N
N

N

A clique-covering sufficient condition for hamiltonicity of

HAL

open science

graphs
Alain Bretto, Thierry Vallée

» To cite this version:

Alain Bretto, Thierry Vallée. A clique-covering sufficient condition for hamiltonicity of graphs. Infor-
mation Processing Letters, 2009, 109 (20), pp.1156-1160. 10.1016/j.ipl.2009.07.015 . hal-01010265

HAL Id: hal-01010265
https://hal.science/hal-01010265

Submitted on 19 Jun 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-01010265
https://hal.archives-ouvertes.fr

A clique-covering sufficient condition for hamiltonicity of graphs

Alain Bretto ®*, Thierry ValléeP

@ Université de Caen, GREYC-CNRS UMR 6072, Bd Maréchal Juin, F14032 Caen Cedex, France
b Mathematical Sciences Dept., Georgia Southern University, Statesboro, 30458 GA, United States

ABSTRACT

A graph is hamiltonian if it contains a cycle which goes through all vertices exactly
once. Determining if a graph is hamiltonian is known as NP-complete problem and no
satisfactory characterization for hamiltonian graphs has been found. There are several
necessary conditions for hamiltonicity and since the seminal work of Dirac in 1952,
many sufficient conditions were found. These conditions are usually expressed in terms of
node degree, connectivity, density, toughness, independent sets, regularity and forbidden
subgraphs. In this article we give an extended clique decomposition condition ensuring the
hamiltonicity of a large class of graphs. Then we discuss briefly the possibility of broader
extensions as well as algorithmic issues.

1. Introduction and preliminaries

Since the results of Dirac in [3], many sufficient condi-
tions for hamiltonicity of graphs have been found, and a
huge literature exists on the subject surveyed for instance
in [6,2,1,4]. The hamiltonicity problem and related topics
are still topical and the search continues for sufficient con-
ditions [7].

Most of the existing sufficient conditions for hamil-
tonicity are expressed in terms of node degree, connec-
tivity, density, toughness, independent sets, regularity and
forbidden subgraphs of the graph.

In addition to a condition expressed in terms of 2-con-
nectivity and forbidden subgraphs, S. Goodman and S. He-
detniemi introduced in [5] two other conditions based only
on the existence of what is called here a clique-covering
of the graph. A clique-covering is a decomposition of the
graph into complete subgraphs (cliques). The two suffi-
cient conditions are expressed in terms of the existence of
clique-coverings satisfying two different sets of additional
properties.

* Corresponding author.
E-mail addresses: alain.bretto@info.unicaen.fr (A. Bretto),
vallee_th@yahoo.fr (T. Vallée).

In this paper we focus our attention on the more inter-
esting of the two conditions. We generalize this condition
to prove the hamiltonicity of a broader class of graphs. In
the conclusion we discuss the possibility of broader exten-
sions as well as the possibility to design an efficient algo-
rithm, able to find a clique-covering satisfying the above
mentioned properties iff such a covering exists.

In the sequel, we use the usual set theory notations. In
particular |X| denotes the size or cardinal of X, and X \ Y
the complement of the set Y in X. We also define P(X) as
the set of all pairs {x, y} of elements of X such that x and
y are distinct.

We always suppose a graph to be undirected, simple
(no loop) and finite. Thus we define a graph as a pair
(V,E), where V is a set of vertices and E CP(V) is a set
of edges. Despite the fact that we are interested in hamil-
tonicity of simple graphs, our main result is proved via
a construction involving multigraphs (cf. Definition 6 and
Theorem 1). We use the following formalization of multi-
graphs.

Definition 1. A multigraph is a triplet G = (V, E, ¢) where:

e V is the set of vertices of G.
o E is the set of edges of G.



e £:E— P(V) is a function which associates every e €
E to a pair {x, y} of distinct vertices. The vertices x, y
are said incident to e.

It is sometimes useful to denote by V(G) (resp. E(G))
the set of vertices (resp. set of edges) of a graph or multi-
graph G. A walk in a graph or multigraph is an alternative
sequence of vertices and edges such that the vertices on
the left and right of the edge are incident to the edge and
distinct. Notice that a walk may include several times the
same vertex or edge. For a graph G, we write x —¢ y to
express that {x, y} € E(G) or simply x — y if there is no
ambiguity on G. Similarly, we write x =Xp — X1 — -+- —
X, = y to denote a walk of length k in the graph. A walk is
a closed walk if moreover x =y. A closed walk is a cycle if
it contains no repetition of vertex except x =y.

