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Basics of Resonant Elastic X-ray Scattering theory

S Grenier and Y Joly

Institut Néel, CNRS & Université Grenoble Alpes, F-38042 Grenoble, France

E-mail: stephane.grenier@grenoble.cnrs.fr

Abstract. We recall the basic equations of Resonant Elastic X-ray Scattering (REXS),
starting from the photon-electron Hamiltonian interaction, and describing the different
components for the possible transitions. We also make the connection with classical physics
and we emphasize the signs of the relevant terms, resonant and non resonant, to comply to the
convention on the phase wave.

1. Introduction

The variation with energy of the diffracted peak intensities around the absorption edges has
been known since the 1920’s, and since the first measurement of a complete spectrum, by Y.
Cauchois, in 1956 [1], several works have paved the way to a good understanding of most of the
important phenomena, like the studies of D. and L. Templeton on the polarization dependence
[2], of V. E. Dmitrienko [3] and of K. Finkelstein[4] on forbidden reflections, of Gibbs [5], Hannon
[6] and co-workers on magnetic resonant scattering, or on processes involving non simple dipole
transitions again by Templeton and Templeton [7]. The current effort is on making REXS a
reliable tool to extract quantitative and valuable informations from the experiments. Nowadays,
data are recorded with far better resolution, polarization analysis and with many kinds of sample
environments. Theory has also greatly improved even if the description of multi electronic
phenomena remains a challenging task.

The purpose of the present paper is to give a brief overview of the main elements of this
spectroscopy giving the key points toward the basic equations governing it. We have noticed,
that some confusion takes place for example on the convention on the signs in many formulas.
Different conventions are possible but very often they cannot be mixed as often done. In simple
cases that does not matter, but nowadays one tries to extract tiny details from data from
interference terms. Incoherent definitions or conventions become source of errors. We propose
thus here not going in detail in the demonstration but insist on the units, the sign and at the
end propose, modestly, a general agreement on the conventions to prefer.

Our paper is organized as follows: section 2 gives the main points to describe the interaction
of polarized light with matter. From this, the formula for the resonant scattering form factor
is demonstrated in section 3. The non resonant terms, Thomson and magnetic scatterings form
factors are given in section 4. In section 5 we briefly recall the resonant x-ray scattering theory
in the framework of classical physics. Finally, we summarize in section 6 a general convention
on the notations and signs for this spectroscopy.
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2. Interaction of Polarized light with matter

More general and detailed lectures exist on the interaction of polarized light with matter in
text books [8] or in the context of x-ray spectroscopy [9]. Here we focus on the elastic photon
in - photon out case. Related by Maxwell equations, and using the second quantization, the
k components of the vector potential A, the electric field E and the magnetic field B of a
propagating plane wave are given by:

A (r, t) = A0

(

aei(k·r−ωt)ǫ+ a+e−i(k·r−ωt)ǫ∗
)

, (1)

E (r, t) = −iωA0

(

aei(k·r−ωt)ǫ− a+e−i(k·r−ωt)ǫ∗
)

,

B (r, t) = iA0

(

aei(k·r−ωt) k× ǫ− a+e−i(k·r−ωt) k× ǫ∗
)

,

where a and a+ are the annihilation and creation operators of the photon, ǫ and k are its
polarization and wave vector and A0 an amplitude which is determined by imposing the energy
of the photon to be h̄ω. Here we use the most common convention on the sign in the exponent
of the exponential; this point is discussed later.

Relativistic effects are negligible except for the non resonant magnetic terms, they were
already considered in the proceedings of the REXS 2011 conference [10]. So, here we consider
only the non relativistic Hamiltonian H = H0+HI . H0 is the non interacting part and we focus
on the interaction part between the field above and an electron of charge −e:

HI =
e

m
p ·A+

e

m
S ·B+

e2

2m
A2 . (2)

The transition operator T is given by:

T ≈ HI +HIG0 (Ei)HI , (3)

where we have used the first order approximation replacing the Green function G of the
Hamiltonian H with the Green function of H0. Ei is the initial state energy. G0 is given
by:

G0 (Ei) = lim
η→0+

1

Ei −H0 + iη
. (4)

Expanding T to the second order in e/m, one gets:

