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A new closure concept preserving graph Hamiltonicity and based on
neighborhood equivalence

Thierry Vallée ®*, Alain Bretto !
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b Université de Caen, GREYC-CNRS UMR 6072, Bd Maréchal Juin, F14032 Caen Cedex, France

ABSTRACT

A graph is Hamiltonian if it contains a cycle which goes through all vertices exactly once.
Determining if a graph is Hamiltonian is known as an NP-complete problem, and no
satisfactory characterization for these graphs has been found.

In 1976, Bondy and Chvatal introduced a way to get round the Hamiltonicity problem
complexity by using a closure of the graph. This closure is a supergraph of G which is
Hamiltonian iff G is. In particular, if the closure is the complete graph, then G is Hamiltonian.
Since this seminal work, several closure concepts preserving Hamiltonicity have been
introduced. In particular, in 1997, Ryjacek defined a closure concept for claw-free graphs
based on local completion.

Following a different approach, in 1974, Goodman and Hedetniemi gave a sufficient
condition for Hamiltonicity based on the existence of a clique covering of the graph. This
condition was recently generalized using the notion of Eulerian clique covering. In this
context, closure concepts based on local completion are interesting since the closure of a
graph contains more simplicial vertices than the graph itself, making the search for a clique
covering easier.

In this article, we introduce a new closure concept based on local completion which
preserves the Hamiltonicity for every graph. Note that, moreover, the closure may be claw
free even when the graph is not.

1. Introduction

A graph is Hamiltonian if it contains a cycle which goes through all vertices exactly once. Determining if a graph is
Hamiltonian is known as an NP-complete problem, and no satisfactory characterization for these graphs has been found. A
huge body of literature exists on the subject, surveyed for instance in [7,8].

In [1], Bondy and Chvatal introduced a

way to get round the Hamiltonicity problem complexity by using a closure of the

graph. This closure is obtained in polynomial time by repeatedly adding edges between pairs of nonadjacent vertices whose
degree sum is greater than or equal to the order of the graph, as long as such a pair exists. The closure is then proved to be

Hamiltonian iff the graph is. In particular,

if the closure is a complete graph, then the graph is Hamiltonian.

Since this seminal article, several closure concepts preserving Hamiltonicity have been introduced (for a survey on the

topic, see for instance [6]). In particular,
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completion. The local completion is repeatedly performed on every eligible vertex, as long as such a vertex exists. Note
that a strengthening of the closure concept of [9] was introduced in [4].

Following a different approach, in [5], Goodman and Hedetniemi gave a sufficient condition for Hamiltonicity based on
the existence of a clique covering of the graph. This condition was recently generalized in [2,3] using the notion of Eulerian
clique covering. It was also shown in [10] that there exists a Eulerian clique covering of a graph iff there exists a normal
one, where a clique covering is normal if it contains the closed neighborhood of every simplicial vertex of the graph. In
this context, closure concepts based on local completion are interesting since, then, the closure of a graph contains more
simplicial vertices than the graph itself, making the search for a normal clique covering easier. For instance, a closure in the
sense of [9] has at most one normal Eulerian clique covering.

In this article, we introduce a new closure concept based on local completion which preserves the Hamiltonicity for
every graph. The closure is defined using the notion of neighborhood equivalence, as defined in [2,3]. First, we introduce
some notation, we give some preliminary results on paths, and remind the reader of the definitions of local completion and
neighborhood equivalence. Secondly, we introduce the notion of a neighborhood-equivalence eligible (N-eligible) vertex, and
we show that, for every graph G, there exists an N-eligible free graph cly(G), called the neighborhood-equivalence closure
(N-closure) of G, such that the circumference of G is equal to the circumference of cly (G). This implies in particular that G is
Hamiltonian iff cly (G) is. Finally, we give an example of a non-claw-free graph G such that cly (G) is claw free and such that
the closure of cly(G) in the sense of [9] is a complete graph.

2. Preliminaries
2.1. General notation

In what follows, |X| denotes the size or cardinal of the set X,and X \ Y = {x € X : x € Y}. We also define P(X) as the set
of all pairs {x, y} € X such that x and y are distinct.

We always suppose a graph to be undirected, simple and finite. Thus a graph Gis a pair (V, E), where V is the vertex set of
G, and E is a subset of P(V). To simplify notation, a pair {x, y} € E is simply writtenxy.If X C V,E(X) = {xy € E : x,y € X}.

The open neighborhood of x € V is the set N(x) = {y : xy € E}, and its closed neighborhood is the set N[x] = N(x) U {x}.

