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Effects of Climate Variations and Global Warming on the Durability of 

RC Structures Subjected to Carbonation 

Carbonation affects the performance, serviceability and safety of reinforced concrete 

(RC) structures when they are placed in environments with important CO2 

concentrations. Since the kinetics of carbonation depends on parameters that could 

be affected by climate change (temperature, atmospheric CO2 pressure and relative 

humidity), this study aims at quantifying the effect of climate change on the 

durability of RC structures subjected to carbonation risks. This work couples a 

carbonation finite element model with a comprehensive reliability approach to 

consider the uncertainties inherent to the deterioration process. The proposed 

methodology is applied to the probabilistic assessment of carbonation effects for 

several cities in France under various climate change scenarios. It was found that 

climate change and local relative humidity have a significant impact on corrosion 

initiation risks. 
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1. Introduction 

The performance, serviceability and safety of reinforced concrete (RC) structures are 

affected by corrosion-induced deterioration when they are placed in environments with 

important CO2 concentrations. Carbonation is a chemical evolution of the cementitious 

materials, induced by the reactive diffusion of CO2 in the porous media. Indeed, 

atmospheric CO2 reacts with cement hydrates, dissolves portlandite and forms calcite. The 

main consequence of this chemical reaction is a significant decrease of pH in the porous 

solution that induces corrosion of the reinforcing steel. The kinetics of this degradation 

depends on temperature, atmospheric CO2 pressure and relative humidity (RH), all 

parameters related with time and climate change. 

Natural and anthropogenic actions will increase environmental CO2 concentrations 

in the future and produce changes in temperature and humidity. For instance, following the 

current patterns, it is expected an increase of CO2 concentration from 379 ppm in 2005 

over 1000 ppm by the year 2100 (IPCC, 2007). Therefore, these new environmental 

conditions will modify the kinematics of carbonation by increasing or reducing the 

consequences of corrosion-induced damage. Besides climate change, there are other 

uncertainties related to the carbonation process. Consequently, probabilistic approaches are 

suitable tools for assessing structural risk and reliability for this problem. 

Various studies have focused on the effect of climate change on the durability of 

corroded RC structures. Bastidas-Arteaga et al. (2010) proposed a stochastic approach to 

study the influence of global warming on chloride ingress for RC structures. They found 

that chloride ingress could induce reductions of the corrosion initiation stage varying from 



2% to 18%. Concerning corrosion propagation until failure, Bastidas-Arteaga et al. (2013) 

found that global warming could reduce the time to failure by up to 31% for RC structures 

subject to chloride ingress. Recent work also focused on the assessment of climate change 

on the durability of concrete structures in specific locations. Stewart et al. (2011) found 

that the temporal and spatial effects of a changing climate can increase current predictions 

of carbonation-induced damage risks by more than 16% which means that one in six 

structures will experience additional and costly corrosion damage by 2100 in Australia and 

presumably elsewhere. Wang et al. (2012) studied the impact of climatic change on 

corrosion-induced damage in Australia. They proposed a probabilistic approach to assess 

corrosion damage taking into account the influence of climate change on areas 

characterised by different geographical conditions. Talukdar et al. (2012) estimated the 

effects of climate change on carbonation in Canadian cities (Toronto and Vancouver). 

They found potential increases in carbonation depths over 100 years of approximately 

45%. However, this work did not consider the uncertainties related to climate, materials 

and models. 

This study uses a probabilistic approach to compare and quantify the effect of 

different climate change scenarios on the structural safety of a RC structure exposed to a 

risk of corrosion induced by the cement paste carbonation. In comparison with previous 

studies, this paper integrated a relevant carbonation finite element model that takes into 

account all these climate evolutions (Section 3). Probabilistic assessment using this finite 

element model requires a significant computational effort. Therefore, Section 4 presents 

the adopted reliability approach that is used in this work. Finally, Section 5 presents an 

application to the assessment of climate change effects to RC structures placed in various 

cities in France. 