T = T1 + T2a + T2b + . . . (5)

with:

T1 =
e

m
(p ·A+ S ·B) (6)

T2a =
e2

2m
A ·A (7)

T2b =
( e

m

)2
(p ·A+ S ·B)G0 (Ei) (p ·A+ S ·B) . (8)

T1 contains two terms linear in A or B, it describes single photon processes, like absorption
or emission. T2 reveals two-photon processes, one photon in and one photon out, describing
scattering processes. It is split in two terms, T2a, which gives the non resonant Thomson
scattering as shown in section 3, and T2b responsible for the anomalous process as seen in
section 4. From this, the transition probability per unit time is given by the so-called first
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golden rule [8] and with the convenient normalizations, one finally gets the scattering form
factor by the formula:

f =
Cs

−r0
〈φf |T2 |φi〉 . (9)

The factor Cs = − 1
4πǫ0c2A2

0
takes into account the photon final state density and the

normalization with the incoming flux. The normalization by the classical electron radius 1
−r0

scales the result in number of electrons, r0 = e2/4πǫ0mc
2 being the elastic scattering amplitude

of the free electron.

3. Non resonant form factor

3.1. Thomson scattering

We consider T2a (eq. 8) inserted in equation 9. One gets the Thomson scattering form factor:

f0 = ǫ∗s · ǫi
∑

g

〈

ϕg

∣

∣

∣
ei(ki−ks)·r

∣

∣

∣
ϕg

〉

= ǫ∗s · ǫi

∫

ρ (r) ei(ki−ks)·rd3r , (10)

where ρ (r) =
∑

g |ϕg (r)|
2 is the atomic electron density, the sum being over all the occupied

states. In forward scattering one thus gets f0 = ǫ∗s · ǫi Z, Z being the atomic number. Note that
due to the minus sign in the normalisation in equation 9, the Thomson scattering form factor,
f0, is positive, while the Thomson scattering amplitude, b0, related to the form factor by the
relation b0 = −r0f0, is negative. In contrast to optical energies, at X-ray energies the anomalous
term is small making refraction indices to be slightly less than one.

3.2. Non-resonant magnetic scattering

The non-resonant magnetic scattering was observed in 1981 by de Bergevin and Brunel [14].
The Hamiltonian was given by Blume and Gibbs in [15, 16]. It contains the interaction between
the magnetic field of the incoming wave with the spin of the electron. It contains also an angular
momentum part coming from the expansion to the first order in h̄ω/ (En − Eg) of the anomalous
contribution T2b. At high energy one gets a magnetic form factor given by fmag = −ifm, with:

fm =
h̄ω

mc2

(

1

2
L (Q) · a+ S (Q) · b

)

, (11)

where a and b are two vectors depending on the incoming and outgoing wave vectors and
polarizations:

a = −2 (1− ui · us) (ǫs × ǫi) + (ui − us) · (ǫs × ǫi) (ui − us) , (12)

b = ǫs × ǫi − (ui × ǫi) (ui · ǫs) + (us × ǫs) (us · ǫi) − (us × ǫs)× (ui × ǫi) . (13)

where u = k/k. S (Q) is the Fourier transform of the spin density, that is of ρ (r)↑−ρ (r)↓. L (Q)
is related to the Fourier transform of the orbital momentum. It is often a good approximation
to take L (Q) and S (Q) in the same direction. Note that the expresion of a is slightly different
than the one in the Blume and Gibbs paper [16] (A” term in equation 2) due to a typo already
reported by Fabrizi and co-workers [18].

The amplitude of the non-resonant magnetic scattering is very small and neutron diffraction
is often far more sensitive to measure magnetic ordering. Nevertheless, when studying magnetic
material using resonant processes, because this term interferes with the other terms, it can give
notable effects on the intensity of some peaks.
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4. Resonant x-ray scattering formula

Introducing the expression of the potential vector and the magnetic field given in eq. 2 in eq. 8,
one can distinguish two possible processes. In the first one the emission occurs before the
absorption, corresponding to a non resonant process. In the second one the absorption occurs
before the emission. The former being far smaller than the latter, it will be neglected. The
resonant scattering amplitude depends on transitions from an initial state |φi〉 = |ϕg, (ǫi, ki)〉
up to intermediate states |ϕn, 0〉 and from this state down to a final state |φf 〉 = |ϕg, (ǫs, ks)〉.
ϕg and ϕn represent the core and excited electron states. (ǫi, ki) and (ǫs, ks) are the incoming
and outgoing photons with the same energy h̄ω but different polarizations ǫi,s and wave vectors
ki,s. In this situation, where absorption is before emission, the intermediate state has no photon
and we have Ei = Ef = Eg + h̄ω where Eg is the energy of the core state. The energy of the
intermediate state En is the energy level of the corresponding electron with the core-hole.

