
HAL Id: hal-01010286
https://hal.science/hal-01010286v1

Submitted on 18 Jan 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Simple (yet Powerful) Algebra for Pervasive
Environments

Yann Gripay, Frédérique Laforest, Jean-Marc Petit

To cite this version:
Yann Gripay, Frédérique Laforest, Jean-Marc Petit. A Simple (yet Powerful) Algebra for Pervasive
Environments. International Conference on Extending Database Technology (EBDT’10), Mar 2010,
Lausanne, Switzerland. pp.359-370, �10.1145/1739041.1739086�. �hal-01010286�

https://hal.science/hal-01010286v1
https://hal.archives-ouvertes.fr

A Simple (yet Powerful) Algebra for Pervasive
Environments

Yann Gripay
Université de Lyon, CNRS

INSA-Lyon, LIRIS, UMR5205
7 avenue Jean Capelle,

F-69621, Villeurbanne, France
yann.gripay@liris.cnrs.fr

Frédérique Laforest
Université de Lyon, CNRS

INSA-Lyon, LIRIS, UMR5205
7 avenue Jean Capelle,

F-69621, Villeurbanne, France
frederique.laforest@

liris.cnrs.fr

Jean-Marc Petit
Université de Lyon, CNRS

INSA-Lyon, LIRIS, UMR5205
7 avenue Jean Capelle,

F-69621, Villeurbanne, France
jean-marc.petit@

liris.cnrs.fr

ABSTRACT
Querying non-conventional data is recognized as a major
issue in new environments and applications such as those
occurring in pervasive computing. A key issue is the abil-
ity to query data, streams and services in a declarative way.
Our overall objective is to make the development of perva-
sive applications easier through database principles. In this
paper, through the notion of virtual attributes and binding
patterns, we define a data-centric view of pervasive environ-
ments: the classical notion of database is extended to come
up with a broader notion, defined as relational pervasive
environment, integrating data, streams and active/passive
services. Then, the so-called Serena algebra is proposed
with operators to homogeneously handle data and services.
Moreover, the notion of stream can also be smoothly inte-
grated into this algebra. A prototype of Pervasive Environ-
ment Management System has been implemented on which
first experiments have been conducted to validate our ap-
proach.1

Categories and Subject Descriptors
H.2.3 [Information Systems]: Database Management—
Languages

General Terms
Design, Languages

1. INTRODUCTION
Computing environments evolve towards what is called

pervasive systems [22]: they tend to be more and more
heterogeneous, decentralized and autonomous. On the one

1This work was partially supported by the ANR (French Na-
tional Research Agency) project Optimacs (ANR-08-SEGI-
014, 2008–2011).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EDBT 2010, March 22–26, 2010, Lausanne, Switzerland.
Copyright 2010 ACM 978-1-60558-945-9/10/0003 ...$10.00

hand, personal computers and other handheld devices are
largely widespread and take a large part of information sys-
tems. On the other hand, data sources may be distributed
over large areas through networks that range from a world-
wide network like the Internet to local peer-to-peer connec-
tions like for sensors.

Querying non-conventional data is recognized as a major
issue in new environments and applications such as those
occurring in pervasive systems. In such environments, avail-
able data sources and functionalities are dynamic and het-
erogeneous: distributed databases with frequent updates,
data streams from logical or physical sensors, and services
providing data from sensors or storage units, transform-
ing data or commanding actuators. These data sources
and functionalities are however not homogeneously manage-
able in today’s systems, which is an issue when building
pervasive applications: imperative programming languages
(e.g., C++, Java) are needed to define application behav-
ior, whereas data source access is achieved through database
connections with declarative language (e.g., SQL) and dis-
tributed functionality invocation through specific network
protocols (e.g., JMX, UPnP). Ad hoc development combin-
ing those techniques is not a suitable long-term solution.

DSMSs (Data Stream Management Systems), extending
DBMSs (DataBase Management Systems), provide a homo-
geneous view and query facilities for both relational data
and data streams. Services are a common way to repre-
sent distributed functionalities in a computing environment,
along with techniques for service discovery and remote in-
vocation [26]. However, services are not yet fully integrated
with DBMSs or DSMSs. Major DBMS vendors offer SQL
extensions with functions and external functions to link with
external components, e.g., distributed services. Neverthe-
less, they do not handle the dynamicity of the set of avail-
able services, and functions or services are not considered as
first-class citizens in the sense that they cannot be combined
with traditional data schemas or queried in a homogeneous
way with traditional data.

1.1 Contributions
Our overall objective is to make the development of per-

vasive applications easier through database principles. We
have to manage two types of entities: data sources (data,
streams) and services (i.e. distributed functionalities).

Our notion of service is kept rather simple in order to en-
sure tractable solutions even in dynamic environments. For

example, we assume that service invocations terminate (no
infinite behavior) to avoid termination and recursion prob-
lems, e.g., see [4]. A service method can be tagged as active
or passive to reflect its impact, or absence of impact, on the
environment, which is a strong requirement in the context
of pervasive environments. For example, the invocation of
a service sending a SMS message to someone has an impact
on the environment, i.e. once received by the person, the
SMS can not be “canceled”. Such a service is referred to as
an active service in the rest of this paper. On the oppo-
site, a service returning the current temperature value from
a sensor can be tagged as a passive service. This notion of
active/passive service turns out to be powerful enough to
capture most of requirements in pervasive environment.

We propose a framework that defines a data-centric view
of pervasive environments: the classical notion of database
is extended to come up with a broader notion, defined as
relational pervasive environment, integrating data, streams
and active/passive services.

In this paper, we detail the key issue of our framework:
in order to integrate distributed functionalities, we decouple
their declaration as prototypes of methods and their imple-
mentation as services; at the metadata level, we integrate
the declarative part into data schemas with the help of two
notions: virtual attributes and binding patterns; the imple-
mentation part is integrated at the tuple level with data
representing references to services. We propose a formal
definition of a pervasive environment as a set of extended
relations, or X-Relations, and we define a service-enabled al-
gebra over pervasive environments based on the relational al-
gebra, the Serena algebra (Service-enabled algebra). This
model allows to define service-oriented queries in a declara-
tive fashion, whereas implementation issues like service dis-
covery and remote invocation are handled at runtime.

Our framework also combines this integration of services
with continuous query techniques (e.g., [23]) over relations
and data streams. Continuous aspects are important for
pervasive applications and essential for the expressiveness
of our framework, but have nevertheless little impact on the
definition of the algebra. In this paper, due to space limi-
tations, we only sketch how we realize this combination, by
extending our formal definition of a pervasive environment
as a set of eXtended Dynamic relations, or XD-Relations,
that homogeneously represents relations and data streams
extended with services, and by extending the Serena alge-
bra to define query operators over such XD-Relations. The
definition of a SQL-like language based on the Serena al-
gebra, namely the Serena SQL, is also not tackled in this
paper although it is part of our framework.

1.2 Motivating Example
The motivating example is inspired by the night surveil-

lance scenario presented in the Aorta project [24]. It illus-
trates the need for the integration of services from a dynamic
environment in a database-like framework and for associated
declarative languages.

Our temperature surveillance scenario considers a build-
ing containing temperature sensors and network cameras.
The surveillance consists of controlling temperatures pro-
vided by those sensors to trigger a photo of the location
of the involved sensors when the temperature (or the mean
temperature) exceeds a threshold, and to send it to the ad-
ministrators via e-mail, instant message or SMS. Photos are

taken by the network cameras.
In order to express this behavior in a declarative way, the

environment can be described using database principles, as
a set of extended relations and data streams.