The closed neighborhood of X C V isthe set N[X] = Uycx N[x]. The open neighborhood of X C Vistheset N(X) = N[X]\X.
Notice that the definition of N(X) is coherent with the fact that N(x) = N[x] \ {x}. In particular, we have N({x}) = N(x).
Notice also that N (X) could not be defined as Uycx N(x).Indeed, if x,y € X andxy € E, thenx, y € Uycx N(x), sincey € N(x)
and x € N(y), while N(X) N X is always empty.

A walk in G is a sequence of vertices w = xq - - - X such that x;x;;; € E, foreveryi = 0, ..., k — 1. The integer k is the
length of w, xg, x) are its endpoints, xg its starting point and x, its ending point. In particular, x is a walk of length 0 with
starting and ending point x. A walk is closed if k £ 0 and xo = x. A closed walk is a cycle if it contains no repetition of a vertex
except for the endpoint. We denote by c(G) the circumference of G, that is, the length of the longest cycle in G. A cycle is a
Hamilton cycle if it contains every vertex of the graph. A graph is Hamiltonian if it contains a Hamilton cycle. If w = xp - - - X

is a walk, then V(w) = {xq, ..., x¢} and E(w) = {x;x;11 : i€ {0,..., k— 1} }.
N
A path is a walk containing no repetition of a vertex. If P = Xg - - - X, is a path, thenx; P x;, where 0 <i < j < k, denotes
the subpath of P with endpoints x;, x;, and x; P x; the reverse path x;x;_; - - - x;. Fori € {0, ...,k — 1}, xi+ is the successor of
x;in P; that is, x,-+ = Xi11. Fori e {1,..., k}, x; is the predecessor of x; in P; that is, x; = x;_1.

For every path P, we define the neighborhood of x in P as the set P(x) which contains, when defined, the predecessor and
the successor of x. That is, if P = x, then P(x) = (J; and if k # 0 and P = Xq - - - X, then P(xg) = {xar}, P(xy) = {x,} and
P(x) = {x;, x,.+}, for everyi € {1,...,k — 1}. Notice that clearly P(x) € N(x) N V(P) but, since P(x) contains only the
immediate predecessor and successor of x in P, we may have P(x) C N(x) N V(P).

For every X C V(P), we let P(X) = Uycx P(x). Notice that, in contrast to N(X) N X, P(X) N X may not be empty. Finally,
notice that, if P’ is a subpath of P, then P’ (x) C P(x), for every x € V(P’).

AsetX C Visaclique of G if xy € E, for all distinct x, y € X. A vertex is simplicial if N[x] is a clique of G. We denote by S
the set of simplicial vertices of G and by NS the set of non-simplicial vertices of G.

A graph G is connected if all distinct vertices x, y are connected by a walk, and complete if E = P(V). From now on, G is
always supposed to be connected.

2.2. Preliminaries on paths

Definition 1. A path P with endpointsinY C V is YX-quasi-alternating if X, Y are disjoint subsets of V(P) and P(X) C XUY.

In other words, in a YX-quasi-alternating path P, the predecessor and successor of every x € X must bein X U'Y.

Lemma 2. If P is YX-quasi-alternating and |X| > |Y|, then E(P) N E(X) # @.



Proof. We show the result by contradiction. So suppose that the conditions of the lemma are satisfied and that there exists
no edge xx’ € E(P) such that x, X' € X. Hence, we have P(X) N X = #,and so P(X) C Y, since P(X) C X UY.

Let P = zg - - - zx. We show now by inductiononi € {0, ..., k} that, forP; =zg-- -z, X; =X NV(P) and Y; =Y N V(P),
we have either z; ¢ X and |Y;| > |X;|, or z; € X and |Y;| > |X;|. The case i = 0 is trivial, since the starting point of P is in Y
and X, Y are disjoint, by definition of a YX-quasi-alternating path. Suppose now that the result is true fori € {0, ..., k— 1}.
We show the result for i + 1 using two cases, where z = z; .

1. z € X,and so X;;1 = X; U {z} and Y;;; = Y;. Since a path does not contain any repetition of vertex, we have in particular
|Xir1] = |Xi| + 1. Now, since z;z ¢ E(X), we have z; ¢ X. Hence, by the induction hypothesis, |Y;+1| = |Y;| > |Xi|, and so
[Yig1] = [Xigal-

2. z ¢ X,and so X;1 = X;. First, if z; € X, we have |Y;| > |X;| by the induction hypothesis. Moreover, since P(X) C Y,z € Y,
and so Yi11 = Y; U {z}. Hence, |Yi11| = |Yi| + 1 > |Yi| > |Xi| = |Xit1|. Second, if z; & X, we have |Y;| > |X;| and so
[Yipa| = 1Yil > 1Xi| = [Xisal.

