO and AXISY are viscosity-like models using two

different timescales Fð~spÞ and FðSÿ1Þ, respectively. The 2UEASM

models, arisen from an assumption of equilibrium of anisotropy,

also use FðSÿ1Þ as a typical timescale. It should be noted that these

models are independent of the quantity which is used for the non-

dimensionalization of the tensors. Their timescale is characterized

by the dimensional term j2{b⁄S⁄}jÿ1 which is �Sÿ1 in axisymmetric

sheared flows. Finally, the quadratic approximation QUAD is char-

acterized by the particle response time Fð~spÞ. As discussed in the

introduction of this section, models which use Fð~spÞ have little

chance to work at high Knudsen numbers. This is why an alternative

quadratic approximation using FðSÿ1Þ is suggested and presented in

Section 4.7.

4.7. ‘‘Rescaled’’ quadratic algebraic approximation

Eq. (38), which relates the timescales of the two viscosity mod-

els, is here used to construct a new non-linear viscosity model

based on the derivation proposed by Zaichik (2009) and presented

in Section 4.3. Replacing ~sp with the new timescale and applying

the same iteration procedure for which the second-order approxi-

mation is obtained by using the first-order approximation, the new

model takes the form

dR�
p;ij ¼ ÿ2

2

3

� �1=2

dhp
S�p;ij
S

þ 2dhp

S2
S�p;ik

@~up;j

@xk
þ S�p;jk

@~up;i

@xk
ÿ 2

3
S�p;mn

@~up;m

@xn
dij

� �

: ð39Þ

If the particle inertia is not small enough, the assumption of small

parameter � ¼ ~spS allowing to justify the expansion procedure is

no longer valid. Accounting for the new timescale makes it possible

to extend the range of applicability of the model. The above expres-

sion, at the first order, leads to the viscosity model AXISY if the one

component limit state and a positive viscosity are used. Eq. (39) writ-

ten in term of anisotropy, using dimensionless (by II1=2S ) tensors, is

b
� ¼ ÿ 2

3

ÿ �1=2 ÿ 2
3
fSþg

h i

S�þ ÿ ðS�þXþ ÿX
þS�þÞ þ 2 S�þ2 ÿ 1

3
fS�þ2gI

� �

.

The latter has the same form as the 2UEASMmodels previously pre-

sented (asterisks are kept here to distinguish the traceless dimen-

sionless tensor S⁄+ from the trace of the non-traceless

dimensionless tensor {S+} appearing in this equation). Indeed, com-

paring the rescaled quadratic approximation developed in this sec-

tion with the two-dimensional approximation of the explicit

solution given in Section 4.4.3 leads to write G1 = ÿ[(2/3)1/2 ÿ 2/

3{S+}], G2 = ÿ1 and G3 = 2. However, it should be noted that in order

to be consistent with the anisotropy-equilibrium assumption and

the non-dimensionalization of the tensors by II1=2S , the above coeffi-

cients should be divided by 2. In such a case, Eq. (39) would be a

particular case of the 2D form of 2U EASM2. The assessment of



the model have shown that a coefficient 0.5 is indeed appropriate.

Hereinafter, Eq. (39) divided by 2 will be referred to as QUAD-MOD.

A summary of the models investigated by the present study,

including their main assumption, characteristic timescale and

treatment of the reverse energy exchange is given in Table 3.

5. Numerical simulations: Eulerian–Lagrangian DNS for

building the particle Eulerian database

Fig. 1 is a stylized picture showing the numerical configuration

used in this study. The slab is a temporal turbulent planar jet laden

with small and heavy particles (Vermorel et al., 2003). The simula-

tion domain is a cube of length size Lbox = 2pLref and mesh com-

posed of 1283 or 2563 cells, depending on the simulation. The

initial gas velocity has hyperbolic-tangent mean profile supple-

mented with statistically homogeneous and isotropic velocity fluc-

tuations. The fluid initial set up is summarized in Table 4. The

turbulence is initialized by a Passot–Pouquet spectrum (Passot

and Pouquet, 1987) setting the energetic lengthscale to

Le = 0.0637Lbox. A certain amount of experimentations led to chose

this value. Results showed that larger values of Le lead to a decay-

ing turbulence. Instead, the energetic lengthscale employed in this

study, being it close to the large scales of the turbulent jet, makes it

possible to develop additional turbulent velocity fluctuations from

the mean shear. As a consequence, at the end of the simulations, in

the high-shear zones of the jet, the intensity of the turbulence is

doubled. For the 1283 DNS, at the final time, the Reynolds number

based on the turbulent dissipation lengthscale, ReLE ¼ q2
f

� �2

=ð�fmf Þ,
is ReLE � 80 at the center of the jet and almost the double in the

zones of high shear. For the 2563 DNS, it is ReLE � 200 at the center

of the jet and up to three-time as much in the zones of high shear.

q2
f and �f are fluid turbulent kinetic energy and dissipation com-

puted by planar averages; mf is the fluid kinematic viscosity. Within

the slab, of width d = 0.25Lbox, particles are randomly embedded at

the same mean velocity as the carrier flow and zero fluctuations,

and their number ðN SÞ is large enough to permit mesoscopic fields

calculation (13 million particles for the 1283 DNSs, 210 million

particles for the 2563 DNS). The sample size N S approximates the

statistical population of particles over all the particle realizations

Hp conditional on one given flow realization Hf (Kaufmann et al.,

2008). The larger is the sample size the more accurate is the

approximation. Numerical simulations are performed using the

Eulerian–Lagrangian NTMIX3D-2U code. This code solves the com-

pressible NS equations in dimensionless form by a third order Run-

Table 3

Summary of the models investigated by the present study and their main assumption, characteristic timescale and capability to reproduce reverse energy exchange. The linear/

nonlinear nature of the constitutive relations is defined in terms of particle velocity gradient. 2UEASM2 is also tested using the 2D approximation for N together with a ten-

tensors basis (referred to as 3D-A solution).