The first table is a list of temperature sensors, with their
location, and a virtual attribute temperature (‘*’ denotes
its absence of value). The value for the virtual attribute
temperature is retrieved, at query evaluation time, by queries
involving invocations on the services identified by the sensor
attribute (e.g., sensor01, sensor22). In this application, the
application designer is likely to tag those services as passive.

sensor location temperature
sensor01 corridor *
sensor06 office *
sensor07 office *
sensor22 roof *

This table may be updated by a dynamic service discov-
ery mechanism, and thus represent the set of all available
services providing localized temperature information. New
sensors could then be automatically discovered and added
to the table, while sensors that are deactivated (or failing)
could be also automatically removed from the table.

From this table, a one-shot query can retrieve tempera-
tures, or compute a mean temperature, for a given location.
A continuous query can build a temperature stream (with
the location) from all the available sensors, for example to
feed a monitoring application drawing temperature graphs
in real-time.

The second table is an electronic contact list that enables
queries to send messages. A query can provide a value for
the virtual attributes text (the message content) and then
retrieve the value of the virtual attribute sent (giving the
sending result), involving invocations on the active services
identified by the attribute messenger (e.g., email, jabber).

name address text messenger sent
Nicolas nicolas@elysee.fr * email *
Carla carla@elysee.fr * email *

François francois@im.gouv.fr * jabber *

A one-shot query can simply send a message to some con-
tacts. A continuous query can combine this table with the
previous temperature stream to send alerts when some tem-
peratures exceeds a given value.

The whole temperature surveillance scenario can then be
expressed by a continuous query combining the two previous
tables with two additional tables: one for the cameras (like
for the temperature sensors), and one indicating which con-
tact is in charge of which location (e.g., Carla wants to know
when the temperature in Nicolas’s office exceeds 28�).

Through this representation, the different operations of
the scenario (resource discovery, service invocations) can be
expressed in terms of operations on tables (updating ta-
bles, retrieving values of virtual attributes, combining ta-
bles, etc.). Pervasive applications like this scenario can
then be expressed using declarative one-shot or continuous
queries, and query optimization techniques can be applied
to optimize the execution of those applications.

1.3 Paper Organization
The rest of the paper is organized as follows. In Section 2,

we define a formal model for pervasive environments as an

extended database. In Section 3, we define the Serena al-
gebra over such pervasive environments. In Section 4, we
sketch the integration of continuous aspects into our frame-
work. In Section 5, we introduce our PEMS (Pervasive En-
vironment Management System) prototype and some exper-
iments we have conducted so far. In Section 6, we position
our research problem within the related work. We then con-
clude and discuss some perspectives in Section 7.

2. MODELING OF PERVASIVE ENVIRON-
MENTS

In this section, we describe our generic representation of
the pervasive environment. We explain our choices to rep-
resent distributed functionalities as prototypes and services
in Section 2.1. Prototypes and services can be integrated
within standard relations with virtual attributes and bind-
ing patterns. First intuitions are given in Section 2.2, and
then a formalization of a new data model for pervasive en-
vironments is proposed in Section 2.3.

2.1 Prototypes and Services
As distributed functionalities may appear or disappear

dynamically in pervasive environments, applications can be
defined using abstract functionalities: they are dynamically
linked to available implementations at runtime. We choose
to represent the distributed functionalities in a way that de-
couples the declaration of those functionalities (e.g., sending
a message to someone) and their implementations (e.g., an
e-mail sender, an instant message sender).

We represent the declaration of the distributed functional-
ities as prototypes. In order to stay close to the relational
model, input parameters and output parameters are defined
by two relation schemas. For prototype invocation, input
parameters take the form of a relation over the input schema
(generally with only one tuple) and the invocation result is
a relation over the output schema (0, 1 or several tuples).

We denote the implementations of those distributed func-
tionalities by methods provided by services. As those meth-
ods correspond to some prototypes, we consider that services
implement those prototypes. As only prototypes imple-
mented by services are pertinent for the model, methods
provided by services may remain implicit and can be safely
hidden. The implementation of prototypes are assumed to
terminate and, in order to keep the model simple, recursion
is not allowed [4].

From a system point of view, the notion of method is only
handled by the service discovery and invocation mechanism.
Available remote services are discovered and registered, so
that a prototype can be invoked on any registered service
that implements this prototype: the corresponding method
provided by this service is transparently called.

As invocations of prototype on services can have an im-
pact on the physical environment, e.g., invoking a prototype
that sends a message, we need to consider two categories of
prototypes: active prototypes and passive prototypes.
Active prototypes are prototypes having a side effect on the
physical environment that can not be neglected. On the op-
posite, the impact of passive prototypes is non-existent or
can be neglected, like reading sensor data.

Example 1. From the temperature surveillance scenario,
4 prototypes and 9 services that implement them are pre-
sented in a pseudo-DDL format, in Table 1. Those proto-

types correspond to some functionalities from the environ-
ment: sending a message to someone, checking if a photo of
an area can be taken (indicating the expected delay and photo
quality), taking a photo, and retrieving temperature values.
The prototype sendMessage is an active prototype, whereas
the three others are passive. The 9 services are identified by
their service references, i.e. their identifiers: email, jabber,
camera01, sensor06. . .

Table 1: Example of Prototypes and Services
PROTOTYPE sendMessage(address STRING, text STRING) :

(sent BOOLEAN) ACTIVE;

PROTOTYPE checkPhoto(area STRING) :
(quality INTEGER, delay REAL);

PROTOTYPE takePhoto(area STRING, quality INTEGER) :
(photo BLOB);

PROTOTYPE getTemperature() : (temperature REAL);

SERVICE email IMPLEMENTS sendMessage;
SERVICE jabber IMPLEMENTS sendMessage;
SERVICE camera01 IMPLEMENTS checkPhoto, takePhoto;
SERVICE camera02 IMPLEMENTS checkPhoto, takePhoto;
SERVICE webcam17 IMPLEMENTS checkPhoto, takePhoto;
SERVICE sensor01 IMPLEMENTS getTemperature;
SERVICE sensor06 IMPLEMENTS getTemperature;
SERVICE sensor07 IMPLEMENTS getTemperature;
SERVICE sensor22 IMPLEMENTS getTemperature;

2.2 Extending Relations with Services
In this section, we keep the presentation informal: the

formalization is given in the next section. We propose to
integrate prototypes and services at two levels. At the meta-
data level, prototypes are integrated into relation schemas
extended with two notions: virtual attributes and bind-
ing patterns. At the data level, service references are
considered like any other data values.

The notions of virtual attributes and binding patterns
turn out to be critical in our modeling. Virtual attributes
offer the opportunity to pose queries over data and services,
the retrieval of their value at query execution time being
defined through binding patterns.

We consider service references to be classical data values
identifying services (e.g., integer values, or string values like
in Example 1). Attributes representing service references
are not different from other attributes and contain, at the
tuple level, so-called service references.

In order to represent potential interactions with services,
we extend relation schemas with virtual attributes. Vir-
tual attributes are defined at the relation schema level only
and do not have a value at the tuple level. They can be
transformed into real attributes, i.e. non-virtual attributes,
through some query operators of our algebra (defined in Sec-
tion 3): their value is then set at query execution time.

Extending a relation schema with virtual attributes does
not influence the tuple representation for its relations. Vir-
tual attributes only represent potential attributes that can
be used by queries.

Binding patterns are the relationship between service ref-
erences, virtual attributes and prototypes. A binding pat-
tern is associated with a relation schema and defines which
prototype to invoke on services in order to retrieve values
for one or more virtual attributes. It also specifies the real

attribute representing service references. The prototype in-
dicates which attributes from the relation schema are input
parameters and output parameters. Input parameters are
real or virtual attributes, whereas output parameters are al-
ways virtual attributes. A binding pattern is said to be ac-
tive if its associated prototype is active, passive otherwise.
Like for virtual attributes, associating binding patterns with
a relation schema does not influence the tuple representation
for its relations. Binding patterns represent a potential way
to provide values for virtual attributes that can be used by
queries.