2. Climate Change Effects 

2.1. Increase of carbon dioxide emissions 

Following the current patterns, studies have estimated that environmental CO2 

concentration could increase from 379 ppm in 2005 over 1000 ppm by the year 2100 

(IPCC, 2007). Consequently, the long-term management of RC structures should consider 

the effect of atmospheric CO2 concentration change and global warming. The increase of 

atmospheric CO2 concentration is difficult to estimate because it depends on several socio-

technical and political factors. These factors have been considered by the 

Intergovernmental Panel on Climate Change (IPCC, 2007) that defined four scenarios 

families of global warming (i.e., A1, A2, B1 and B2). These scenarios integrate different 

assumptions in terms of population growth, economical development, transfer of clean 

technologies, etc. The A1 scenario describes a future world of very rapid economic 

growth, global population that peaks in mid-century and declines thereafter, and the rapid 

introduction of new and more efficient technologies. This scenario family is divided into 

three groups distinguished by different technological emphasis: fossil-intensive (A1FI), 

non-fossil energy sources (A1T) or a balance across all sources (A1B). The A2 scenario 

describes a very heterogeneous world with continuously increasing population. The 



economic development is primarily regionally oriented and technological change more 

fragmented and slower. The B1 scenario is similar to the A1 scenario respecting to 

population growth, but with rapid change in economic structures toward a service and 

information economy, with reductions in material intensity and the introduction of clean 

and resource-efficient technologies. The B2 scenario describes a world in which the 

emphasis is on local solutions to economic, social and environmental sustainability. The 

population growth pattern is similar to the scenario A2 but with a lower rate. It also 

includes more diverse technological solutions. Figure 1 presents a projection from 2000 of 

environmental CO2 concentrations the A2, A1B, and B1 global warming scenarios. These 

scenarios were selected in this study because they represent pessimistic, medium and 

optimistic climate change effects on climate, respectively (section 2.2). These values were 

computed using the MAGICC software (Model for Assessment of Greenhouse-gas 

Induced Climate Change) (Wigley et al., 1996). Every scenario includes 3 versions for the 

CO2 emissions: a lower one, a medium one and a higher one. For this study, it has been 

decided to take into account only the medium one (assessing the higher the CO2 pressure, 

the faster the carbonation). Taking into account the description of the scenarios presented 

previously, the highest projections for CO2 concentration for 2100 correspond to the A2 

scenario. 

 

Figure 1. CO2 emissions for the studied scenarios 

 

2.2. Effects of Climate Change on Temperature and Relative Humidity 

The effect of climate change on weather will change depending on the geographical and 

meteorological characteristics of the studied location. The impact of climate change on the 

future weather of the selected locations was estimated by using data computed by the 

French general circulation model SCRATCH-ARPEGE-V4-RETIC (Déqué et al., 1994). 

This model was selected because it is able to account for climate projections at a regional 

scale with a 8 km grid. For instance, Figure 2 presents the yearly projections of 

temperature and RH for the city of Nantes and the selected climate change scenarios. It is 

noted that climate change projections announce temperature increase and RH decrease for 

all scenarios. The most important changes in temperature and RH are related to the larger 

emissions scenarios described in previous section. Concerning consequences on climate 
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change, it is possible to define A2 as a pessimistic scenario, A1B as a medium impact 

scenario, and B1 as an optimistic scenario. 

  

Figure 2. Temperature and RH projections for Nantes  

3. Carbonation Model  

This section presents the model used herein for describing the coupled drying and 

carbonation of concrete, which is detailed in (de Larrard et al., 2013a). This is a simplified 

version of the model proposed in (Bary and Sellier, 2004), that assumes that the main 

phenomena involved in the carbonation are the water migration through the connected 

porosity, and the diffusion of carbon dioxide in the gaseous phase and its subsequent 

interactions with the hydrated phases initially present to produce calcium carbonate 

(calcite). Accordingly, it is governed by two coupled mass conservation equations for 

water (eq. (1)) and carbon dioxide in gas phase (eq. (2)):  
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Eq. (1) implicitly assumes that the main transport process for moisture results from 

gradients of partial pressure of water in the liquid phase 
 
P

l
 (permeation), i.e. the migration 

of vapour in gas phase is neglected (Mainguy et al., 2001; Bary and Sellier, 2004). 