Fig. 1. Stylized picture of the particle-laden slab by Vermorel et al. (2003).

Table 4

Turbulence parameters at the time t = 0.

Simulation 1283 DNSs 2563 DNS

Jet mean velocity Uf = 0.15uref Uf = 0.15uref
Turbulence intensity If = 0.10 If = 0.10

Kinematic viscosity mf = 1.82 10ÿ4 urefLref mf = 5 10ÿ5 urefLref
Turbulent kinetic energy q2f ¼ 3:37 10ÿ4 u2

ref q2f ¼ 3:37 10ÿ4 u2
ref

Dissipation �f ¼ 3:78 10ÿ5 u3
ref =Lref �f ¼ 1:04 10ÿ5 u3

ref =Lref

Kolmogorov lengthscale g = 0.02Lref g = 0.0105Lref
Dissipation lengthscale LE = 0.165Lref LE = 0.595Lref
Kolmogorov timescale sK = 2.19Lref/uref sK = 2.19Lref/uref
Dissipation timescale TE = 8.92Lref/uref TE = 32.40Lref/uref



ge–Kutta time stepping and a sixth-order compact finite-difference

scheme on a Cartesian grid (Lele, 1992). The Lagrangian particle

tracking is ensured by a third order Runge–Kutta scheme. The

interpolation of the turbulent fields at the particle location is per-

formed by a third-order Lagrange polynomial algorithm. Periodic

boundary conditions are applied to both the carrier and the dis-

persed phase in all the directions due to the contained jet expan-

sion. The computations are parallelized using three-dimensional

domain decomposition and message passing. Eight Eulerian–

Lagrangian 1283 DNSs are carried out. The point-particle Lagrang-

ian approach used in this study is described in Appendix A. Simu-

lations correspond to a Stokes number, St, ranging between �0.1

and �10, computed over a characteristic macroscale of the turbu-

lence seen by the particles Tf@p (Deutsch and Simonin, 1991). Only

one 2563 DNS is instead performed and it corresponds to St of

about unity. The technique employed for estimating the Stokes

numbers as well as the definition retained in this study are given

in Appendix B. For all the simulations the particle diameter is set

to dp = 0.0005Lref and the particle-to-gas density ratios is chosen

such to obtain the wished Stokes numbers. From such determinis-

tic simulations, a particle Eulerian database is obtained using the

projection procedure suggested by Moreau et al. (2010), Kaufmann

et al. (2008). The ‘‘exact’’ particle Eulerian fields are then used for

an a priori analysis purpose.

6. Results of the a priori analysis

The analysis presented in this section, and in general when not

mentioned, refers to the 1283 DNSs; results corresponding to the

2563 DNS are shown in Appendix C. Statistics are computed, using

the Eulerian database, over all the planes of the slab; however, for

the sake of synthesis, results are shown for that planes considered

representative of the jet and referred to as ‘‘the centre’’ and ‘‘the

periphery’’. The former corresponds to the plane in the middle of

the box (y = 0), the latter represents a portion of the slab located

in the upper (lower) part of the box, of y (dimensionless) coordi-

nates ranging between 0.6 and 0.8 (ÿ0.6 and ÿ0.8) being y = ±0.8

the periphery of the jet at the initial time. This portion of the slab

is chosen in order to ensure particle sample sizes large enough to

provide accurate statistics. Results which are shown as a function

of the Stokes number are computed by averaging Eulerian fields

over planes and over the six last times of each simulation. Times

are shown as a function of Tr
f@p which represents the timescale of

the turbulence seen by the particles of a simulation of reference

(St � 1, as explained in Appendix B). The analysis is performed at

both tensor and scalar levels (Clark et al., 1979). At the tensor level,

the assessment is made over each component of the deviatoric

RUM by comparison between actual and modeled mean profiles

computed by density-weighted averaging the Eulerian fields over

the homogeneity planes of the planar jet. At the scalar level, the

models’ accuracy is evaluated through the assessment of the pre-

dictions of the RUM kinetic energy production (14). This term ac-

counts for both the productions by shear and compression. As

only the deviatoric-RUM closures are investigated, the only contri-

bution by shear is retained. The latter is referred to as ~npP
�
RUM . Split-

ting in mean and fluctuating velocity-gradient contributions, it is

~npP
�
RUM ¼ ~npP

�
RUM þ ~npP

�0
RUM ¼ ÿ~npdR

�
p;ij

@Up;i

@xj
ÿ ~npdR

�
p;ij

@~u0
p;i

@xj
: ð40Þ

The quantity ~npP
�
RUM is initially chosen for assessing the models. Its

right prediction is of extreme importance as the mechanisms of in-

ter-particle collision and coalescence are functions of the local

amount of the RUM kinetic-energy intensity which relies on
~npP

�
RUM . However, an analysis carried out by Février et al. (2005)

and the authors has shown that only the turbulent-velocity gradient

contribution, ~npP
�0
RUM , is responsible for the energy transfer from

mesoscopic to the RUM component and that, in addition, its local

magnitude prevails on the mean-velocity gradient contribution.