Consequently, a relation over an extended relation schema,
i.e. a relation schema extended with virtual attributes and
associated with binding patterns, is called an extended re-
lation, or X-Relation. Therefore, a relational pervasive
environment is seen as a set of X-Relations.

Example 2 (Relational Pervasive Environment).
Continuing Example 1, the relational pervasive environment
for the temperature surveillance scenario is represented in
Table 2 using a pseudo-DDL.

Table 2: Description of X-Relations from the Rela-
tional Pervasive Environment for the Temperature
Surveillance Scenario

EXTENDED RELATION contacts (
name STRING,
address STRING,
text STRING VIRTUAL,
messenger SERVICE,
sent BOOLEAN VIRTUAL

)
USING BINDING PATTERNS (
sendMessage[messenger] (address, text) : (sent)

);

EXTENDED RELATION cameras (
camera SERVICE,
area STRING,
quality INTEGER VIRTUAL,
delay REAL VIRTUAL,
photo BLOB VIRTUAL

)
USING BINDING PATTERNS (
checkPhoto[camera] (area) : (quality, delay),
takePhoto[camera] (area, quality) : (photo)

);

2.3 A New Data Model
In this section, we borrow notations from [18]. Before in-

troducing virtual attributes and binding patterns, we first
formally define relations, prototypes and services. We then
define extended relations with virtual attributes and binding
patterns, to build the notion of relational pervasive environ-
ment.

2.3.1 Preliminaries
Two disjoint countable infinite sets are defined: D for

constants and A for attribute names, with D ∩ A = ∅. For
a given relation schema associated with the relation symbol
R, we denote by:

• type(R) the number of attributes in R,

• attR : {1, ..., type(R)} → A a one-to-one (i.e. injective)
function mapping numbers to attributes in R,

• schema(R) the set of attributes in R, i.e.
{attR(1), ..., attR(type(R))} ⊆ A.

A tuple over a relation schema R is an element of Dtype(R),
and a relation over R is a finite set of tuples over R.

Tuples from relations can be projected onto an attribute
Ai or, by generalization, onto a group of attributes X. Let
R be a relation schema, r a relation over R, t a tuple from
r, Ai ∈ schema(R) with Ai = attR(i) and X =
{attR(i1), ..., attR(in)} ⊆ schema(R):

• the projection of a tuple t onto Ai, noted t[Ai], is the
ith coordinate of t, i.e. t(i),

• the projection of a tuple t onto X, noted t[X], is de-
fined by t[X] = 〈t(i1), ..., t(in)〉.

Two other countable infinite sets are defined: Ψ for pro-
totypes and Ω for services, with D, A, Ψ and Ω mutually
disjoint.

Prototypes are defined by two relation schemas, one for
the input and the other for the output. Those schemas are
supposed to be disjoint and the output relation schema has
to be non-empty. Let ψ ∈ Ψ be a prototype, we denote by:

• Inputψ the input relation schema of prototype ψ,

• Outputψ the output relation schema of prototype ψ,
with schema(Outputψ) 6= ∅,

• schema(Inputψ) ∩ schema(Outputψ) = ∅,

• active(ψ) a predicate returning true if ψ is active.

Services are defined by the finite set of prototypes they
implement. A service is associated with a constant that is
its service reference. Let ω ∈ Ω be a service, we denote by:

• prototypes(ω) ⊂ Ψ the finite set of prototypes imple-
mented by service ω,

• id(ω) ∈ D the service reference of ω.

Example 3 (Prototypes and Services). For the tem-
perature surveillance scenario, we define 4 prototypes and 9
services. The 4 prototypes are sendMessage, checkPhoto,
takePhoto and getTemperature. For example, the input
and output relation schemas associated with sendMessage
are InputsendMessage and OutputsendMessage, with:

• schema(InputsendMessage) = {address, text},
• schema(OutputsendMessage) = {sent}.

The 9 services from Ω are ω1, ω2, ω3, . . . , ω8 and ω9,
corresponding to the following service references: email, jab-
ber, camera01, . . . , sensor07 and sensor22 (cf. Example 1).
Each service implements some prototypes. For ω1 and ω3,
we note:

• id(ω1) = email,

• prototypes(ω1) = {sendMessage},
• id(ω3) = camera01,

• prototypes(ω3) = {checkPhoto, takePhoto}.

A prototype invocation on a service can now be formally
represented as a function associated with each prototype.
For a given prototype, this function takes two parameters: a
constant, that should be a service reference, and a tuple over
the prototype input schema, providing the input parameters;
and returns a relation over the prototype output schema,
representing the output parameters.

Definition 1 (Invocation Function). For each pro-
totype ψ ∈ Ψ, an invocation function invokeψ is defined:

invokeψ :
(D,Dtype(Inputψ)) → P(Dtype(Outputψ))

(s, t) 7→ r

This function represents an invocation of prototype ψ on
service ω referenced by s = id(ω). The input parameters are
defined by the tuple t over Inputψ. The invocation results
are represented by a relation r over Outputψ, i.e. a set of
tuples containing the output parameters.

2.3.2 Extended Relations
With these definitions for relations, prototypes, services

and service references, we now propose a formal definition
of extended relations with virtual attributes and binding
patterns. An extended relation is basically defined like a
relation. However, its schema is partitioned between a real
schema containing real attributes and a virtual schema con-
taining virtual attributes. An extended relation schema is
also associated with a finite set of binding patterns: each
binding pattern specifies a prototype and an attribute from
the real schema representing a service reference. Tuples from
an extended relation are defined only over the real schema,
i.e. the subset of real attributes, as virtual attributes do not
have a value. We then define the notion of extended rela-
tion schema, and the notion of extended relation over an
extended relation schema.

Definition 2 (Extended Relation Schema). An ex-
tended relation schema is an extended relation symbol R as-
sociated with:

• type(R) the number of attributes in R,

• attR : {1, ..., type(R)} 7→ A a one-to-one (i.e. injec-
tive) function mapping numbers to attributes in R,

• schema(R) the set of attributes in R, i.e.
{attR(1), ..., attR(type(R))} ⊆ A,

• {realSchema(R), virtualSchema(R)} a partition of
schema(R) with:

– realSchema(R) the real schema, i.e. the subset of
real attributes,

– virtualSchema(R) the virtual schema, i.e. the sub-
set of virtual attributes;

• BP (R) ⊂ (Ψ × A) a finite set of binding patterns as-
sociated with R, where bp = 〈prototypebp, servicebp〉 ∈
BP (R) with:

– prototypebp ∈ Ψ the prototype associated with the
binding pattern,

– servicebp ∈ realSchema(R) a real attribute from
the schema used as a service reference attribute
for the binding pattern,

constrained by the following restrictions:

– schema(Inputprototypebp) ⊂ schema(R),

– schema(Outputprototypebp) ⊆ virtualSchema(R).

We denote by active(bp), with bp ∈ BP (R), a predicate that
returns true if the binding pattern bp is active, i.e. if its asso-
ciated prototype is active: active(bp) = active(prototypebp).

Definition 3 (Extended Relation). A tuple over an

extended relation schemaR is an element of D|realSchema(R)|.
An extended relation over R (or X-Relation over R) is a fi-
nite set of tuples over R.

Tuples from X-Relations can be projected onto an at-
tribute Ai or, by generalization, onto a group of attributes
X. However, as virtual attributes do not have a value, tu-
ples can only be projected onto real attributes: the coordi-
nate corresponding to the ith attribute is the jth coordinate
where j is the number of real attributes in the partial schema
{attR(1), ..., attR(i)}. We denote this number by δR(i). To
keep the generalization, tuples can be projected onto a set
of real attributes X ⊆ realSchema(R).