Stating different core states, introducing
∑

n |n〉 〈n| = 1 on the right side of G0 and using the
fact that on the same right side in eq. 8 applies only the annihilation part of A and B and on
its left side only the creation part one gets:

f ′ − if ′′ = −
1

m
lim

η→0+

∑

n,g

〈

ϕg

∣

∣

∣
Ô∗

s

∣

∣

∣
ϕn

〉〈

ϕn

∣

∣

∣
Ôi

∣

∣

∣
ϕg

〉

Eg − En + h̄ω + iη
(14)

where the operator Ô is given by :

Ô = (ǫ · p+ i S · (k× ǫ)) eik·r . (15)

At this stage we perform the Taylor expansion of the exponential up to the second order for
the potential vector and to the first order for the magnetic field. Using commutator relations
one gets:

〈

ϕn

∣

∣

∣
Ô
∣

∣

∣
ϕg

〉

= i
m

h̄
(En − Eg) 〈ϕn |ôE1 + ôE2 + ôM1|ϕg〉 , (16)

with:

ôE1 = ǫ · r , (17)

ôE2 =
i

2
(ǫ · r) (k · r) , (18)

ôM1 = cm (k× ǫ) · (L+ 2S) , (19)

where cm = h̄
2m(En−Eg)

. Putting all this together one gets:

f ′ − if ′′ = m lim
η→0+

∑

n,i

(

En − Eg
h̄

)2 〈ϕg |ô
∗
s|ϕn〉 〈ϕn |ôi|ϕg〉

h̄ω − (En − Eg) + iη
, (20)

which is the basic equation in S. I. unit. Note the minus sign in front of f ′′ to follow the
convention on its positive value. Because h̄ω ≈ En − Eg and taking into account the fact that
most often the intermediate states spread into a continuum one often prefers the integral form:

f ′ − if ′′ ≈ mω2
∑

g

∫ ∞

EF

1
π

∑

n 〈ϕg |ô
∗
s| ϕ̄n〉 〈ϕ̄n |ôi|ϕg〉

h̄ω − (E − Eg) + iΓ2
dE , (21)

where EF is the Fermi energy and Γ is a phenomenological broadening due to the finite lifetime.
ϕ̄n are now electronic states normalized by the density of states. The summation on n is now only
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on states at the energy E . The equation above is monoelectronic which is a serious approximation
for example at the L23 of 3d elements. To go deeper in the simulation of REXS spectra, in these
cases, one has to use Multiplet formalism or a time-dependent DFT approach [13]. Bethe-
Salpeter equations or even configuration techniques, supposed to be more precise, already used
for XANES spectroscopy could also be used.

5. Classical X-ray Resonant Scattering

In classical physics, the photon is described by an electromagnetic field that induces an
acceleration on a bound electron of charge −e and mass m. The interaction is governed by the
electrical force −eE within Newton mechanics, the speed of electron remains sub relativistic,
and we neglect the magnetic field:

mẍ = −eE − ηẋ− κx (22)

where −eE is the force experienced by the electron in the electric field, ηẋ is a damping force
that tends to slow the particle, and is opposite in direction to its speed, and κx is a force that
retains the particle around its average position; η and κ are both positive. For a field of the
form E0(z, t) = E0 e

i(kz−ωt), in the far field approximation [11], this equation leads to:

Erad(r, t)

E0(0, t)
= −r0

ω2

ω2 − ω2
0 + iγω

eikr

r
(23)

where γ = η/m and ω0 =
√

κ/m , introducing the minus sign so as to keep positive the Thomson
form factor (the high ω limit), giving

b = −r0
ω2

ω2 − ω2
0 + iγω

= −r0 f , (24)

with f the form factor:

f =
ω2

ω2 − ω2
0 + iγω

. (25)