A path is a walk containing no repetition of vertex (and
so no repetition of edge). A path (resp. cycle) is hamil-
ton if it contains every vertex of the graph or multigraph.
A graph or multigraph is hamiltonian if it contains a hamil-
ton cycle. It is eulerian if it contains a cycle containing
each edge exactly once.

A graph or multigraph is connected if all pairs of dis-
tinct vertices x, y are connected by a walk, and complete
if every such a pair is connected by an edge.

Note that, according to the definitions above, a vertex
is considered as a cycle of length 0, and thus the single-
ton graph ({x}, ) and the singleton multigraph ({x}, ¥, ) are
connected, complete, eulerian and hamiltonian.

We write H C G to express that H is a subgraph of G.
The subgraph induced by a set of vertices of G is defined
as usual. The (open) neighborhood is defined by:

N ={y: {x,y} € E}
and the closed neighborhood by:

N[x] = {x} UN(x).

A clique C of a graph G is a set C C V(G) such that the
subgraph induced by C is complete. Notice that a clique is
not necessarily maximal. By a slight abuse, we sometimes
identify a clique C with its induced graph. Notice that N(x)
is a clique iff N[x] is a maximal one.

We introduce now the notion of neighborhood equiva-
lence among nodes:

Definition 2. Let G be a graph, we define the equivalence
relation = on the vertices of G by, for all x, y € V(G):

x=y <  G[x]=Gly]l.

We denote by x the equivalence class of x modulo =, and
we say that x, y are neighborhood equivalent if x = y.

Notice that x forms a clique. Moreover if x belongs to a
clique C and y € x then every z € C is adjacent to y (since
G[x] = G[y]). Consequently we have:

Fact 1. For every graph G and x € C C V(G): C is a clique iff
C Ux is a clique.

A vertex x of a graph G is simplicial if N(x) is a clique
or equivalently if N[x] is a maximal clique of G. We denote
by S(G) the set of simplicial vertices of G and by NS(G)
the set of non-simplicial vertices of G.

We can characterize neighborhood equivalence among
simplicial vertices as follows.

Proposition 1. For all x € S(G) and y € V(G), we have:

yex <& yeN[x]NS(G).

Proof. If y € Xx we have N[x] = N[y] and N[x] being a max-
imal clique clearly y € N[x]NS(G). Conversely, assume that
y € N[x] N S(G). Because y € N[x], y is adjacent to x. Be-
cause N[y] is a clique for every z € N[y], z is adjacent to
X, so N[y] € N[x]. Because y € S(G), N[y] = N[x] (x being
simplicial). O

Lemma 1. Let G be a connected graph. The following statements
are equivalent:

1. G is complete.
2. V(G) =S5(G).
3. There exists x € S(G) such that N[x] C S(G).

Proof. The facts 1 = 2 and 2 = 3 are trivial. Thus it re-
mains to show 3 = 1.

Suppose that 3 is true. From Proposition 1 for all y €
N[x] we have N[y] = N[x], so G being a connected graph
we have G =N[x]. O

2. Clique-coverings of graphs

We introduce here the notion of a eulerian clique-
covering of a graph. The next section will show that a con-
nected graph “coverable” with an eulerian clique-covering
is hamiltonian. We first define the notion of clique-covering
of a graph.

Definition 3. A clique-covering (c-covering) of a graph G is
a set C of cliques of G such that:

1.CC(C=C=C,forall C,C"eC.

2. Every edge of G is contained in at least one clique
of C.

3. Every vertex of G is contained in at least one clique.

Notice that by the third condition of the definition {{x}}
is a c-covering of the singleton graph G = ({x}, ¥), it is also
clearly the unique one. Moreover, if G is connected and of
order at least 2 then every vertex is incident to at least one
edge. Thus, in that case, the first and second conditions of
the definition imply that every C € C is of order at least 2.
The following facts are elementary.

Fact 2. If C is a c-covering of the graph G then for all x € V (G)
and C € C:

1. xeC= CC N[x],
2. Nx]=J{CeC: xeC}.
3. IN[x]| <2 = N[x] €C.



Definition 4. Let C be a c-covering of the graph G and x
be a vertex of G:

e x is C-isolated iff it belongs to a unique clique of C.
e x is a C-junction iff it belongs to at least two cliques
of C.