Definition 4 (Projection of a Tuple). The projec-
tion of a tuple t, from an X-Relation r over an extended
relation schema R, onto an attribute Ai ∈ realSchema(R)
with Ai = attR(i) in schema(R), noted t[Ai], is the δR(i)th

coordinate of t, i.e. t(δR(i)), with δR(i) the number of real at-
tributes in {attR(1), ..., attR(i)}, i.e. δR(i) = |realSchema(R) ∩
{attR(1), ..., attR(i)}|.

The projection of a tuple t onto X = {attR(i1), ..., attR(in)} ⊆
realSchema(R), noted t[X], is t[X] = 〈t(δR(i1)), ..., t(δR(in))〉.

Example 4 (Extended Relation). The electronic con-
tact list from the temperature surveillance scenario can be
modeled by an extended relation schema Contact with the
following attributes:
schema(Contact) = {name, address, text,messenger, sent},
realSchema(Contact) = {name, address,messenger} and
virtualSchema(Contact) = {text, sent}.
messenger is a service reference attribute. text and sent

are two virtual attributes representing the text to be sent and
the result of the sending. It is associated with one binding
pattern 〈sendMessage,messenger〉. Let contacts be an X-
Relation over Contact, it can be represented in the following
table, where ‘*’ denotes the absence of value for virtual at-
tributes:

name address text messenger sent
Nicolas nicolas@elysee.fr * email *
Carla carla@elysee.fr * email *

François francois@im.gouv.fr * jabber *

This relation contains three tuples, defined as elements of
D|realSchema(Contact)| = D3.

Let t ∈ D3 be the first tuple from the table:

• t = 〈Nicolas,nicolas@elysee.fr, email〉
• t[messenger] = t[attContact(4)] = 〈t(δContact(4))〉 =
〈t(3)〉 = 〈email〉
• t[address,messenger] = t[attContact(2), attContact(4)] =
〈t(δContact(2)), t(δContact(4))〉 = 〈t(2), t(3)〉 =
〈nicolas@elysee.fr, email〉

With this formalization, standard relations are a special
case of extended relations that only have real attributes, and
then no virtual attributes or associated binding patterns.
Extended relations are a mean to represent some parts of a
pervasive computing system. We propose to define the no-
tion of relational pervasive environment representing a set of
extended relations, similarly to the notion of database repre-
senting a set of relations. For the sake of simplicity, we keep
the Universal Relation Schema Assumption (URSA) stating
that if an attribute appears in several relation schemas, then
this attribute represents the same data.

Definition 5 (Relational Pervasive Env. Schema).
A relational pervasive environment schema P is a finite set
P = {R1, ..., Rn}, with Ri an extended relation schema.
We denote by schema(P) the set of all attributes associated
with the extended relation schemas in P , i.e. schema(P) =S
Ri∈P schema(Ri).

Definition 6 (Relational Pervasive Environment).
A relational pervasive environment over a relational per-
vasive environment schema P = {R1, ..., Rn} is a set p =
{r1, ..., rn}, with ri ∈ p an extended relation over Ri ∈ P .

3. ALGEBRA FOR SERVICE-ORIENTED
QUERIES

We propose to define an algebra over this formalization
to allow the expression of queries over a relational perva-
sive environment. We call this algebra Serena, standing for
Service-enabled algebra.

3.1 Query Operators
In this section, we redefine set operators and relational

operators. We also define new operators that handle virtual
attributes, called realization operators.

3.1.1 Set Operators
The set operators union, intersection and difference can

be applied over two X-Relations associated with the same
schema. The resulting X-Relation is defined over the same
schema. Their definitions remain similar with definitions
over standard relations. For example, let r1 and r2 be two
X-Relations over R, r1 ∪ r2 = {t | t ∈ r1 ∨ t ∈ r2}.

3.1.2 Relational Operators
Standard relational operators are defined over one or two

standard relations. We extend their definitions over one
or two X-Relations and study in particular the schema of
the resulting X-Relations, because modification or disap-
pearance of some real or virtual attributes can modify or
invalidate binding patterns using those attributes.

The projection operator (cf. Table 3 (a)) reduces the schema
of an X-Relation, thus its real and virtual schemas. The
resulting relation is associated with binding patterns from
the initial X-Relation that remain valid, i.e. binding pat-
terns with their service reference attribute, input and out-
put attributes that are still in the schema of the resulting
X-Relation.

The selection operator (cf. Table 3 (b)) does not modify
the schema of the X-Relation. However, selection formulas
can only apply on attributes from the real schema, as virtual
attributes do not have a value. Apart from this restriction,
we keep the standard definition and notation for the logical
implication [18] (t |= F , with t a tuple and F a selection
formula over a relation schema R).

The renaming operator (cf. Table 3 (c)) replaces an at-
tribute from the schema by another attribute. This oper-
ation does not modify the real or virtual status of the re-
named attribute. The renaming also impacts on the binding
patterns using this attribute.

The natural join operator (cf. Table 3 (d)) joins two X-
Relations, the join attributes being given by the intersection

of the two schemas. If a given join attribute is a real (resp.
virtual) attribute in both operands, it remains real (resp.
virtual) in the resulting X-Relation. However, if it is real in
one operand and virtual in the other one, it becomes real
in the resulting X-Relation (i.e. it is an implicit realization
of the virtual attribute, see Section 3.1.3). As tuples can
not be projected onto virtual attributes, only join attributes
that are real in both operands imply a join predicate. If all
join attributes are virtual in at least one operand, the join
is equivalent, at the tuple level, to a Cartesian product.

The binding patterns for the resulting relation are the
union of the binding patterns from both operands, but some
may be eliminated if they use output attributes that have
become real attributes with the join.

3.1.3 Realization Operators
We introduce two new operators, referred to as realization

operators. They allow to transform virtual attributes into
real attributes. We call this transformation “realization” of
virtual attributes. The reverse transformation is not possi-
ble. Realized attributes are given a value by the operators,
either directly (assignment operator) or using a binding pat-
tern (invocation operator). An implicit realization can also
occur in a natural join when a join attribute is real in one
operand and virtual in the other one: the virtual attribute
from the operand becomes a real attribute in the resulting
X-Relation.

The assignment operator (cf. Table 3 (e)) over a X-Relation
is the realization operator for individual virtual attributes.
It allows to give a value to one virtual attribute. In a similar
way to simple selection formulas, this operator allows to as-
sign either the value of a real attribute from the schema or
a constant value. The virtual attribute thus becomes a real
attribute in the resulting X-Relation. The binding patterns
for the resulting relation are those of the operand, but some
may be eliminated if the realized attribute is part of their
output attributes, as it is now a real attribute.

The invocation operator (cf. Table 3 (f)) over a X-Relation
is the realization operator for the output attributes of a bind-
ing pattern. It allows to give them a value by invoking the
binding pattern, i.e. invoking the associated prototype with
some input parameters on a service. However, this operator
can only be applied if all the input attributes of the binding
pattern are real attributes in the input X-Relation.

Each tuple from the operand leads to an invocation of the
binding pattern, which may result in several tuples for out-
put attributes. Each input tuple is duplicated as many times
as the invocation has generated output tuples. For each in-
vocation, the input parameters and the service reference are
taken from the input tuple.

3.1.4 Queries
The notion of query over a relational pervasive environ-

ment can now be defined as a composition of operators over
a set of X-Relations.

Definition 7 (Query over a Relational Perv. Env.).
A query over a relational pervasive environment is a well-
formed expression composed of a finite number of Serena
algebra operators whose operands are X-Relations.