Moreover, the pressure of the gas phase is neglected with respect to the liquid phase, such 

that 
 
P

c
≈ −P

l
, where 

 
P

c
 is the capillary pressure. Eq. (1) is also driven by 
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desorption isotherm that accounts for the relationships between the saturation degree 
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 (van Genuchten, 1980): 
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where �! and m are calibration parameters. Other parameters involved in eq. (1) are: � �  
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is the intrinsic permeability coefficient that depends on the initial porosity φ  and the initial 

intrinsic permeability 
  
K

0
 (van Genuchten, 1980); 

 
ρ

l
 and η  are the density and dynamic 

viscosity of water, respectively; 
 
k

r
S

r
( )  is the relative permeability for liquid that depends 

on the saturation degree 
 
S

r
 (van Genuchten, 1980); and 

  
W

H
2
O

 is the rate of water 

formation. 

Eq. (2) is driven by the partial pressure of CO2 in the gaseous phase denoted as 
 
P

c
. 

  
f φ,S

r( )  and 
 
D

c
 are the reduction factor (Millington, 1959) and the diffusion coefficient 

of CO2 in gas phase, respectively, such that their product can be considered as the effective 

diffusion coefficient of CO2 through the porous material. and 
  
W

CO
2

 is the rate of CO2 

dissolution. The coupling between eqs. (1) and (2) appears through (i) the saturation degree 

 
S

r
, and (ii) the rates of water formation and carbon dioxide dissolution. These rates, 
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and 
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W  respectively, derive from the molar formation rate of calcite (
  
N

cal
, eq. (4)), and 

the molar dissolution rate of portlandite ( , eq. (5)) and of other hydrates (
  
N

CSH
, eq. 

(6)), mainly C-S-H. We have indeed considered separately the dissolution - precipitation 

processes of portlandite and of the other hydrates, due to the higher reactivity of 

portlandite (Bary and Sellier 2004, Thiery et al. 2007).  
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where 
 
k

sl
S

r
( )  is a function introduced by Bazant and Najjar (1972) to describe at a 

macroscopic scale the influence of the saturation degree on the chemical reaction processes 

(i.e. the reduction of water in the pores leads to decrease the reactions); kH is the Henry 

constant for carbon dioxide; and the functions 
  
k

p
V

p( )  and 
  

k
CSH

C
cal

( )  are kinetic 

coefficients depending on the current volume fraction of portlandite 
p
V  and concentration 

of calcium in solid phase 
cal
C , respectively. It should be stressed that the simplified 

chemical reactions relative to the hydrate dissolution – calcite precipitation as expressed by 

these equations correspond to first order kinetic law with respect to the CO2 pressure. The 

kinetic coefficient for the calcite formation from portlandite 
  
k

p
 is assumed to evolve as 

proposed in Thiery et al. (2007), i.e. the calcite is supposed to form a growing layer 

surrounding the portlandite crystals during the dissolution process. The consequence is that 

this layer progressively reduces the corresponding chemical reactions kinetics, which are 

driven by the diffusive phenomena through the calcite layer. The kinetic coefficient for the 
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other hydrates is assumed to evolve linearly with the calcium concentration. 

The main simplification of this numerical model in comparison to the previous 

version (Bary and Sellier, 2004) concerns the calcium concentration calculation. In the 

present approach, no diffusion of calcium is considered and it is instead replaced by a local 

chemical equilibrium of calcium, meaning that the calcium dissolved from portlandite and 

the other hydrates is locally transformed into calcite. Formally, this is equivalent to 

considering that the whole calcite formation process (including CO2 diffusion) is faster 

than calcium migration through the solution. (de Larrard et al., 2013a) numerically 

demonstrated that this simplification has a very weak influence on the results in the case of 

accelerated carbonation. Further investigations, which are beyond the scope of this paper, 

would be necessary to analyse its effects in atmospheric carbonation conditions. 

The model presented above has been modified to take into account the influence of 

temperature variations on carbonation. The modifications of the carbonation model to take 

into account temperature effects are detailed in (de Larrard et al., 2013b), based upon the 

studies proposed in (de Larrard et al. 2012). These modifications include the influence on 

the following thermo-activated parameters/phenomena: (i) the CO2 diffusion coefficient, 

(ii) the dissolution of portlandite, as well as other hydrates, (iii) the constant of Henry (eq. 