We denote by I(C) (resp. J(C)) the set of C-isolated ver-
tices of G (resp. C-junctions of G). We define also J(C) =
J(C)NC, for every C eC.

Obviously I(C) and J(C) are disjoint and since every
vertex is contained in at least one clique of C, I(C) and
J(C) form a partition of V(G). Note also that if the vertex
x is isolated in G (that is, if {x} is a connected component
of G) then it is C-isolated. The converse is not true in gen-
eral.

Propeosition 2. If C is a c-covering of G, for every x € V (G), we
have N[x] € C iff x is C-isolated.

Proof. Assume that N[x] € C. If x€ C € C then C C N[x] by
Fact 2.1, and so C = N[x] by first condition of Definition 3.
Thus x is C-isolated.

Assume now that x belongs to a unique clique C € C.
We have C C N[x], and if we suppose y € N[x]\C, the edge
{x, y} is then covered by a clique C’ € C different from C,
which is contradictory. O

Corollary 1. I(C) € S(G) and NS(G) C J(C), for every c-cov-
ering of G.

Proof. If x is C-isolated, we have N[x] € C by Proposi-
tion 2 and thus N[x] is complete, that is, x € S(G). If now
x € NS(G), there exist y,z € N[x] which are not adjacent
and thus the edges {x, y} and {x, z} belong to two differ-
ent cliques of C and thus x € J(C). O

A natural question arising from Corollary 1 concerns
the converse inclusions: Is S(G) C I(C) and J(C) S NS(G)?
The answer to this question is no in general, as it is shown
in the example below where the c-covering C, does not
verify S(G) C I(C).

Example 1. The graph G in Fig. 1 contains two simplicial
vertices a,d which are both Cp-isolated, nevertheless d is
not Cp-isolated. See also Fig. 2.

It is easy to check that both the c-covering C; and C;
above are eulerian in the sense given below. It will be
shown in the next section (Corollary 2) that both the exis-
tence of C; and the existence of C, can be used to prove
the hamiltonicity of the graph G.

Definition 5 (Eulerian c-covering). A c-covering C of a graph
G is:

1. pairwise-joint if each vertex is contained in no more
than two cliques.

Y »

. K

d | G

A c-covering C; A c-covering Co

Fig. 1. This graph contains two simplicial vertices a,d which are both
Cq-isolated, but d is not Cy-isolated.

C b c
al .
e :
G/Cl G/CQ
o e
L(G/Cy) TG/

Fig. 2. The graph of Example 1 with two of its coverings Cq, Ca, the in-
duced multigraphs, and the line graphs of these induced multigraphs.

2. evenly-joint if each clique contains an even number of
C-junctions.
3. eulerian if it is pairwise-joint and evenly-joint.

Lemma 2. If C = (Cy)ycy is a pairwise-joint c-covering of a
graph G, then for every vertex x the following statements are
equivalent:

1. N[x] ¢C.

2.x€ J(C).

3. There exists a unique pair of cliques C, C" € C such that x €
CNC' and N[x]=CUC'.

Proof. That 1 < 2 is immediate by Proposition 2, and that
3 = 2 is immediate by definition of J(C). Now, if x € J(C),
there exists at least two distinct C,C’ € C such that x €
C N C'. The uniqueness of C,C’ is then immediate since C
is supposed pairwise-joint and by Fact 2.2 we have N[x] =
cuc. o

We recall that J(C) is the set of C-junctions of C € C,
where C is a c-covering. Clearly, J(C) = J{CNC": C'eC,
C’ # C}. Moreover, when C is pairwise-joint the following
lemma clearly holds. Note that the lemma is not necessary
here, it is nevertheless interesting to mention it.



Lemma 3. Let C be a pairwise-joint c-covering of a graph G.
For every C € C, the family {C N C'": C' € C, C' # C} forms a
partition of J(C) and so:

J©Ol= > 1cnc'l.

C’eC\{C}
3. Eulerian c-covering and hamiltonicity

A graph G is eulerian-coverable if there exists an eule-
rian c-covering of G. In this section, we show that every
eulerian coverable connected graph is hamiltonian.

Firstly, we associate to every graph G and every
pairwise-joint clique covering C of G a multigraph G/C.
Secondly, we prove in Theorem 1 that if G/C is eulerian
then G is hamiltonian.