For this reason, ~npP
�0
RUM needs to be carefully evaluated. Indeed, a ki-

netic-energy transfer rate which is badly predicted may dramati-

cally affect the numerical simulation. For example, an

overestimation could give rise to re-laminarization phenomena as

that observed by Riber (2007) when performing Eulerian–Eulerian

simulations of a mean-sheared particle-laden turbulent jet. For this

reason, the models will be assessed over the quantity ~npP
�0
RUM as

well. At the scalar level, the accuracy of each model is evaluated

by means of correlation coefficients computed between actual (A)

and modeled (M) quantities as

CðA;MÞ ¼ ðhAMi ÿ hAihMiÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðhA2i ÿ hAi2ÞðhM2i ÿ hMi2Þ
q

and by the

magnitude ratio between actual and modeled mean quantities M
(A,M) = hAi/hMi (where brackets denote averages over xz-planes).

The latter represents an ideal multiplicative coefficient which

should be accounted for into the model in order to predict the exact

mean magnitude. Point-wise functions, as PDFs, are also used for

the investigation of the model accuracy.

6.1. Approximation of complex solutions in 2UEASM2 and model

correction

Through the a priori analysis, we first investigate the legitimacy

of the assumption used in Section 4.4.3. In that section we devel-

oped a model, 2UEASM2, as an explicit solution of the novel impli-

cit and non-linear equation system (27). 2UEASM2 was obtained
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Fig. 2. Average of the quantity g1 + g2 conditional on g1, for the simulation corresponding to St � 3, at the centre (left) and at the periphery (right) of the jet, at the time

t ¼ 6:2T r
f@p .



using a technique (Wallin and Johansson, 2000) which involves the

solution of a polynomial in N which, in absence of collisions, re-

duces to the pure quadratic equation N2 = 2g1 + 2g2. In order to en-

sure real solutions, we introduced the approximation N = 0 in

correspondence of (g1 + g2) < 0. Fig. 2 shows the average of

(g1 + g2) conditional on the invariant g1, over two planes of the

slab, for the simulation corresponding to St � 3. Results indicate

that negative values involving complex solutions are mainly con-

centrated in zones where the two invariants g1 and g2 are very

small and the approximation N = 0 is therefore legitimate. Second,

we check the appropriateness of the sign of the third invariant IIIS
introduced in Sections 4.2 and 4.5 (and referred to as ‘‘correction’’ -

C) in order to enable the models AXISY, 2UEASM1 and 2UEASM2

to predict reverse energy exchanges. The pertinence of the correc-

tion is evaluated correlating the sign of the third invariant IIIS with

the sign of the quantity {b⁄S⁄} by using the conditional average. Re-

sults of the simulations corresponding to the Stokes numbers

St � 2 and St � 7 are displayed in Fig. 3. A strong correlation be-

tween the signs of the two quantities is found, which motivates

the use of the correction in the models.

6.2. 2D versus 3D-A 2UEASM2

Before to assess all the models by comparing their predictions,

2D and 3D-A forms of 2UEASM2 are investigated. For the sake of

brevity, only the corrected model is presented and only at the ten-

sor level over the main components. Fig. 4 shows the mean profiles

of the normal, dR�
p;11, and the shear, dR�

p;12, components of the devi-

atoric RUM for the simulation corresponding to St � 1, as an

example. The two components are assessed using both the 2D

and the 3D-A forms of 2UEASM2-C. Results show that despite

the improvement of the predictions obtained by using the three-

dimensional approximation, the latter cannot ensure stable solu-

tions since local singularities occur. Such singularities are due to

the local null values of the denominator Q (Eq. (35)) involved in

the definition of the ten coefficients (Table 2) which multiply the

integrity basis composed of the ten tensors recalled in Table (1).

In order to use the 3D-A form of the model, a regularization proce-

dure or additional approximations are necessary. This concern is

not addressed by this study as the 2D form gives satisfactory re-

sults. It is conjectured that when in the presence of a mean shear,

the local agitation may be larger in the streamwise direction with

respect to the others and this may explain the success of a 2D

assumption. However, it should be stressed that the dispersed

phase is locally fully three dimensional since the particle fields

are non-null in all the three directions. An effort on the modeling

for improving predictions in three-dimensional flows could be very

effective. In turbulent flows, a 3D approximation using a ten-tensor

basis together with an approximate anisotropy equation was de-

rived by Wallin and Johansson (2000). They used argument about

the value of the coefficients multiplying high-order terms in the

anisotropy equation in order to neglect one of them as already

(a) (b)

Fig. 3. Conditional average of normalized IIIS on the quantity {b⁄S⁄}, corresponding to the simulation St � 2 (a) and St � 7 (b), at the periphery of the jet, at the time

t ¼ 6:2T r
f@p .