5), and (iv) the sorption-desorption isotherms. The dependency of temperature of all these 

parameters/phenomena is modelled with Arrhenius functions. According to Yuan and 

Jiang (2011), we assume that temperature inside concrete is constant and equal to the 

atmospheric temperature. It is to be noted that the effective temperature of RC elements 

exposed to solar radiation may differ from the ambient temperature, but it is assumed that 

the time steps used for numerical simulations are large enough to work with a mean value 

for the temperature and the difference (as the kinetics for the heat transfer is important with 

regards to these for the aggressive species diffusion) involved by this assumption are 

neglected. This will be the subject for a future study, beyond the scope of the present 

paper.  

This carbonation model was implemented in the finite element code Cast3M 

(www-cast3m.cea.fr), and the equations solved successively and iteratively with a fully 

implicit numerical scheme. To conclude, the present model turns out to provide results in 

terms of calcite and portlandite concentration profiles very close to the ones obtained with 

a previous and more complex version of the model. Further, the phenolphthalein 

carbonation depths calculated in the case of an accelerated test appear in very good 

agreement with both experimental and numerical results (de Larrard et al. 2013a). We then 

consider that the model is relevant and suitable for the probabilistic simulations required to 

determine the reliability index of RC structures under the combined action of climate 

change and carbonation. 

4. Reliability Analysis 

A common practical measure of the structural reliability is the Hasofer-Lind’s reliability 

index denoted β (Hasofer and Lind, 1971). This index is defined in the standardised space 

of reduced normal and independent variables as the minimum distance from the origin to a 

point of the failure surface, the so-called design point P*. The determination of β is a 



constrained optimization problem (Hasofer and Lind, 1971; Rackwitz and Fiessler, 1979). 

The function to be minimised is the Euclidean distance ||u|| in the standardised space under 

the constraint G(u)=0, where G is the limit state function. If u* is the solution of the 

optimization with β=||OP*||=||u*||, then: 

 
  
u

*
= argmin u( )

G u( )=0
 (7) 

As the carbonation depth is not directly accessible numerically, the failure function 

for the carbonation model presented in this paper is based on the quantity of portlandite 

dissolved at the steel/concrete interface. The carbonation depth, as defined by the widely 

used phenolphthalein test, is simply estimated from the portlandite profile for a threshold 

value of dissolution. For instance, if the remaining volume fraction of portlandite is less 

than 33% of the initial value after dissolution at the cover depth, it is considered that 

corrosion starts. This threshold is among the values reported by Chang and Chen (2006), 

de Larrard et al. (2013a) and Park (2008). Thus, for this threshold value, the limit state 

function becomes:  

 
   
G u( )=V

p
u,c

t
u( ),t

fin( )−0.33×V
p

u,c
t

u( ),t
0( )  (8) 

where Vp is the volume fraction of portlandite, depending on ct, being the concrete cover 

thickness from the exposed face, and the time. Vp is calculated with the FE model 

presented above. tfin is the final time of the simulations (100 years), and t0 is the initial time 

(0 year). It is clear that the choice of the dissolved portlandite threshold will affect the 

assessment of reliability index. However, for a comparative study of climate change effects 

on various climates, the global trends will be the same for all the studied cases if the 

threshold is fixed.  

According to design codes, G(u) defines a limit-state function, which is expected to 

be continuous, at least in the neighbourhood of the design point P*. Most part of 

optimization algorithms used in structural reliability are useful for differentiable constraint 

functions. However, in the carbonation model considered in this study, the limit state 

function G is computed by using the finite element method. Therefore, the reliability index 

is computed according to the gradient projection algorithm in the standardised space 

(Duprat et al., 2010). The result of the reliability analysis could therefore provide β over 

the lifetime tfin. 