Example 5 (Query over X-Relations). We can ex-
press the following queries over X-Relations contacts and
cameras (introduced in Example 2, defined in Example 4):

Table 3: Definition of Relational and Realization Operators over X-Relations
(a) Projection

Input r an X-Relation over R
Y ⊂ schema(R)

Syntax s = πY (r)
Output s an X-Relation over S with:

- schema(S) = Y
- realSchema(S) = realSchema(R) ∩ Y
- virtualSchema(S) = virtualSchema(R) ∩ Y
- BP (S) = {bp | bp ∈ BP (R) ∧ servicebp ∈ Y ∧ schema(Inputprototypebp) ⊂ Y ∧ schema(Outputprototypebp) ⊂ Y }

Tuples s = {t[Y ∩ realSchema(R)] | t ∈ r}
(b) Selection

Input r an X-Relation over R
F a selection formula over realSchema(R)

Syntax s = σF (r)
Output s an X-Relation over R
Tuples s = {t | t ∈ r ∧ t |= F}

(c) Renaming
Input r an X-Relation over R

A ∈ schema(R)
B ∈ A, B 6∈ schema(R)

Syntax s = ρA→B(r)
Output s an X-Relation over S with:

- schema(S) = (schema(R)− {A}) ∪ {B}

- realSchema(S) =

(realSchema(R)− {A}) ∪ {B} if A ∈ realSchema(R)
realSchema(R) otherwise

- virtualSchema(S) =

(virtualSchema(R)− {A}) ∪ {B} if A ∈ virtualSchema(R)
virtualSchema(R) otherwise

- BP (S) = {bp′ | ∃bp ∈ BP (R), prototypebp′ = prototypebp ∧
((A 6= servicebp ∧ servicebp′ = servicebp) ∨ (A = servicebp ∧ servicebp′ = B)) ∧
schema(Inputprototypebp) ⊂ (schema(R)− {A}) ∪ {B} ∧ schema(Outputprototypebp) ⊂ (schema(R)− {A}) ∪ {B} }

Tuples s = {t | ∃u ∈ r, t[realSchema(S)− {B}] = u[realSchema(R)− {A}]∧
t[{B} ∩ realSchema(S)] = u[{A} ∩ realSchema(R)]}

(d) Natural Join
Input r1 an X-Relation over R1

r2 an X-Relation over R2

Syntax s = r1 ./ r2

Output s an X-Relation over S with:
- schema(S) = schema(R1) ∪ schema(R2)
- realSchema(S) = realSchema(R1) ∪ realSchema(R2)
- virtualSchema(S) = (virtualSchema(R1)− realSchema(R2)) ∪ (virtualSchema(R2)− realSchema(R1))
- BP (S) = {bp | bp ∈ (BP (R1) ∪BP (R2)) ∧ schema(Outputprototypebp) ⊆

(virtualSchema(R1)− realSchema(R2)) ∪ (virtualSchema(R2)− realSchema(R1)) }
Tuples s = {t | ∃t1 ∈ r1, ∃t2 ∈ r2, t[realSchema(R1)] = t1 ∧ t[realSchema(R2)] = t2}

(e) Assignment
Input r an X-Relation over R

A ∈ virtualSchema(R)
B ∈ realSchema(R) or a ∈ D

Syntax s = αA≡B(r) or s = αA≡a(r)
Output s an X-Relation over S with:

- schema(S) = schema(R)
- realSchema(S) = realSchema(R) ∪ {A}
- virtualSchema(S) = virtualSchema(S)− {A}
- BP (S) = {bp | bp ∈ BP (R) ∧ schema(Outputprototypebp) ⊆ (virtualSchema(R)− {A})}

Tuples s = {t | ∃u ∈ r, t[realSchema(S)− {A}] = u[realSchema(R)] ∧ t[A] = u[B]}
s = {t | ∃u ∈ r, t[realSchema(S)− {A}] = u[realSchema(R)] ∧ t[A] = a}

(f) Invocation
Input r an X-Relation over R

bp ∈ BP (R)
schema(Inputprototypebp) ⊂ realSchema(R)

Syntax s = βbp(r)
Output s an X-Relation over S with:

- schema(S) = schema(R)
- realSchema(S) = realSchema(R) ∪ schema(Outputprototypebp)
- virtualSchema(S) = virtualSchema(R)− schema(Outputprototypebp)
- BP (S) = {bp′ | bp′ ∈ BP (R) ∧ schema(Outputprototypebp′) ⊆ (virtualSchema(R)− schema(Outputprototypebp))}

Tuples s = {t | ∃u ∈ r, t[realSchema(S)− schema(Outputprototypebp)] = u[realSchema(R)] ∧
t[schema(Outputprototypebp)] ∈ invokeprototypebp(u[servicebp], u[schema(Inputprototypebp)])}

Table 4: Examples of queries expressed in the Serena algebra

Q1 β〈sendMessage,messenger〉(αtext≡”Bonjour!”(σname 6=”Carla”(contacts)))

Q2 πphoto(β〈takePhoto,camera〉(σquality>5(β〈checkPhoto,camera〉(σarea=”office”(cameras)))))

Q′1 σname 6=”Carla”(β〈sendMessage,messenger〉(αtext≡”Bonjour!”(contacts)))

Q′2 πphoto(σquality>5(β〈takePhoto,camera〉(β〈checkPhoto,camera〉(σarea=”office”(cameras)))))

Q3 β〈sendMessage,messenger〉(αtext≡”Hot!”(contacts ./ σtemperature>35.5(W[1](temperatures))))

Q4 S[insertion](β〈takePhoto,camera〉(β〈checkPhoto,camera〉(cameras ./ σtemperature<12.0(W[1](temperatures)))))

Q1 send the message “Bonjour!” to all contacts, except
“Carla”;

Q2 take photos of area “office” with quality superior to “5”.

The Serena algebra expression for those queries are pre-
sented in Table 4.

3.2 Query Equivalence
Without formal semantics, it is hard to prove correctness

of query formulations and query optimization is de facto
limited, operators being often seen as “black boxes”. As a
matter of fact, logical query optimization is now possible in
our setting. In this section, we define query equivalence for
service-oriented queries. Three issues need to be addressed
in the context of pervasive environments: time-dependence,
service determinism and impact of service invocations on the
physical environment.

As a pervasive system is a dynamic system, the same
service invoked with the same input, but at two different
instants in time may lead to two different results (e.g., a
service that takes a photo). As a consequence, the same
query q over the same relational pervasive environment may
lead to different results if q is evaluated at different instants.
In order to define query equivalence, we consider a discrete
time domain and we assume that query evaluation occurs
at a given time instant. As a consequence, all service invo-
cations in a query occur simultaneously, from a theoretical
point of view. We also consider that services are determin-
istic at a given instant, so that the invocation order has no
impact on invocation results. For example, a service that
returns the number of times it has been invoked should still
return the same value for all invocations at a given instant.

In order to reflect the impact of a query on the environ-
ment, we define the notion of action set induced by a query
against a relational pervasive environment as the set of in-
vocations of active binding patterns triggered by this query.
For instance, consider query Q1 in Table 4: we want to cap-
ture the set of messages sent by the execution of this query.

Definition 8 (Action Set). An action is a 3-
tuple 〈bp, s, t〉 with bp an active binding pattern, s a ser-
vice reference and t an input data tuple for bp. An action
set of a query q against a relational pervasive environment
p, denoted by Actionsq(p) (or simply Actionsq where p is
clear from context), is defined as: Actionsq(p) = {〈bp, s, t〉 |
βbp(q

′(p)) ∈ q∧active(bp)∧u ∈ q′(p)∧s = u[servicebp]∧t =
u[schema(Inputprototypebp)]}, where βbp(q

′(p)) ∈ q denotes
the occurrence of invocation operator βbp in q with subquery
q′ as its operand.

Example 6 (Action Sets). Considering the X-Relation
contacts described in Example 4, the action sets for the two
similar queries Q1 and Q′1 from Table 4 are:
let bp1 = 〈sendMessage,messenger〉,
ActionsQ1 = {
〈bp1, email, 〈nicolas@elysee.fr,Bonjour!〉〉,
〈bp1, jabber, 〈francois@im.gouv.fr,Bonjour!〉〉},

ActionsQ′
1

= {
〈bp1, email, 〈nicolas@elysee.fr,Bonjour!〉〉,
〈bp1, email, 〈carla@elysee.fr,Bonjour!〉〉,
〈bp1, jabber, 〈francois@im.gouv.fr,Bonjour!〉〉}.