Fig. 4. Mean deviatoric RUM stresses dR�
p;11 and dR�

p;12 , for the simulation corresponding to St � 1, at the time t ¼ 6:2Tr
f@p . Actual stresses (solid line) are compared with

predictions (line with symbols) obtained using the 2D (two graphics on the left) and the 3D-A (two graphics on the right) forms of 2UEASM2-C.



suggested by Taulbee (1992). In the dispersed phase where the

anisotropy equation is devoid of variable coefficients, a similar

approximation needs an analysis of the influence of each term on

the predictions in order verify the legitimacy of an approximate

anisotropy equation. An alternative 3D approximate solution could

be derived using an incomplete tensor basis including cubic or

quartic terms combined with the full anisotropy equation. More-

over, alternative techniques of derivation of an explicit solution

using an incomplete basis, as a Galerkin method (Jongen and

Gatski, 1998) or a least-squares method (Grundestam et al.,

2005) could be adopted. This concern represents a challenge and

is left to a future work. Hereinafter, 2UEASM2 (with or without

correction) will refer to the 2D form of the model.

6.3. Tensor-level model assessment

A first assessment of the deviatoric-RUM models developed by

the present study is given by comparing actual and modeled mean

profiles corresponding to the numerical simulation St � 3. In fact,

as these results are found scarcely affected by the particle inertia

at tensor level, the selected numerical simulation gives valuable

information which may be reasonably generalized to all the Stokes

number simulations (differences between Stokes-number predic-

tions are mainly found on the shear component, not shown).

Fig. 5(a) displays the predictions obtained using the linear models

VISCO, AXISY and AXISY-C. Results show the inability of these

models to reproduce the normal stresses. AXISY gives even worse

results than VISCO. The use of the correction, i.e. AXISY-C, certainly

improves the predictions of the normal stresses but does not re-

move this deficit. Further, the shear stress results to be slightly

underestimated by AXISY-C. Nevertheless, it is worth of note that

the two axisymmetric models reproduce decisively better the

shear component with respect to VISCO which largely overesti-

mates it. The poor predictions over the normal stresses of the axi-

symmetric models are a manifestation of the limits of an

axisymmetric assumption for particle rate-of-strain tensor. Con-

trary to the RUM tensor for which the one-component limit behav-

ior is found decisively prevalent (as also proved by the magnitude

of the normal deviatoric RUM components), an axisymmetric con-

figuration for the particle rate-of-strain tensor is instead one of the

local and instantaneous state, even if the most probable, among

the others observed by numerical simulations. Other states, as

the plane shear, cannot accurately support a linear relationship

for the dispersed phase. Predictions from the quadratic approxima-

tions are given by Fig. 5(b). Here, the mean profiles of QUAD are

shown multiplied by a factor 0.05. Results indicate that this model

hugely overestimates (of about two orders of magnitude) the stres-

ses at any level. It is conjectured that the particle relaxation time

does not represent the correct timescale in the constitutive rela-

tionship which uses the particle rate-of-strain tensor as a basis.

As already discussed in Section 4.6, models which use Fð~spÞ as a

timescale may only be effective for Knudsen numbers smaller than

unity and they cannot be used at large particle inertia. The inap-

propriateness of the timescale is more evident in QUAD than in

VISCO because the former uses powers of sp in the series expan-

sion. QUAD-MOD is the proof of such a conjecture. This model,

which uses FðSÿ1Þ as the timescale, slightly overestimates the

shear component reproducing very well the normal stresses. Re-

sults of the predictions obtained using the models which arise from

a similarity assumption, i.e. 2UEASM, are displayed in Fig. 5(c and

d). Examination of these figures shows that 2UEASM1 underesti-

mates the magnitude of all the deviatoric-RUM components and

that the use of the correction only slightly improves the predic-

tions. Satisfactory results are instead provided by 2UEASM2

(Fig. 5(c)) in particular when the correction is used (Fig. 5(d)). It

is worth of note the excellent agreement between the components

of modeled by 2UEASM2-C and actual stresses. As a further evi-

dence of the excellent performance of this model, mean profiles

are assessed for the simulation corresponding to St � 7 and results

shown by Fig. 6.

6.4. Scalar-level model assessment over ~npP
�
RUM

Fig. 7(a) shows the models’ assessment at the scalar level over

the quantity ~npP
�
RUM . Fig. 7(b) shows the assessment of that models

which use the correction introduced in Section 4.5. Both the figures

display correlation coefficients computed as detailed above. Com-

paring VISCO to AXISY (or QUAD to QUAD-MOD), arising from

the same formalism but using two different timescales, no large

differences are found in terms of correlation coefficients. Instead,

strong differences are found when comparing linear models (VISCO

and AXISY) to non-linear models (QUAD and QUAD-MOD). QUAD

and QUAD-MOD provide higher correlation values, scarcely af-

fected by the particle inertia. QUAD-MOD gives even better results

corresponding to correlation coefficients as well as or larger than

0.9. Instead, the accuracy of VISCO and AXISY decreases as the par-

ticle inertia increases, leading to very poor correlations at large

Stokes numbers. It is conjectured that such a decrease of the model

accuracy as the particle inertia increases is mainly due to the

increasing of the reverse energy exchange from the RUM to the

mesoscopic contribution rather than to a failure in the alignment

assumption. Linear models which use a positive viscosity cannot

indeed predict such reverse energy exchanges and they are

doomed to fail at large Stokes numbers. The evidence of such a

conjecture is given by the predictions of the linear model which

uses both positive and negative viscosities, namely AXISY-C

(Fig. 7(b)). Its results appear quite insensitive to the particle inertia.