5. Numerical Example: Application to RC Structures Placed in France 

5.1. Problem description 

The objective of this example is to estimate the effects of several scenario of climate 

change on the carbonation of a RC structure placed in several cities in France. The material 

considered is a CEM I concrete with a water/cement ratio equal to 0.42 and 68% aggregate 

volume fraction. The material is initially set to saturation degree corresponding to the year 



before 2,000, and exposed to drying, carbonation and temperature variations according to 

climate change scenarios for each city. It is also supposed that carbonation takes place in 

one dimension. The material properties as well as the model parameters were chosen 

equivalent to those proposed in de Larrard et al. (2013a).  

Table 1 presents the five random variables considered in this study. Concrete cover 

corresponds to a global structural uncertainty related to a variability introduced by the 

building process. The initial porosity of the cement paste has a significant influence on the 

kinetics of the diffusion processes studied here, as it appears in every term of the 

governing equations. Two other variables concern the drying process: the intrinsic 

permeability K0 and the m parameter from the van Genuchten model, which governs the 

desorption isotherm. The last random variable is the diffusion coefficient for CO2. These 4 

last parameters are materials properties. Their “randomness” stands for the natural 

uncertainty and spatial variability of the materials properties, even for the same concrete 

formulation. These random variables follow independent normal distributions with a 

coefficient of variation (COV) equal to 5%. These means and COVs are among the values 

observed for a given concrete formulation (de Larrard et al., 2010, 2013a). It is to be noted 

that the choice of a normal distribution may not be the most relevant, even though it is in 

good accordance with the data observed in de Larrard et al. (2013). Besides, these values 

for the COVs are within the lower values experimentally observed. The COVs depend on 

the mix design and the implementation process of the concrete. However, this study aims 

mainly at comparing the different scenarios for different locations; therefore it is mostly 

important to keep the same hypothesis for all cases.  

Table 1. Statistical parameters of the random variables (de Larrard et al., 2010, 2013a) 

Variable Unit Distribution Mean COV 

concrete cover, ct  cm Normal 2 5% 

Initial porosity, φ0 % Normal 30 5% 

Intrinsic permeability, K0  m
2
 Normal 1.8×10

–22 
 5% 

Parameter, m (eq. (3))  Normal 0.532 5% 

Diffusion coefficient, 
c
D  m

2
/s Normal 1.9×10

-8
 5% 

 

This work focused on the study of the effects of climate change on specific 

locations in France: Marseille, Paris, Toulouse, Strasbourg, Clermont-Fd. and Nantes 

(Figure 3). These cities correspond to different types of climate: Nantes is close to the 

Atlantic Ocean in the Northern part of the country and has a temperate oceanic climate; 

Toulouse is in the South and its climate has continental, oceanic, and Mediterranean 

influences; Marseille in the South-East on the Mediterranean coast and has a 

Mediterranean climate rather hot and dry; Strasbourg in the North-East, close to the 

German frontier with a northern continental climate; Paris is more in the centre of the 

country with an intermediate continental climate; and Clermont-Fd. is in the mountains of 

‘Massif Central,’ in elevated south-central France and has rather a continental climate. 



 

Figure 3. Studied locations in France 

5.2. Results and Discussions 

As mentioned in Section 2, climate change effects on weather will be different for 

each location. By using the outputs of the French atmosphere model, Table 2 describes the 

mean temperature and RH for the first decade of the study (2001-2010). It is observed that 

Marseille is the most hot and dry city, Strasbourg is the most cold and Nantes is the most 

humid. Tables 3 and 4 summarise the effects of climate change by comparing the mean 

values of the first (2001-2010) and the last decade (2091-2011) for each climate change 

scenario. Figure 2 presented an example of evolution of T and RH for one of the studied 

locations, whereas Tables 3 and 4 summarizes these evolutions for the different cities and 

for various periods through the elevation of their mean values. Table 3 indicates that 

temperature could increase from 1.14 up to 3.63 ºC with respect to current values for all 

the locations over the period 2001-2100. It is noted that Strasbourg could be more affected 

by climate change. Table 4 shows that climate change could reduce the current RH by -

0.21% up to -4.92% with respect to current RH. The major changes could be expected for 

Paris. It is also confirmed that the A2 scenario is the most pessimistic with larger 

temperature increases and RH decreases. The B1 scenario predicts lower changes in 

temperature and RH and the A1B scenario is intermediate between A2 and B1.  