Definition 6. Let G be a graph and C a pairwise-joint c-
covering of G. The multigraph G/C is defined by:

1. V(G/C) =C.

2. E(G/C) = J(C).

3.e(x) ={C,C'}iff xeCNC, for all C,C' eC and x €
J(C).

Notice that, since C is pairwise-joint, every x € J(C) is
contained in a unique pair of cliques C, C’ (Lemma 2). Thus
G/C is well-defined as a multigraph since each edge is as-
sociated by & to a unique pair of vertices (cf. Definition 1).

Lemma 4. For every pairwise-joint c-covering C of G: G is con-
nected iff G/C is.

Proof. Suppose first that G is connected and let C, C’ be
two distinct cliques of C. Since neither C € C’ nor C' C C,
there exists x e C\ €' and y € C'\ C, and there exists a
walk x =9 — ---—x, =y in G. It is then straightforward
to build a walk in G/C connecting C and C’, using the fact
that C covers all the edges of G.

If we suppose now that G is not connected then C is
clearly the disjoint union of clique-coverings of the con-
nected components of G. Moreover, the intersection of
two cliques of two different connected components being
empty, it is obviously impossible to build a walk in G/C
between two such cliques. O

Theorem 1. Let G be a connected graph and C be a pairwise-
joint c-covering of G. The first two following statements are
equivalent and moreover they imply the third one.

1. G/C is eulerian.
2. | J(C)| is even, forevery C € C.
3. G is hamiltonian.

Proof. Note that G/C is connected by Lemma 4. Notice
now that for every C € C the degree of C in G/C is clearly
equal to the number of C-junctions of C. It is well known
that a multigraph is eulerian iff the degree of each vertex
is even. That proves 1 < 2. We prove now 1= 3.

1 = 3 Suppose G/C eulerian. If C contains a unique
clique C and thus G/C = ({C},®,¥), then G is complete
since V(G) = C, and so hamiltonian. Suppose now that C
contains at least two cliques and thus G/C contains at least
one edge. Let T = CoxoCy...CgxxCys1, Where Cyyq = Co,
be an eulerian cycle of G/C. By hypothesis, every edge of
G/C, that is, every vertex of J(C) appears exactly once
in T. For every i € {0,...,k}, we have x; € C; N Cj+1 by
definition of G/C and so x;, Xj+1 € Ci+1 (wWhere X1 is de-
fined as xg). Thus, since Ciy1 € C is a clique of G, it follows
that:

e There exists a hamilton path P;,; in the subgraph in-
duced by Cit1 N I(C) (defined as the empty path if
Ciy1 NI(C) =0).

® Xi—Xjt1.

e Xj — Pjyq1—Xxj41 is a path in Cjy1 and thus in G.

Hence W =Xxp — P1 — X1 — -+ — X} — Ppi1 — X1
is a closed walk in G. By eulerianity of T each of the
C-junctions Xxg, ..., X, appears exactly once in W except
for the endpoint xo = x;1. Moreover, since G/C is con-
nected, every vertex C € V(G/C) is incident to at least one
edge of G/C. Hence C appears at least once in T and is
among Cq,..., Cksq. Thus, every C-isolated vertex of G,
since it belongs to a clique C € C, appears at least once
in a path of the form P;;; of W. Nevertheless it may ap-
pear in several of these paths since they are built from
the vertices (cliques) of T which may be repeated in T.
Thus to obtain a hamilton cycle it is sufficient to remove
from W the possible repetitions of the C-isolated vertices.
It is easily done by replacing the path x; — Pj1q — Xj+1
by the shortcut x; — x;1.1 whenever there exists j <i such
that Cjy1 = Ciyq (j,i €{0,...,k}), that is, whenever the
C-isolated vertices of Ciyq are already contained in P
and so in Xxg— P{—---— Pj—x;. O

Corollary 2. If there exists an eulerian c-covering of the con-
nected graph G then G is hamiltonian.

We close this section by showing that the sufficient
condition for hamiltonicity of graphs expressed by Corol-
lary 2 is more general than the one given in [5]. First we
recall the latter.

Corollary 2a. (See [5].) If C is a set of cliques of a connected
graph G which forms a partition of the edges of G, such that ev-
ery vertex belongs to exactly two cliques, and such that every
clique contains an even number of vertices, then G is hamilto-
nian.

Lemma 5. If a set of cliques of a graph G satisfies the conditions
of Corollary 2a then it is an eulerian c-covering of G.