Concerning the 2UEASMmodels, results indicate that globally they

give satisfactory predictions and that, as expected, 2UEASM2 per-

forms better than 2UEASM1 since it represents a self-consistent

explicit solution of the 2UASM closure (Eq. (27)). It is noteworthy

the agreement of these models with the actual local quantity when

the correction is used. Among all the models, 2UEASM2-C is that

which best reproduces the local production of the RUM particle ki-

netic energy. Its results are excellent and give correlation coeffi-

cient close to unity (perfect agreement). In Fig. 8, the magnitude

ratios between actual and predicted mean productions, < P�
RUM>p,

are displayed. Looking at the results, the differences between mod-

els are surprising. Models VISCO and QUAD which are based on the

particle relaxation timescale Fð~spÞ, dramatically loose their ability

to predict the good magnitude of the mean production when the

particle inertia increases; comparing the largest with the smallest

Stokes-number simulation, a decrease up to three orders of magni-

tude is observed. This great variability makes these models not

adequate to predict the RUM agitation, in particular when in the

presence of a locally varying particle Stokes number as, for in-

stance, in evaporating or polydisperse particle-laden turbulent

flows. Moreover, large particle inertia are also prohibitive if a well

calibrated ‘‘very small’’ coefficient is not accounted for into these

models. Unfortunately, results obtained at the tensor level, see

e.g. the model VISCO, have shown that accounting for a small coef-

ficient (�1) would reduce the magnitude of the stresses, making

the model fail at the tensor level. Results give the evidence that

the models which use the inverse of the particle strain FðSÿ1Þ as
a typical timescale are less sensitive to the particle inertia. In addi-

tion results indicate that the models which are able to reproduce

both positive and negative value of the local quantity ~npP
�
RUM , as

for instance the models which use the correction, give the best

agreement. An ideal prediction should reproduce magnitude ratios

equal to unity regardless of the particle Stokes number. In order to

conclude the assessment of the model accuracy over ~npP
�
RUM , the

PDFs of this local scalar quantity are investigated. They are as-
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Fig. 5. Profiles of actual (solid line) and modeled (lines with symbols) mean deviatoric RUM stresses, for a simulation corresponding to St � 3, at the time t ¼ 6:2Tr
f@p . Stresses

are normalized by the square mean velocity of the jet at t = 0.



sessed by multiplying the local value of the modeled ~npP
�
RUM by the

magnitude ratio computed from each model, and the results com-

pared to the actual PDF; by this way, only the shape of the PDFs is

investigated (Moreau, 2006). First, we check the predictions of all

the models at one selected Stokes number (St � 3); they are dis-

played in Fig. 9. Results indicate that the two viscosity-like models,

VISCO and AXISY, are not able to reproduce reverse energy ex-

changes, as expected. Similar behavior is found for 2UEASM1

which uses a positive production approximation (Eq. (32)) for the

linearization of the 2UASM closure. Local negative values are in-

stead provided by all the other non-linear models. It is interesting

to note that the predictions by QUAD cover a larger range of

negative values than QUAD-MOD, and that the predictions by

QUAD-MOD, which uses the inverse of the particle strain as a time-

scale, are very close to that of 2UEASM2. In order to check the

influence of the model correction on the shape of the PDF, we spe-

cifically analyze that models for which the correction do apply. It is

noteworthy the excellent agreement between exact and modeled

quantities when the correction is used, as illustrated by Fig. 10.

Among all the models, 2UEASM2-C gives the best local representa-

Fig. 6. Profiles of actual (solid line) and modeled by 2UEASM2-C (lines with symbols) mean deviatoric RUM stresses, for a simulation corresponding to St � 7, at the time

t ¼ 6:2T r
f@p . Stresses are normalized by the square mean velocity of the jet at t = 0.
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Fig. 7. Correlation coefficients between the actual and the modeled scalar quantity P�
RUM , at the periphery of the jet.
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Fig. 8. Magnitude ratios between the mean actual and the mean modeled scalar quantity P�
RUM , at the periphery of the jet.



tion of ~npP
�
RUM at this selected Stokes number. The assessment over

different Stokes numbers (not shown for sake of brevity) points out

that for some models as VISCO, QUAD and QUAD-MOD, the

increase of the Stokes number worsens the predictions. A slight de-

crease of the model accuracy is also found for the models AXISY-C

and 2UEASM1-C. An exception is the model 2UEASM2-C which

gives excellent results, on the shape of the PDF, regardless of the

particle inertia. This model has given proof of its ability to model

the deviatoric RUM kinetic stress tensor at both scalar and tensor

levels.