Hence, since P = Py and z; € Y, we have |Y| > |X|, contradicting |X| > |Y|. O
2.3. Neighborhood equivalence and local completion

Definition 3. The neighborhood-equivalence relation = on V is defined, for all vertices x, y, by x = y iff N[x] = N[y]. We let
x={yeV:x=y}

Obviously, = is an equivalence relation inducing a partition on V. Moreover, for everyx € V,x =y = xy € E,and so X is
a subset of N[x] and a clique in G. Also, clearly N[X] = N[x], N(x) € N(x). Moreover, N(x) = N(x) if and only if x = {x}.
Finally, x = z implies that N(X) = N(2).

Definition 4. Let G be a graph,x € Vandv C V.
eB,={yz¢E:y,ze NX}andB, = J,., B

xep “X*

o The local completion of G at v is the graph G, = (V, E,), where E,, = E UB,,.

Obviously, E N B, = @. Moreover, ify, z € N[x], then the hypothesis yz ¢ E implies thaty, z & x (indeed, ify € X, we get
z € N[x] = N[y]). Hence, it is easy to check that, for every vertex x, By = {yz € E : y, z € N[x]}. The following result come
straightforwardly from this remark and Definition 4.

Fact 5. G is a spanning subgraph of G,, for every v C V. Moreover, for allx € v and z € X, N[z] is a clique in G,.

In what follows, we denote respectively by N, [z],z”, =, and S, (respectively NS, ) the neighborhood, the neighborhood-
equivalence class of z, the neighborhood-equivalence relation in G, and the set of simplicial vertices (respectively non-
simplicial vertices) of G,,.

3. Neighborhood-equivalence closure of a graph

We define below neighborhood-equivalence eligibility (N-eligibility) as well as the neighborhood-equivalence closure
(N-closure) of a graph. We fix a graph G with set of all N-eligible vertices v and local completion G,,.

3.1. N-eligibility

Definition 6. A vertex x of G is neighborhood-equivalence eligible (N-eligible) if x € NS and |x| > |[N(X)|.

Lemma 7. If v is the set of N-eligible vertices of G, then we have v = Uye, X and v N Uxe, N(X) = (.

Proof. It is immediate that v C Uy, X, and it is easy to check, from the definitions of x and N-eligibility, that, if x € v, then
X C v. This shows the first part of the lemma. We now show the second part by contradiction. So suppose thatx, y € v such
that y € N(x). Notice first that N[x] = N[x] and N[y] = N[y].LetY = N[y]\ N[x],Z = (N[y] N N[x]) \ (x Uy) and let
|X| = m,|y| = n,|Y| = land |Z| = k. Since xy € E, itis easy to check that x,y € N[x] N N[y],and so X,y € N[x] N N[y].
We also have y N x = @, sincey ¢ x,andsoy C N(x) and X C N(¥). Hence, {x, y, Z} is a partition of N[x] N N[y]. So,
{x,y,Z, Y}is apartition of N[y] and {X, Z, Y} is a partition of N (y). Hence, [N(¥)| = m + k 4+ | and, since y is N-eligible, we
have n > m+ k + L Since, moreover, x is N-eligible, we have m > |[N(X)|. Now, sincey UZ C N(x), we have [N(x)| > n+k,
and hencem > n+k >n > m+ k + L. Hence, k = | = 0 and m = n. This implies thatZ = ) = Y, and so N[y] = x U y.
Notice now that, as shown above, y € N(x) implies that x C N(y), and so x € N(¥). So, by swapping x and y in the proof
above, we also get N[x] = x U y. This implies that N[x] = N[y], contradictingy ¢ x. O

Corollary 8. N,[z] = N|[z], forevery z € v and every z & Uyc, N[X].



Proof. Since G is a subgraph of G,,, N[z] C N, [z], for every z € V. Now, if N, [z] £ N|z], there exists y € N,[z] \ N[z]. So
by definition of B,, there exists x € v such thatzy € By,. We have zy ¢ E and z, y € N(x). Hence, z € Uy, N[x] and, since
v N N(X) =¥ (Lemma 7),z & v. This shows the corollary by contraposition. O

Lemma9. v CS,\SandS CS,.