Using this model, the evaluation of a query q over a rela-
tional pervasive environment is unambiguously defined. We
consider a discrete and ordered time domain T of time in-
stants τ ∈ T (in a similar way to CQL [23] for data streams).
For a given prototype ψ, the invocation function invokeψ is
defined at every instant τ for all services ω and all possible
inputs t. The evaluation of query q over a relational per-
vasive environment p occurs at a given instant τ : service
invocations, through invocation operators, are defined by
the corresponding invocation functions at the given instant.

Definition 9 (Query Equivalence). Two queries q1
and q2 over a relational pervasive environment schema P are
said to be equivalent, denoted by q1 ≡ q2, iff for any p over
P , q1(p) = q2(p) and Actionsq1(p) = Actionsq2(p).

In other words, two equivalent queries over a given rela-
tional pervasive environment that are evaluated at the same
discrete time instant lead to the same result and the same
set of invocations of active binding patterns, although they
may imply different invocations of passive binding patterns.

Example 7 (Query Equivalence). Queries Q1 and Q′1
from Table 4 are not equivalent because of their action sets
(see Example 6), although their resulting X-Relation should
be the same. Queries Q2 and Q′2 (also from Table 4) are
equivalent, as prototypes takePhoto and checkPhoto are pas-
sive: their action sets are then both empty.

3.3 Query Rewriting
Based on this query equivalence, rewriting rules can be

applied to query expressed in the Serena algebra. Some
well-known rewriting rules of the relational algebra are still
pertinent and allow to reorganize the order of relational op-
erators in queries.

Realization operators can also be reorganized, except for
invocation operators associated with active binding patterns.
The opposition between active and passive binding patterns

Table 5: Rewriting rules with assignment and invocation operators
Operator Assignment of virtual attribute A (with real attribute B or constant c)
Projection πL(αA≡B(r)) ≡ αA≡B(πL(r)) if A,B ∈ L

πL(αA≡c(r)) ≡ αA≡c(πL(r)) if A ∈ L
Selection σF (αA≡B(r)) ≡ αA≡B(σF (r)) if A 6∈ F

σF (αA≡c(r)) ≡ αA≡c(σF (r)) if A 6∈ F
Natural Join αA≡B(r1 ./ r2) ≡ αA≡B(r1) ./ r2 if A,B ∈ schema(R1) and A 6∈ realSchema(R2)

αA≡c(r1 ./ r2) ≡ αA≡c(r1) ./ r2 if A ∈ schema(R1) and A 6∈ realSchema(R2)

Operator Invocation of passive binding pattern bp (i.e. where prototypebp is passive)
Projection πL(βbp(r)) ≡ βbp(πL(r)) if not(active(bp)) and servicebp ∈ L and

schema(Inputprototypebp) ⊂ L and schema(Outputprototypebp) ⊂ L
Selection σF (βbp(r)) ≡ βbp(σF (r)) if not(active(bp)) and schema(Outputprototypebp) ∩ F = ∅
Natural Join βbp(r1 ./ r2) ≡ βbp(r1) ./ r2 if not(active(bp)) and bp ∈ BP (R1) and

schema(Inputprototypebp) ⊂ realSchema(R1) and
schema(Outputprototypebp) ∩ realSchema(R2) = ∅

should be taken into account: in a similar way to determin-
istic UDFs (User-Defined Functions) in standard SQL, only
invocation operators with passive binding patterns can be
reorganized; active binding patterns limit the possibility of
rewriting.

Those rewriting rules are shown in Table 5 for both real-
ization operators, i.e. assignment and invocation operators.
Their proof, based on reasoning about sets, are omitted as
they are rather simple (see the definition of operators in Ta-
ble 3). As realization operators modify the real/virtual sta-
tus of attributes, there are some restrictions in those rules,
e.g., with a selection operator, attributes realized by the re-
alization operator should not be part of the selection formula
in order to push down the selection operator.

An example of rewriting can be found in Table 4: query
Q2 is a rewritten version of queryQ′2 (whereasQ1 andQ′1 are
not equivalent). The choice of tagging binding patterns as
active or passive is up to the application developer. Whereas
sendMessage is surely to be defined as active, takePhoto
may be considered passive (leading to the rewriting of Q′2
into Q2) or active (leading to the non-equivalence between
Q′2 and Q2), depending on the objectives of the application
and the impacts of executing the services.

4. EXTENSION TO CONTINUOUS ASPECTS
To handle continuous processes, e.g., surveillance, moni-

toring of data, etc., we propose to extend our initial data
model and algebra to take into account data streams and
continuous queries in our framework. In this paper, we just
sketch the main ideas to show how we have smoothly inte-
grated continuous aspects.

4.1 Extended Relations and Streams
Relations and data streams can be represented in a similar

way to CQL [23]: both are defined over a relation schema
and represent multisets of tuples for each time instant (con-
sidering a discrete time). The difference is that relations are
finite multisets whereas data streams are infinite append-
only multisets.

Therefore, the notion of eXtended Dynamic relation, or
XD-Relation, over an extended relation schema can be de-
fined as a mapping from time instant to multisets of tuples
over this schema. An XD-Relation may be finite or infi-
nite. The notion of relational pervasive environment is also
extended to represent a set of XD-Relations.

4.2 Algebra
The Serena algebra can be extended over XD-Relations to

handle time, in order to define continuous queries over XD-
Relations. Previously defined operators can be extended
over finite XD-Relations by considering their instantaneous
relation, i.e. for each time instant, a finite XD-Relation is like
an X-Relation. However, the invocation operator needs to be
slightly modified to behave as expected: a binding pattern
is actually invoked only for newly inserted tuples, and not
for every tuple from the relation at each time instant.

Two additional operators can be defined to handle infinite
XD-Relations. The Window operator, denoted byW[period],
computes a finite XD-Relation from an infinite XD-Relation
as, for every time instant, the multiset of tuples inserted
during the last period instants. The Streaming operator,
denoted by S[type], computes an infinite XD-Relation from a
finite XD-Relation by inserting, for every time instant, the
multiset of tuples that are inserted/deleted/present at this
instant (depending on the type of the operator: insertion,
deletion or heartbeat). As those two operators do not mod-
ify the XD-Relation schema, apart from its finite/infinite
status, they transparently handle virtual attributes.

Example 8 (Continuous Query). We consider a re-
lational pervasive environment containing three XD-Relations:
contacts and cameras, as finite dynamic versions of pre-
viously defined X-Relations; and temperatures, an infinite
XD-relation representing a temperature stream from sensors
periodically providing temperatures associated with locations
(as described in the motivating example in Section 1.2).

Queries Q3 and Q4 in Table 4 model those behaviors:

Q3 when a temperature exceeds 35.5�, send a message
“Hot!” to the contacts,

Q4 when a temperature goes down below 12.0�, take a
photo of the area.

In both queries, the window operator with a period of 1
(W[1]) indicates that we are interested in data tuples from
the temperatures stream only at the instant where they are
inserted. They are not kept in the intermediary XD-Relation
for the following instants.

Whereas the result of Q3 is a finite XD-Relation (its last
operator is the invocation operator), the result of Q4 is an
infinite XD-Relation (its last operator is the streaming op-
erator S[insertion]), i.e. a stream of photos.

Besides continuous queries, one-shot queries like Q1 and
Q2 are still possible over finite XD-Relations: their results
are computed once and are not continuously updated.