6.5. Scalar-level model assessment over ~npP
�0
RUM

Finally, the models’ accuracy over the only fluctuating contribu-

tion of the RUM kinetic energy production, namely ~npP
�0
RUM , is inves-

tigated. This quantity is supposed to play a crucial role in the

numerical simulations since it contributes to ensure the correct le-

vel of the mean dissipation rate (Février et al., 2005). Correlation

coefficients (not shown for brevity) show that no noticeable differ-

ence is observed comparing these results to that obtained over the

quantity ~npP
�
RUM . Instead, some significant differences are found

when assessing the magnitude ratios at large Stokes numbers. This

parameter is an index of the ability of the models to reproduce ex-

act mean magnitudes. As illustrated by Fig. 11, for the model

2UEASM2-C, results show that for moderate Stokes numbers (St

�0.5 as an example) the predictions of the two quantities ~npP
�
RUM

Fig. 9. PDFs of actual (dot-dashed line) and modeled (solid line) ~npP
�
RUM , for a simulation corresponding to St � 3. Models without correction, at the periphery of the jet, at the

time t ¼ 6:2T r
f@p .

Fig. 10. PDFs of actual (dot-dashed line) and modeled (solid line) ~npP
�
RUM , for a simulation corresponding to St � 3. Models with correction, at the periphery of the jet, at the

time t ¼ 6:2T r
f@p .
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Fig. 11. Profiles of magnitude ratios between actual and modeled mean P�
RUM (solid

line) and actual and modeled mean P�0
RUM (dot-dashed line). Simulation correspond-

ing to St � 0.5 (a) and St � 3 (b), at the time t ¼ 6:2Tr
f@p . The model used is

2UEASM2-C.



and ~npP
�0
RUM are nearly identical. For larger Stokes numbers (St �3 as

an example) the difference becomes more noticeable but not yet

dramatic, in particular if the model correction is used. For Stokes

numbers even larger (not shown), the predictions of the mean

magnitude progressively deteriorate at the periphery of the jet

where, in contrast, the accuracy of some models remains excellent

at the tensor level, almost irrespective of the particle inertia in par-

ticular over the normal components (Section 6.3). A crucial point of

the modeling is that the two productions, by mean and fluctuating

mesoscopic velocity gradients, do not have the same response to

the modeling. In order to analyze this point more in detail, the pro-

files of the most relevant components of the RUM kinetic-energy

production, decomposed in mean and fluctuating particle-velocity

gradients, hP�
RUMip and hP�0

RUMip, are investigated. They are

computed using the model which gives the best predictions,

namely 2UEASM2, accounting or not for the correction; results

for the simulation corresponding to St �3 are displayed in Figs. 12

and 13. Results show that for this Stokes number, 2UEASM2

overestimates the contributions which stem from the fluctuating

velocity gradients, while it matches very well the contributions

arising from the mean velocity gradients (Fig. 12). When the model

correction is used (2UEASM2-C), predictions are strongly im-

proved as illustrated by Fig. 13; however, a slight overestimation

persists at this Stokes number. The overestimation is expected to

increase with the particle inertia in high shear zones of the jet.

The analysis at the tensor level have shown (Section 6.3) that even

for large Stokes numbers, the mean deviatoric RUM kinetic stress

tensor is successfully represented by the algebraic closures devel-

oped by the present study, but different strategies should be

adopted to enable the models at the scalar level, i.e. to ensure

the right level of the RUM particle kinetic energy. As the modeling

of the RUM tensor depends on the accuracy of the RUM kinetic en-

ergy, if the latter is not well reproduced during the DNS, the model

for the deviatoric RUM will fail. This problem is slightly smoothed

in the framework of the LES, because of the filtering operation

which acts to reduce the reverse energy exchanges (not shown).

For large Stokes numbers, an alternative second-order ACBMM

using transport equations for the RUM stresses should be adopted.

7. Conclusion

An algebraic-closure-based moment method has been devel-

oped for unsteady Eulerian particle simulations coupled with

DNS of turbulent flows in very dilute regime and up to large Stokes

numbers StK (based on the Kolmogorov timescale) or moderate

Fig. 12. Mean profiles of the main addends of the total production by shear P�
RUM ¼ P�

RUM þ P�0
RUM . Solid line: exact < P�

RUM>p; Dashed line: modeled < P�
RUM>p; Dot-dashed line:

exact < P�0
RUM>p; Dotted line: modeled < P�0

RUM>p . Simulation corresponding to St � 3, at the time t ¼ 6:2Tr
f@p . Productions are normalized by the fluid dissipation rate

computed at the centre of the jet, �f(y = 0). The model used is 2UEASM2.

Fig. 13. Same caption as in Fig. 12. The model used is 2UEASM2-C.