Proof. Since, for everyz € v, N|[z]is aclique of G, (Fact 5)and N, [z] = N|[z] (Corollary 8), we have immediately thatv C S,,,
andsov C S, \ S, since v C NS. Suppose now that s € S; we must show that yz € E,, for all distinctz, y € N,[s]. Ifyz € E,
then the result is immediate, since E C E,. Hence, we can suppose that yz ¢ E, and so there is at least one vertex among
v, z which is not in N[s] (otherwise, we would have yz € E froms € S). So suppose that, for instance, y € N,[s] \ N[s]. There
exists x € v such that sy € By, and so s,y € N(x). Since N(x) € N[x], we have in particular s € N[x] and x € N[s]. If, now,
z € N[s],we get xz € E by simpliciality of s, and so y, z € N[x]. Since N[x] is a clique of G, (Fact 5), we conclude that yz € E,.
Finally, ifz ¢ N[s], there exists u € v such thatsz € B, and s, z € N(u). Sinces € S,we havexu € E,andsou € N[x] = N[x].
Since, by Lemma 7, u € N(x), we have u € X. This implies, in particular, thatz, y € N[x], and so zy € E, by Fact5. O

3.2. N-closure of a graph

Theorem 11 below proves the existence of the N-closure of G, that is, of a N-eligible-free supergraph of G with the same
circumference as G. It is essentially a corollary of the following proposition.

Proposition 10. c(G) = c(G,).

Proof. Since every cycle in G is also a cycle in G,, clearly c(G) < c(G,). It remains to prove c(G,) < c(G). To do so,
it is sufficient to show that every cycle C of G, of maximal length can be transformed into a cycle C of G such that
V(C) = V(C). The proof is by induction on n = |E,(C) N B,|. If n = 0, then C is a cycle in G and, taking C = C, the

result is immediate. Suppose now that C contains n + 1 edges of B,, and let yz € E,(C) N B,. There exists x € v such

thatyz € By = {yz € E : y,z € N(X)}.LetP =y E z; that is, up to a rotation, P is the path obtained from C by
removing yz. Notice that V(P) = V(C), E,(P) = E,(C) \ {yz} (and so P contains n edges of B, ), and E(P) = E(C). If we

suppose now that there exists u € x \ V(C), then, since y,z € N[x] = N[u] € N,[u], zuy C z would be a cycle in G,
strictly longer than C, contradicting the maximality of C. Hence, X C V(P). Let now Y = N(x) N V(P). By definition, we
havey,z € Yand x N Y = (. Moreover, suppose that v € P(x). There exist u € x such that v € P(u) and so, in particular,
v € N[u] = N[x] = N[X] = N(x)Ux.Sincev € V(P)andx C V(P), v € (Nx)Ux)NV(P) = (N(x)NV(P))UxNV(P)) = YUX.
This proves that P(x) € x U Y. Hence, P is a Yx-quasi-alternating path in G,. Since Y C N(X), and x is N-eligible, we get
|x| > |N(x)| > |Y]. So, by Lemma 2, there exists an edge uv € E,(x) N E,(P). Wlthout loss of generality, we can suppose

that u appears before v in P, and so, since y,z € N[x] = N[u] = N[v],C' =y P uz P vy is a cycle in G,. Moreover, since
uz, vy € E and |E,(P) N B,| = n, clearly C’ contains at most n edges of B,. Obviously, V(C') = V(P) = V(C), and so C’
is of maximal length in G,.. Hence, by the induction hypothesis, there exists a cycle C of G such that V(C) = V(C’), and so
V(C) = V(C). This proves the result. O

Theorem 11. Forevery graph G there exists a graph cly (G) which contains no N-eligible vertex, such that G is a spanning subgraph
of cly(G) and such that c(G) = c(cly(G)).

Proof. The proof is done by induction on the number n of non-simplicial vertices of the graph. If NS = @ or v = {, then
G = cly(G) is the graph we are looking for. Otherwise, since v # ¥, we have S C S, by Lemma 9. Hence, NS, ¢ NS and
so, by the induction hypothesis, there exists a graph cly (G, ) which contains no N-eligible vertex, such that G, is a spanning
subgraph of cly(G,) and such that c(G,) = c(cly(G,)). Since G is a spanning subgraph of G, (Fact 5), we let cly(G) = cIy(G,),
and we conclude easily by Proposition 10. O

Corollary 12. G is Hamiltonian iff cly(G) is.

The construction used to obtain the graph cly (G) is deterministic; there is no choice involved, and so the N-closure cly (G)
of G is unique. We show below that in fact G, does not contain any N-eligible vertex, and so cly(G) = G,,.

Lemma 13. Foreveryz € V,z C Z".