Note that a free charge has a negative scattering amplitude which takes importance when dealing
with refraction (interference with the incident field) and multiple scattering effects. When the
frequency is much lower than the resonance, one finds the well-known atomic, or small particle
scattering amplitude, referred to Rayleigh scattering:

b ≈ r0
ω2

ω2
0

. (26)

In this case the scattering amplitude becomes positive, leading to refractive indices greater than
one. One can also write expression (25) to single out a constant term and a dispersive term:

f = 1 +
ω2
0 − iγω

ω2 − ω2
0 + iγω

. (27)

Close to resonances one can identify the resonant term introduced in the quantum mechanics
development, if γ is small compared to ω and ω ≈ ω0:

f ≈ 1 +
ω0/2

ω − ω0 + iγ/2
. (28)

The effect of polarization, of the direction of the electric field relatively to the scattering
direction is taken into account simply by the scalar product of the incident and the outgoing
electric fields, which is multiplied to the scattering amplitude.
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6. Intensity and convention

6.1. Phase and diffraction vector

The phase of a propagating plane wave of energy h̄ω and wave vector k is written as:

ei(k·r−ωt). (29)

This choice [12] for the phase space and time evolution imposes the signs between various
quantities and requires great care in all subsequent analytical developments in resonant x-ray
scattering theory. Consider the energy E = Er + iEi of an excited state whose decay with
time goes as e−t/τ with a lifetime τ > 0. Convention (29) imposes Ei to be negative, and
Ei = −h̄/2τ = −Γ/2 with the width Γ = h̄/τ . Another example deals with the spatial phase
shift taken by the photon over a small volume, like a core 1s orbital, leading to eik·r ≈ 1+ ik · r
and giving rise to quadrupolar transitions between states of same parity. For instance, it imposes
the sign on the process that consists in a dipolar absorption followed by a quadrupolar emission
(so called E1E2 [6]).

The sign of the diffraction vector Q is also chosen, it appears when dealing with spatial phase
shifts (ei(kf ·r))∗ei(ki·r) = e−i(kf−ki)·r = e−iQ·r, that is the choice is Q = kf − ki.

6.2. Scattering amplitude and cross-section

Incident photon initially with wave function eikz are described far from the scatterer by a

spherically diverging wave of the form b(θ)
r eikr, where b(θ) is the scattering amplitude:

ψ ≃ eikz +
b(θ)

r
eikr. (30)

The probability that the photon passes through the surface dS = r2dΩ is cr−2|b|2dS = c|b|2dΩ,
c being the speed of light. Normalized by the incident photon density, one obtains the scattering
cross-section:

dσsc. = |b|2 dΩ. (31)

The scattering amplitude induces another phase shift when photoelectric transitions toward
excited states of some finite lifetime take place during the scattering process. The scattering
amplitude is then a complex number. A general result in scattering theory states that the
imaginary part of forward scattering amplitude is related to the total cross-section (scattering
+ absorption) by the so-called optical theorem [11]:

σtot. =
4π

k
Im{b(0)} (32)

The imaginary part of the scattering amplitude should consistently be positive. The
scattering form factor f , from b = −r0f , is written f = f0 + f ′ − if ′′ where f0, the free electron
(Thomson) form factor which is positive, as well as the imaginary part f ′′ which usually is
obtained from absorption measurements and taken positive to show a rising edge with increasing
energy.

The total diffraction intensity is given, up to the second-order in absorption/emission photon
processes, by I(ω) ∝ |F (ω)|2 where the static structure factor F is given by the expression:

F (ω) =
∑

j

e−iQ·Rj
(

f0j − ifmj + f ′j(ω)− if ′′j (ω)
)

. (33)
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The sum is over all atoms j of the unit cell. Of course, when calculating intensity, the complex
conjugate can be taken. This formula does not take into account the dynamical process in
diffraction. A step to overcome this approximation permits to simulate the birefringence
effect [10]. In this case the rotation of the polarization along the propagation of the field in
the sample is taken into account. The scattering by a specific unit cell thus depends on the
polarization and the amplitude of the electromagnetic field at this point in the sample.
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