Stokes numbers St (based on the turbulent macroscale seen by the

particles). It relies on a conditional statistical approach (Février

et al., 2005) which provides a local and instantaneous characteriza-

tion of the dispersed-phase dynamic as it accounts for the effect of

crossing between trajectories of inertial particles. ACBMM entails

the numerical integration of a set of closed equations describing

the evolution of the low-order moments of the conditional PDF,

namely the mesoscopic particle number density and the meso-

scopic particle velocity. Closures for the second-order velocity cor-

relation, the RUM particle kinetic stress tensor, appearing in the

particle momentum equation, are provided by means of an addi-

tional transport equation for the trace of the tensor and an alge-

braic closure for its deviatoric part. The ACBMM approach bases

its efficiency and accuracy on such an algebraic closure; in this

study, this concern has been addressed. The main results of the

current study together with some important observations from

previous analyses of the authors are summarized below. In very di-

lute regime, the RUM stress tensor is found to behave, in principal

axes, as in a one-component limit state (line shape) which means

that the RUM agitation develops in one preferred direction while

it is damped in the others. In turbulent fluid flows, the one-compo-

nent limit is the long-time asymptotic solution provided by the ra-

pid distortion theory (Rogers, 1991) of a HIT submitted to a strong

shear. Then, a redistribution of energy between the stresses is en-

sured by the action of the pressure-strain correlations. It is conjec-

tured that in very dilute regimes, where inter-particle collisions are

negligible, the dispersed phase submitted to a strong shear devel-

ops anisotropy which achieves and preserves the theoretical

asymptotic values of the one-component limit, as no redistribution

between stresses is possible. For larger values of the solid volume

fraction, the inter-particle collisions should lead to a return-

to-isotropy mechanism similar to the pressure-strain correlation

effect in turbulent fluid flows (Simonin, 1991b) and the dispersed

phase should move away from the one-component limit state as

the collision frequency increases. Such a high anisotropy arise

some doubts about the legitimacy of a viscosity assumption based

on the particle response time as a typical timescale. In kinetic the-

ory of dilute gases this assumption, at the origin of the constitutive

relation for Newtonian fluids, involves that the molecular motion

adjusts rapidly to the change imposed by the local strain. Hence,

for similarity, the basic assumption from which a particle-

response-time-based viscosity model arises is violated when the

ratio between the particle response time and the mesoscopic strain

timescale, namely the Knudsen number, is large (i.e. ~spS > 1). This

consideration motivated the authors to develop alternative linear

and nonlinear algebraic closures based on the inverse of the

particle rate-of-strain as a typical timescale. Moreover, since it

was observed that in the dispersed phase it is frequent to have re-

verse energy exchanges, a positive and negative viscosities were

also considered when developing alternative linear relationships.

By this study, a variety of algebraic closures have been developed.

It is apparent that the most fruitful are the explicit algebraic stress

models (2UEASM) which are based on a self-similarity assumption

of the RUM tensor and which use a polynomial representation for

tensor functions. At the tensor level, they provide an excellent rep-

resentation of the RUM tensor, almost independent of the particle

inertia. However, the analysis performed at the scalar level, and

based on the predictions of the RUM-kinetic-energy production,

has pointed out as the accuracy of the models degenerates at large

turbulent macroscale Stokes numbers (St > 3) in high shear zones

of the jet. The term responsible for the energy exchange between

contributions and identified as a production of the RUM kinetic en-

ergy, at large inertia and in high shear zones of the jet, tends to-

ward zero-mean values despite its high local magnitudes. For

large Stokes numbers, when in the presence of a mean shear, this

term changes its nature and alternative strategies of modeling

should be adopted. For such particle inertia, the limits pointed

out by a first-order ACBMM could be overcame by a second-order

ACBMM using transport equations of the RUM stresses.

Recently Balachandar (2009) and Balachandar and Eaton (2010)

provided a schematic representation of the different approaches

which may be employed in DNS/LES of multiphase flows. In DNS,

they used the Kolmogorov timescale in order to separate the range

of applicability of the different approaches, suggesting that the

existing particle Eulerian models may provide effective predictions

up to StK of the order of unity. With restriction to the regime con-

sidered in this study and for the relatively low Reynolds-number

simulations carried out, the present work has shown that using

an ACBMM approach with an adequate closure for the RUM kinetic

stress tensor, the range of applicability of the Eulerian approaches

may be extended up to turbulent-macroscale Stokes numbers, St,

of the order of unity (i.e. large Stokes numbers based on the Kol-

mogorov timescale or moderate turbulent-macroscale Stokes num-

bers). Further questions on the constitutive relation as, for

example, indifference from the reference frame and realizability

are left as a future work.
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Appendix A. The Lagrangian approach for the particulate phase

The behavior of the particles interacting with the turbulence is

investigated by the integration of the Newton equations corre-

0 1 2 3 4 5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Fig. B.14. Particle–particle and particle–fluid fluctuating-velocity correlations

computed from Lagrangian data (x10ÿ4). Solid line: hw0
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pixz , dashed line: hw0
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f@pixz , for the 1283 DNS of reference (St � 1), at the

time t ¼ 6:2T r
f@p .



sponding to the particle position and velocity. When the mixture is

composed of spherical, rigid, non-rotating and non-interacting

heavy particles with a diameter smaller or equal than the Kol-

mogorov lengthscale, the equations are strongly simplified since

many contributions may be neglected. According to the studies

of Maxey and Riley (1983) and Gatignol (1983), assuming no grav-

ity, the equations governing the motion of each particle are written

dxp

dt
¼ vp;

dvp

dt
¼ ÿ 1

sp
ðvp ÿ uf@pÞ; ðA:1Þ

where uf@p(t) = uf(xp(t), t) is the undisturbed fluid velocity at the

particle centre location and sp = (4qp dp)/(3qfCDkvp ÿ uf@pk) is the

particle response time. It accounts for the non-linearities of the drag

force by means of the drag-coefficient correction as suggested by

Schiller and Nauman (1935), CD ¼ 24
Rep

1þ 0:15Re0:687p

� �

, formulated

in terms of the particle Reynolds number Rep = (kvp ÿ uf@pkdp)/mf;
mf is the kinematic fluid viscosity, qf is the density of the fluid, qp

is the particle density and dp is the particle diameter. The system

of Eq. (A.1) is one-way coupled with an evolving turbulent flow

which is exactly resolved by using the DNS approach.