Table 2. Mean temperature and RH over the period 2001-2010 

Scenario Marseille Paris Toulouse Strasbourg Clermont-Fd. Nantes 

Temperature 14.75 13.04 14.08 11.53 11.66 12.76 

RH 68.78 74.22 77.36 77.02 75.44 80.65 

 

Table 3. Change in temperature (in ºC) over the period 2001-2100 

Scenario Marseille Paris Toulouse Strasbourg Clermont-Fd. Nantes 

A2 +3.04 +3.59 +3.23 +3.63 +3.43 +3.22 



A1B +2.21 +2.56 +2.29 +2.58 +2.39 +2.23 

B1 +1.16 +1.33 +1.18 +1.40 +1.28 +1.14 

 

Table 4. Change in relative humidity (in %) over the period 2001-2100 

Scenario Marseille Paris Toulouse Strasbourg Clermont-Fd. Nantes 

A2 -2.61 -4.92 -4.79 -4.64 -4.59 -3.96 

A1B -1.10 -3.44 -2.79 -2.87 -2.33 -2.75 

B1 -0.21 -1.14 -0.93 -1.11 -0.79 -0.59 

 

Table 5 presents the reliability indexes for these climate change scenarios over a 

period of 100 years. It is observed that there is a large variation of the reliability index 

from β < 0 to β > 8. Let us specify here that a reliability index negative refers to a situation 

where the probability of corrosion initiation is higher than 50%. This implies a larger 

difference in the safety issues for the extreme cases. This larger variability is due to the 

fact that the same material has been tested for cities with different climates (Table 2). For 

instance, the climate is very different in Nantes and Marseille. Since the exposure 

conditions are not the same, we should design a specific formulation for a concrete or 

select a different concrete cover adapted for each city. Considering the same concrete mix 

design for such different exposure conditions was required only for the needs of the 

comparison within the framework of this study. The reliability index for Marseille was β < 

0, indicating that the probability of corrosion initiation is very high in a period of 100 

years. The lower values of β for Marseille are explained, on the one hand, because the 

temperature is more important and carbonation is thermo-activated. On the other hand, RH 

varies between 65 and 70% by accelerating carbonation. These results could justify the 

implementation of an adaptation measure for this type of climate that could consist of 

increasing the concrete cover or the strength grade (Bastidas-Arteaga and Stewart, 2014).  

Table 5. Reliability indexes for the different climate change scenarios 

City A2 A1B B1 

Marseille < 0 < 0 < 0 

Paris 1.70 3.68 6.55 

Toulouse 2.09 3.90 6.91 

Strasbourg 7.51 > 8 > 8 

Clermont-Fd. > 8 > 8 > 8 

Nantes > 8 > 8 > 8 

 

On the opposite, corrosion initiation risks are very low for the cities of Strasbourg, 

Clermont-Fd., and Nantes. Even considering the effects of climate change, the lower 

temperatures and higher RH for these cities decelerate the carbonation process. For 

example, RH in Nantes remains between 80 and 85% which corresponds to a “retarding 

effect”, modelled by the function presented in eq. (2) (Millington, 1959): when RH is 

larger (RH > 80 %), there is not enough gaseous phase in the pores for the diffusion 



process to occur efficiently. This “natural safety” due to a higher RH appears mainly 

because only carbonation is studied here, but the opposite effect would appear if the 

corrosion process were considered instead (because its kinetics is driven by water 

saturation).  

Climate change could have important effects in structures placed in Paris and 

Toulouse. Although Paris has lower temperatures than southern cities, the value of RH for 

the decade 2001-2010 is within the optimal interval for accelerating carbonation (Table 2). 

Climate changes also accelerate carbonation in Paris by a significant decrease of RH 

(Table 3). Toulouse has a similar behaviour to that of Paris. On the one hand, the higher 

Temperature in Toulouse accelerates the carbonation effects; on the other hand, the larger 

RH reduces them. It is therefore possible to conclude that, for the studied locations, 

carbonation is more sensitive to RH than temperature. It is to be noted that, except for 

Marseille, the reliability index is higher to the 1.5 value given for a serviceability limit 

state in Eurocode 0. The reliability index calculated here only takes into account the 

carbonation process, and not the oxygen transfer for instance which is linked to the 

corrosion process kinetics. Therefore, no conclusion concerning actions required on the RC 

elements considered here can be drawn directly from these results.  