5. IMPLEMENTATION
In order to validate our approach and conduct some ex-

periments, we have developed a prototype of a Pervasive
Environment Management System (PEMS). The role of a
PEMS is to manage a relational pervasive environment, with
its dynamic data sources and set of services, and to execute
continuous queries over this environment. We also have de-
fined a Data Description Language for XD-Relations (the
Serena DDL) along with a query language representing Ser-
ena algebra expressions (the Serena Algebra Language, not
presented in this paper) for continuous queries over XD-
Relations.

5.1 Prototype
The whole prototype has been developed in Java using the

OSGi framework [19], including UPnP technologies [21] for
network issues. The three core modules (Environment Re-
source Manager, Extended Table Manager, Query Proces-
sor) and the distributed modules (Local Environment Re-
source Managers) are packaged as OSGi bundles. The de-
ployment of the different modules and their interactions are
illustrated in Figure 1.

Network

Service Service Service

Query Processor

Extended Table
Manager

Environment
Resource Manager

PEMS GUI

DatabaseStream Stream

Local Environment
Resource Manager

Local Environment
Resource Manager

Service

PEMS Peer

PEMS CorePEMS Client

PEMS Peer

Figure 1: Overview of the PEMS Architecture

The core Environment Resource Manager handles network
issues for service discovery and remote invocation, as well
as input of data from remote sources (data relations, data
streams). It discovers and communicates with Local En-
vironment Resource Managers that are distributed in the
network. Services simply register to their Local Environ-
ment Resource Manager, and are then transparently avail-
able through the core Environment Resource Manager.

The Extended Table Manager allows to define XD-Relations
from Serena DDL statements, and to manage their data (in-
sertion and deletion of tuples).

The Query Processor allows to register queries using the
Serena Algebra Language and to execute them in a real-time
fashion. All relational operators and realization operators
have been implemented, as well as the Window and Stream-
ing operators for continuous queries. Service invocations are
handled asynchronously by the invocation operator, relying
on the core Environment Resource Manager for actual invo-
cations. The Query Processor also handles service discovery

queries: it continuously updates some specific XD-Relations
so that they represent the set of services (implementing
some given prototypes) that are available through the core
Environment Resource Manager, like for the XD-Relation
cameras from the temperature surveillance scenario.

5.2 Experimentation
In order to experiment the temperature surveillance sce-

nario, we have developed an experimental environment com-
posed of several services: physical or simulated temperature
sensors (Thermochron iButton DS1921), webcams (from Log-
itech), instant messaging server (Openfire server from Jive
Software), (gateway to) SMS gateway (commercial service
from Clickatell), (gateway to) mail server. Those distributed
functionalities were wrapped as services and registered to
their Local Environment Resource Manager.

An instant messaging client (Psi) and a mail client (Mozilla
Thunderbird) are also used to receive messages, along with
a smart phone for SMS. Through the PEMS GUI, XD-
Relations have been created on the Extended Table Man-
ager using the Serena DDL, and continuous queries have
been registered to the Query Processor using the Serena Al-
gebra Language.

For the temperature surveillance scenario, three XD-Relations
have been created: three finite XD-Relations, cameras, surveil-
lance (indicating who is the “manager” of which area) and
contacts (with an additional attribute allowing to send a pic-
ture with a message); and one infinite XD-Relation temper-
atures. The binding pattern sendMessage of contacts is ac-
tive, whereas the binding patterns checkPhoto and takePhoto
of cameras are both passive. The continuous query combin-
ing these four XD-Relations have been executed: when tem-
perature sensors (physical or simulated) are heated over the
threshold specified in surveillance, alert messages start to
be sent to the “manager” of the associated area, by mail, in-
stant message or SMS. Using an additional service discovery
query, new temperature sensors have been dynamically dis-
covered and integrated in the temperature stream without
the need to stop the continuous query execution.

We have also experimented another scenario with RSS
feeds. A wrapper service transforms RSS feeds into real
streams so that a tuple is inserted in the stream when a new
item appears in the RSS feed (that is periodically checked).
We have tested continuous queries providing the last RSS
items containing a given word (e.g., “Obama”), with a one-
hour window, from several national and international infor-
mation websites (french newspapers “Le Monde” and “Le
Figaro”, and also from “CNN Europe”). The resulting ta-
ble has been continuously updated, when news of interest
appeared and when one-hour-old news expired. Combin-
ing this table with the previous finite XD-Relation contacts,
those news of interest can be sent as messages to a contact.

Those two scenarios (temperature surveillance, RSS feeds)
have been successfully tested, showing the feasibility of our
declarative approach to simplify the development of perva-
sive applications, as different kind of data sources and ser-
vices can be homogeneously queried without much effort.
Nevertheless, further experiments need to be conducted to
assess the scalability and the robustness of our proposal.
Note that in the context of pervasive environment, this is
not a trivial issue since, to the best of our knowledge, no
benchmark can be used for that purpose.

6. RELATED WORK
Data management in pervasive or ubiquitous computing

raises many classical issues in database and distributed sys-
tem areas. We believe that the closer issues are around
pervasive environments, query processing over non conven-
tional data sources such as data streams, data integration
and dataspaces.

In this paper, we do not consider contributions related
to spatio-temporal data management and mobility issues,
even if they are also clearly related to pervasive computing.
Nevertheless, they do not enter in the main stream of our
contribution and will not be developed further.

6.1 Pervasive Environments
With the development of autonomous devices and location-

dependent functionalities, information systems tend to be-
come what Mark Weiser [22] called ubiquitous systems, or
pervasive systems. Pervasive systems are based on an ab-
straction of the distributed functionalities of heterogeneous
devices in order to automate some of the possible interac-
tions, e.g., dynamic discovery of devices ([6, 9]), data and
application sharing among devices ([13, 15]).

Distributed functionalities can be represented as remote
services: dynamic service discovery and remote invocation
techniques [26] should be used to handle network issues, like
UPnP [21], Web Services, etc. As devices may be sensors or
actuators [9], services may represent some interactions with
the physical environment, like taking a photo from a camera
or displaying a picture on a screen. These actions bridge
the gap between the computing environment and the user
environment, and can be managed by the pervasive system.

As far as we know, bringing data management principles
to pervasive systems as we do, i.e. focusing on service inte-
gration issues as well as on data stream issues, has received
only minor considerations in the relatively new pervasive
system area. Following some of these principles, the PEMS
architecture allows to use distributed functionalities with-
out worrying about neither their implementation, nor their
invocation.

6.2 Query Processing over Non-Conventional
Data Sources

A great number of works have been realized in continuous
query definition and processing. Most of works (e.g., [23,
7, 12, 25]) propose an extension of SQL in order to work
with both relational databases and data streams, where data
streams are represented using relation schemas. Other works
tackle continuous querying over distributed XML data sets
(e.g., [8]), or use a box representation of query operators [2].

In [24], continuous queries can implicitly interact with de-
vices through an external function call. However, the rela-
tionship between functions and devices, as well as the op-
timization criteria, are not explicit and cannot be declara-
tively defined. In [17], the cleaning process for data retrieved
from physical sensors is defined in a declarative way by a
pipeline of continuous queries. It is however only a part of
pervasive applications and does not involve services. In [3],
the Global Sensor Network allows to define virtual sensors
abstracting implementation details, and provides continuous
query processing facilities over distributed data streams.

To the best of our knowledge, query processing techniques
over non-conventional data have had few impacts on perva-
sive application developments involving dynamic relations,

data streams and services. Through a homogeneous repre-
sentation for non-conventional data sources, we claim that
pervasive application development is indeed possible at the
declarative level using service-oriented continuous queries.

6.3 Data Integration and Dataspaces
Data integration has been a long standing theme of re-

search over the past 30 years. Now, the broader notion of
dataspaces [11, 16] has appeared to provide base functional-
ity over all data sources and applications, regardless of how
integrated they are and without having a full control over
the underlying data [11].