Appendix B. Estimate of the particle Stokes number

The Stokes number is computed over a characteristic timescale

of the turbulence seen by the particles, Tf@p, which is estimated

from the Tchen equilibrium in the spanwise direction of the jet,

mean-flow free. In this direction, when the well-known relations

hw0
pw

0
pixz ’ hw0

f@pw
0
pixz ’

T f@p

sFfp þ T f@p

hw0
f@pw

0
f@pixz ðB:1Þ

are attained (Prevost et al., 1996), the characteristic timescale Tf@p

may be deduced. w0
p is the particle velocity fluctuation obtained

subtracting from any particle velocity the mean particle velocity

computed using Lagrangian values averaged over xz-planes of one

cell height; w0
f@p is the fluid velocity fluctuation at the particle loca-

tion. Correlations are then averaged over the same xz-planes. As an

example, Fig. B.14 shows the mean particle–particle and particle–

fluid correlation velocities used in (B.1), corresponding to one of

the eight 1283 DNSs (which is referred to as the reference). Results

of Fig. B.14 show the validity of the relations (B.1) which therefore

entails an accurate estimate of Tf@p. This simulation was chosen as a

reference because it led to values of Tf@p almost constant along the

normal direction. Such results are depicted in Fig. B.15 together

with the results of the 2563 DNS. Mean relaxation times, Kolmogo-

rov timescales and dissipation timescales are also shown for a com-

parison purpose. The estimate Tf@p of the simulation of reference

(i.e. Tr
f@p) was then used to evaluate the Stokes numbers of the other

seven 1283 DNSs. Indeed, in these simulations, the particle-to-gas

density ratio is the only parameter modified in order to obtain dif-

ferent Stokes numbers. Moreover, as the particle diameter is small

(see Section 5), the particle Reynolds number is such that the effect
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Fig. B.15. Timescales corresponding to (a) the 1283 DNS of reference (St � 1) and (b) the 2563 DNS. Dash-dotted line: sk, dashed line: sFfp , solid line: Tf@p and line with symbols:

TE, at the time t ¼ 6:2Tr
f@p .

Table B.5

Mean particle relaxation times, turbulent-macroscale Stokes numbers and Kolmogo-

rov Stokes numbers, at the time t ¼ 6:2Tr
f@p .

DNS 1283 2563

sFfp 1.3 6.4 12.7 25.4 38 63.2 88.4 126.1 9.1

St �0.1 �0.5 �1 �2 �3 �5 �7 �10 1

StK �0.4 �2 �4 �8 �12 �20 �28 �40 6

Fig. C.16. Profiles of actual (solid line) and modeled by 2UEASM2-C (line with symbols) deviatoric RUM stresses, corresponding to the 2563 DNS (St � 1), at the time t = 6 Tf@p.



of the drag-coefficient correction on the particle response time is

negligible. Using Tf@p, a turbulent-macroscale Stokes number is de-

fined as St ¼ sFfp=T f@p where sFfp ¼< 1=sp>ÿ1
xz . A summary of the

mean relaxation times and Stokes numbers characterizing the

numerical simulations conducted in this study is given in

Table B.5. For a comparison purpose, Stokes numbers based on

the Kolmogorov timescale, StK ¼ sFfp=sK , are also given. For time-

scales varying in the normal direction (as the Kolmogorov one),

Stokes numbers are intended at the periphery of the jet.

Appendix C. Higher Reynolds number model assessment

The higher-Reynolds-number particle-laden slab (2563 DNS)

corresponds to a Stokes number St � 1. According to the analysis

presented in Section 6, the assessment for this particle inertia

may be performed indifferently using ~npP
�0
RUM and ~npP

�
RUM , since they

give similar results for St � 1. For this reason, at the scalar level,

only the latter will be evaluated. At the tensor level, for sake of

brevity, only the predictions of 2UEASM2-C are shown. Mean pro-

files of the deviatoric RUM are displayed in Fig. C.16. Results indi-

cate a very good agreement between actual and modeled

quantities, as expected. Fig. C.17 shows the correlations coeffi-

cients computed using all the models, with and without correction,

over ~npP
�
RUM . Fig. C.18 shows the magnitude ratios between actual

and modeled mean productions< P�
RUM>p. These results are consis-

tent with the outcomes from the equivalent lower Reynolds num-

ber simulation (St � 1), both from a qualitative and from a

quantitative viewpoint. Excellent predictions are provided using

the 2UEASMmodels at this Stokes number. However, in Section 6.3

it has been shown that the models 2UEASM1/-C tend to underes-

timate the stress components. For this reason, 2UEASM2 (with or

without correction) should be preferred.
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