Proof. Let C be a set of cliques of G satisfying the condi-
tions of the corollary. Clearly, since C forms a partition of
E(G), every edge of G is covered by a clique of C, and
C C C’ implies C = C’ for all C,C’ € C. Since G is con-
nected, every vertex is incident to at least one edge as long
as |V(G)| > 1, and thus C covers V (G). Hence C is a c-cov-
ering of G. Now, since every vertex of G is contained in
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Fig. 3.

exactly two cliques, the c-covering C is pairwise-joint and
moreover every vertex of G is a C-junction. Thus for ev-
ery C € C the number of C-junctions is exactly the order
of C which is even by hypothesis. Thus C is an eulerian
c-covering. O

The graph G of Example 1, recalled in Fig. 3, is an in-
stance of a graph which can be proved hamiltonian using
Corollary 2 but not using Corollary 2a. Indeed, as already
mentioned, it can be proved hamiltonian using both the
eulerian c-coverings C; and C,. Nevertheless, in order to
cover the simplicial vertex a by exactly two cliques of a
set of cliques C, as required by Corollary 2a, we need both
{a,b} and {a,c} to be in C. The same reason gives {d,b}
and {d,c} in C. Hence the edge {b,c} must be covered
by some extra clique of C, and thus both b and c are in
three cliques, contradicting the condition “every vertex is
contained in exactly 2 cliques” of Corollary 2a. The result
generalizes easily to infinite classes of graphs. For instance,
every graph obtained by adding simplicial vertices to G
which are neighborhood-equivalent to the vertex a cannot
be proved hamiltonian by Corollary 2a but can be using
Corollary 2.

The second graph H of Fig. 3, despite its simplicity and
the fact that it has pairwise-joint c-coverings, for instance
{abec, dbec}, cannot be proved hamiltonian using the re-
sults above. Indeed, the reader can check easily that the
second condition of eulerian c-covering (Definition 5), said
the “evenly-joint” condition, is not filled by any of the
pairwise-joint c-coverings of H. Note that it could also
be shown using a general result (not stated here) which
implies in particular that {abec,dbec} is essentially the
unique pairwise-joint c-covering of H. We resume the dis-
cussion concerning this example in the conclusion below.

4. Conclusion and future works

In Definition 6, the fact that the c-covering C is
pairwise-joint ensures that G\C is a multigraph. Then, the
“evenly-joint” additional property of eulerian c-covering
ensures the eulerianity of G\C and thus the hamiltonic-
ity of G (cf. Theorem 1).

In Fig. 3 we give two hamiltonian graphs G and H. The
graph G can be proved hamiltonian using the sufficient
condition of Corollary 2 while, despite its similarity with
the first one, the graph H cannot, the reason being that
the “evenly-joint” condition of Definition 5 fails. In order
to obtain a provable hamiltonian graph H’ from H using
Corollary 2, it is sufficient to add or remove a node in the
intersection of the two cliques abec and dbec, that is, to
add or remove a vertex which is neighborhood-equivalent
to the vertex b. Obviously in both cases the graph H’ is
hamiltonian iff H is. Thus, a first direction for future re-
searches would be to try to generalize this remark, that
is, to find some general transformation of pairwise-joint
c-coverable graphs into eulerian c-coverable graphs, trans-
formation which preserves hamiltonicity of graphs. This
transformation may then be used to get a broader notion
of eulerian c-coverings in order to generalize Corollary 2.

A second direction of research concerns the design of
an efficient algorithm able to find an eulerian c-covering
of a graph iff such a c-covering exists. In [5], an efficient
algorithm able to find a c-covering having the properties
required by Corollary 2a is given. The soundness and com-
pleteness of this algorithm follow from a lemma stating
that every clique of order at least four is necessarily a
clique of such a c-covering. The lemma is not verified
by eulerian c-covering and thus, in many cases, the al-
gorithm answers “No” despite the existence of a eulerian
c-covering. Nevertheless, at least in the case where the
graph contains a simplicial vertex, it seems possible to de-
sign a new algorithm able to find an eulerian c-covering
iff it exists. The possibility to obtain an algorithm work-
ing for every graph, containing a simplicial vertex or not,
is currently under investigation.

Despite the apparent difference in nature between the
sufficient conditions for hamiltonicity described in this ar-
ticle and the more usual ones found in literature, it may
also be interesting to explore the possible links between
them.
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