In the setting of data integration, the notion of binding
patterns appears to be quite interesting since they allow to
model a restricted access pattern to a relational data source
as a specification of “which attributes of a relation must be
given values when accessing a set of tuples” [10]. A relation
with binding patterns can represent an external data source
with limited access patterns [10], or an interface to an in-
finite data source, e.g., a web site search engine [14]. In a
more general way, it can represent a data service, e.g., web
services providing data sets, as a virtual relational table [20].

The SQL standard itself supports some forms of access
to external functionalities through User-Defined Functions
(UDF). UDFs can be scalar functions (returning a single
value) or table functions (returning a relation). UDFs are
defined in SQL or in another programming language (e.g.,
C, Java), enabling to access to any external resources. Ta-
ble functions are a way to implement the notion of virtual
tables, however limited to having only one binding pat-
tern determined by the function input parameters. UDFs
are also tagged as deterministic or non-deterministic: query
rewriting may not change the number of invocations for non-
deterministic UDFs.

In a similar way, the ActiveXML language [1] allows to de-
fine XML documents containing extensional data, i.e. data
that are present in the document, and intensional data, rep-
resenting service calls that provide data when needed. In-
tensional data is close to the notion of virtual tables and
binding patterns. ActiveXML is also a “framework for dis-
tributed XML data management” [5] and defines an algebra
to model operations over ActiveXML documents distributed
among peers, that enables query optimization.

With our proposition, we aim at contributing in the area
of dataspaces through a unified view of data and service
spaces mandatory in pervasive environments. Binding pat-
terns play a key role and have been promoted at the schema
level to describe distributed functionalities of the environ-
ment. Data relations can be extended with virtual attributes,
that represent a finer grain of interaction than virtual tables.
The declaration of those functionalities are totally decoupled
from their implementations that are represented by exter-
nal services, unlike with standard SQL where specific UDFs
should be developed. In comparison with ActiveXML, we
do not focus on distributed data management, but on com-
bining data and distributed functionalities in order to build
distributed applications for dynamic environments through
declarative queries. Their data model [5] is based on trees,
while our data model is simpler since based on an extension
of the relational model.

7. CONCLUSION
Pervasive systems intend to take advantage of the evolving

user environment so as to provide applications adapted to
the environment resources. As far as we know, bridging the
gap between data management and pervasive applications
has not been fully addressed yet. A clear understanding
of the interplays between relational data, data streams and
services is still lacking and is the major bottleneck toward
the declarative definition of pervasive applications.

We have presented a framework that provides a homoge-
neous view on all available conventional and non-conventional
data sources, i.e. databases, data streams and services. The
integration of services into relations allows to use a differ-
ent service for each tuple (e.g., a different messaging service
for each contact in a contact list) through the key notions
of prototype, service reference, virtual attribute and bind-
ing pattern. A formal model of such extended relations has
been provided on top of which the Service-enabled algebra
(Serena algebra) has been proposed. The issue of side ef-
fect of service invocations has also been considered to define
query equivalence and rewriting rules. A prototype of a Per-
vasive Environment Management System has been devised,
demonstrating the feasibility of our approach.

Future works in this project concern query optimization
techniques for service-oriented continuous queries, including
a formal definition of cost models dedicated to pervasive en-
vironments. We are also studying the equivalence of the Ser-
ena algebra with some logic-based query languages in order
to define a corresponding calculus, and we are investigating a
new notion of streaming binding pattern to homogeneously
integrate in our framework streams provided by services.
Furthermore, some existing database extensions, e.g., spa-
tial operators, could also be integrated into the declarative
definition of pervasive applications in order to extend their
expressiveness.

We also aim at developing a benchmark for pervasive en-
vironments to evaluate the performance of “hybrid queries”
involving data and services with objective indicators. This
benchmark is part of a French National Research Agency
(ANR) project called Optimacs, started in December 2008.

8. REFERENCES
[1] ActiveXML. http://www.activexml.net/.

[2] D. J. Abadi et al. The Design of the Borealis Stream
Processing Engine. In Proceedings of CIDR’05, 2005.

[3] K. Aberer, M. Hauswirth, and A. Salehi.
Infrastructure for data processing in large-scale
interconnected sensor networks. In Proceedings of
MDM2007, pages 198–205. IEEE, 2007.

[4] S. Abiteboul, O. Benjelloun, and T. Milo. Positive
Active XML. In Proceedings of PODS’04, pages 35–45,
2004.

[5] S. Abiteboul, I. Manolescu, and E. Taropa. A
Framework for Distributed XML Data Management.
In EDBT, volume 3896 of Lecture Notes in Computer
Science, pages 1049–1058. Springer, 2006.

[6] B. Brumitt et al. EasyLiving: Technologies for
intelligent environments. In Proceedings of HUC 2000,
pages 12–29, 2000.

[7] S. Chandrasekaran et al. TelegraphCQ: Continuous
Dataflow Processing for an Uncertain World. In
Proceedings of CIDR’03, 2003.

[8] J. Chen, D. J. DeWitt, F. Tian, and Y. Wang.
NiagaraCQ: A Scalable Continuous Query System for
Internet Databases. In Proceedings of SIGMOD’00,
pages 379–390, 2000.

[9] D. Estrin et al. Connecting the Physical World with
Pervasive Networks. IEEE Pervasive Computing,
1(1):59–69, 2002.

[10] D. Florescu, A. Levy, I. Manolescu, and D. Suciu.
Query Optimization in the Presence of Limited Access
Patterns. In Proceedings of SIGMOD’99, pages
311–322, 1999.

[11] M. Franklin, A. Halevy, and D. Maier. From
Databases to Dataspaces: a new Abstraction for
Information Management. SIGMOD Record,
34(4):27–33, 2005.

[12] M. J. Franklin et al. Design Considerations for High
Fan-In Systems: The HiFi Approach. In Proceedings of
CIDR’05, 2005.

[13] D. Garlan et al. Project Aura: Toward
Distraction-Free Pervasive Computing. IEEE
Pervasive Computing, 1(2):22–31, 2002.

[14] R. Goldman and J. Widom. WSQ/DSQ: A Practical
Approach for Combined Querying of Databases and
the Web. In Proceedings of SIGMOD’00, pages
285–296, 2000.

[15] R. Grimm et al. System Support for Pervasive
Applications. ACM Transactions on Computer
Systems, 22(4):421–486, 2004.

[16] T. Imielinski and B. Nath. Wireless graffiti: data, data
everywhere. In Proceedings of VLDB’02, pages 9–19,
2002.

[17] S. R. Jeffery, G. Alonso, M. J. Franklin, W. Hong, and
J. Widom. Declarative support for sensor data
cleaning. In Pervasive, pages 83–100, 2006.

[18] M. Levene and G. Loizou. A Guided Tour of Relational
Databases and Beyond. Springer-Verlag, 1999.

[19] OSGi Alliance. http://www.osgi.org/.

[20] U. Srivastava, K. Munagala, J. Widom, and
R. Motwani. Query Optimization over Web Services.
In Proceedings of VLDB’06, pages 355–366, 2006.

[21] UPnP Forum. http://www.upnp.org/.

[22] M. Weiser. The Computer for the 21st Century.
Scientific American, 265(3):94–104, September 1991.

[23] J. Widom et al. STREAM: The Stanford Stream Data
Manager. IEEE Data Engineering Bulletin,
26(1):19–26, 2003.

[24] W. Xue and Q. Luo. Action-Oriented Query
Processing for Pervasive Computing. In Proceedings of
CIDR’05, 2005.

[25] Y. Yao and J. Gehrke. Query Processing in Sensor
Networks. In Proceedings of CIDR’03, 2003.

[26] F. Zhu, M. Mutka, and L. Ni. Service Discovery in
Pervasive Computing Environments. IEEE Pervasive
Computing, 4(4):81–90, 2005.