Concerning the effects of different climate change scenarios, it appears that the 

reliability index decreases when temperature increases and RH decreases. The impact of 

the scenario is significant for Paris and Toulouse. For instance in Paris, according to B1-

scenario, the reliability index is close to 6.6, which corresponds to a rather safe area, but 

according to A2-scenario, it is reduced to 1.7. This means that, under A2-scenario, the RC 

structures should be surveyed with care or adaptation measures implemented, because the 

risk of carbonation around the steel rebar (and corrosion initiation) is significant.  

This discussion will end with some comments about the coordinates of the design 

point in the standardised space. These coordinates are presented in Table 6 for the A1B 

(intermediate scenario). These coordinates indicate how many standard deviations separate 

the design point from the origin of the standardized space (being the mean value for each 

input parameter). A high value for a coordinate indicates that the design point is located in 

the distribution tail for the considered parameter. Therefore, it implies that this parameter 

has a significant influence on whether the mean point is in the security domain or in the 

failure area.  

Table 6. Design point coordinates in the standardised space for A1B scenario 

City ct φ0 K0  m 

Marseille 3.05 -1.58 -0.28 -1.62 -4.49 

Paris -3.09 0.72 0.38 0.91 1.58 

Toulouse -3.48 0.87 0.38 1.03 1.07 

Strasbourg -8.26 1.29 0.76 1.64 2.37 

Clermont-Fd. -10.68 1.46 0.69 1.73 2.55 

Nantes -14.29 1.26 0.63 1.53 1.81 

 

These results indicate that the most influent random variable on the reliability 

analysis is the concrete cover thickness. The other random variables have a similar order of 

c
D



importance. One can also discuss the physical sense of these coordinates. It is obvious that 

increasing cover thickness increases the structural reliability for it lengthens the path from 

the external environment to the steel rebar. A reduction of the coefficient of diffusion or 

the permeability, as well as the porosity, decreases the transfer ability of the porous 

material (either for CO2 or water, or even both). The last parameter is the m factor from the 

desorption isotherm (eq. (3)). A decrease of this parameter rises the desorption isotherm 

curve in a (RH; Sr) plot, meaning that for the same hydric state (governed by the water 

pressure, and therefore the relative humidity RH), the saturation degree Sr is higher. This 

reduces the gaseous phase in the pores, where the CO2 diffuses, and thus decelerates the 

carbonation process.  

6. Conclusions and perspectives 

In this paper, we proposed a probabilistic finite element model for carbonation under 

variable conditions of temperature, relative humidity and CO2 concentration. This model 

allows us to determine the reliability index of RC structures exposed to a risk of corrosion 

induced by the cement paste carbonation and climate change. We calculated this reliability 

index for six cities in France corresponding to different kinds of climate (oceanic, 

Mediterranean and continental) according to several scenarios of climatic changes.  

This study has shown that carbonation is very sensitive to local climate. There are 

locations with a large carbonation risk for which current environmental conditions could 

accelerate corrosion initiation (Marseille). A specific design improvement and/or 

adaptation strategy should be considered for these climates. There are also other climates 

for which carbonation risks are lower for an optimistic climate change scenario but could 

be significantly increased for the most pessimistic scenario (Paris and Toulouse). These 

results highlight the importance of considering the climate evolution in lifetime assessment 

to predict, as precisely as possible, carbonation risks. This study has also shown that in 

first approach, the most influent parameter on the structural safety remained the concrete 

cover thickness, more than materials properties (such as porosity, permeability, diffusion 

coefficient or desorption isotherm). This work appeals in-depth studies about a 

comprehensive characterization of the probability distributions of the random variables. 

Also the correlations between the materials properties involved in the degradation 

processes could be considered. Another last of improvement is the selection of a threshold 

defining the carbonation depth and its relationship with effective corrosion initiation.  
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