Proof. Let z,y € V such that N[z] = N[y]. Note first thatz € v iffy € v, by Lemma 7, and so, if z € v, then we get
N,[z] = N[z] = N[y] = N, [y] (Corollary 8). Suppose now the contrary; thatis, z, y &€ v. We show by contradiction that the
hypothesis N, [z] # N, [y] leads to a contradiction. Indeed, suppose that either N, [z] Z N,[y] or N, [y] € N,[z]. We show
the result for the first case. The other case can be symmetrically dealt with. Let u € N,[z]\ N, [y]. Since N[z] = N[y] € N, [y],
we have u € N, [z]\ N[z]. Hence, there exists x € v such that zu € By; thatis,zu ¢ E and z, u € N(x).Hence, z, u € N[x], and
so x € N[z] = N[y]. So, we have u, y € N[x], which is a clique of G, (Fact 5). Hence, uy € E,, contradicting the hypothesis
ugNlyl. O

Lemma 14. G, does not contain any N-eligible vertex, and so G, = cly(G).
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Fig. 1. The complete Ryjacek closure of the N-closure of a graph G.

Proof. Let z € V. We must show that z is not N-eligible in G,. If z € S,, then the result is immediate by Definition 6. So we
can suppose thatz € NS, and soz ¢ v, since v C S, by Lemma 9. Hence, since z is not N-eligible in G, we have |z| < [N(2)],
and we must show that |z"| < |N,(z")|. We now present two cases.

1. Suppose first that z ¢ Uy, N[x]. We have N[z] = N, [z] by Corollary 8 and z C z" by Lemma 13. Suppose now that there
exists u € zV \ z; thatis, N,[z] = N,[u] but N[z] # N[u]. Hence, N[z] = N,[z] = N,[u], and either N[z] € N[u] or
N[u] € N[z].The second case is impossible, since N[u] € N,[u] = N[z] and so thereexistsy € N[z]\N[u] = N,[u]\N[u].
So there exists x € v suchthatuy € B,.Thusuy ¢ E and u, y € N(x). But u € N[x] implies thatx € N[u] C N,[u] = N|z].
So z € N[x], contradicting z & U,c, N[x]. So, by contradiction, z¥ = z,and so N[z] \ Z = N, [z] \ z". Hence, we get finally
12| = |z| < IN@)| = IN,(Z")].

2. Suppose now that there exists x € v such that z € N[x]. Note first that, since N[x] is a clique in G, (Fact 5), we have
N[x] € N,[z]. If N,[z] € NI[x], then z € S,, contradicting z € NS,. So we can suppose that N,[z] € N[x], and so
Y = N,[z] \ N[x] # #.Now lety € Y and u € x. We have N, [u] = N[u] = N[x] (by Corollary 8 and the definition of x).
Hence,y & N,[u],and sou & N, [y].Since, moreover,y € N,[z], we get us£, z.Sinceu € N[x] € N, [z], we also gety #, z.
So, we have proved thatz" NXx =@ =Zz"NY,andsoY UX C N,(z"). We have Y Nx = @, by the definition of Y, and so
x| < 14+ x| < |Y|+ |X|] = |Y UX| < |N,(z")|. Now, if v € z", we havex € N,[z] = N,[v],and so v € N, [x] = N[x].
Hence,z” C N[x] and, since z" N X = ¥, z" C N(x). Hence, finally, |z"| < I[IN(X)| < |X| < [N, (z")]. O

We give now an example of a graph G which is not claw free but whose N-closure cly(G) is. Hence, by the main result
of [9], there exists a closure clg(cly (G)) of cly(G) which contains no eligible vertex and which is Hamiltonian iff cly (G) is.
Since, moreover, clz(cly(G)) is complete and thus Hamiltonian, both cly (G) and G are (Corollary 12). We recall that a vertex
is eligible in [9] if the subgraph induced by its (open) neighborhood is connected.

Example 15. The graph G of Fig. 1 contains three N-eligible vertices x, y, z, and it is not claw free. For instance, the subgraph
induced by {x, a, b, c} is a claw. Note that, moreover, N(b) does not induce a connected subgraph of G. The graph G,, where
v = {x, y, z}, contains no N-eligible vertex, and is the N-closure cly(G) of G. It is claw free, and b is eligible in this graph since the
subgraph induced by N, (b) is connected.

4. Conclusion and future work

In this article, we have introduced a new closure concept which preserves the Hamiltonicity for every graph. This concept,
the N-closure, is based on local completion and neighborhood equivalence. Fig. 1 gives an example of how the N-closure
operation can be combined with the closure operation of [9] to prove the Hamiltonicity of a graph. A systematic study of the
power of such combinations has still to be done. The time complexity of building the N-closure seems to be polynomial, but
a formal proof should be provided. Finally, several generalizations of the N-closure seem possible; one of them has already
been studied.
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