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Abstract—Game theory is a highly successful paradigm for
strategic decision making between multiple agents having con-
flicting objectives. Since a few years, games have been studied in
a computational perspective, raising new issues like complexity
of equilibria or succinctness of representation. Indeed, the
main representation for general games is still a n-dimensional
matrix of exponential size called normal form. In this paper,
we introduce the framework of Constraint Games to model
strategic interaction between players. A Constraint Game is
composed of a set of variables shared by all the players. Among
these variables, each player owns a set of decision variables she
can control and a Constraint Optimization Problem defining
her preferences. Since the preferences of a player depend on
the decisions taken by the other players, each player may try to
improve her position by choosing an assignment that optimizes
her preferences. Pure Nash equilibria are situations in which
no player may improve her preferences unilaterally. Constraint
Games are thus a generic tool to model general games and can
be exponentially more succinct than their normal form. We
show the practical utility of the framework by modelling a
few realistic problems and we propose an algorithm based on
tabu search to compute pure Nash equilibria in Constraint
games that outperforms the algorithms based on normal form.
In addition, Constraint Games raise some interesting research
issues that deserve further attention.

Keywords-Constraint Programming; Game Theory; Nash
Equilibria;

I. INTRODUCTION

The mathematical field of game theory [18] has been

set up to address problems of strategic decision making

when modeling interacting agents with conflicting objec-

tives. Game theory has an incredible success in description

of economic processes, but is also used in various other

domains such as biology, political sciences or philosophy.

One of the most fundamental problems in computational

game theory is undoubtedly the computation of a Nash

equilibrium [20], which models a situation where no agent

has an incentive to change his decision unilaterally. Other

issues are numerous and include simultaneous or sequential

interaction mode, complete or incomplete knowledge, deter-

minism, coalitions, repetition, etc.

A game is composed of a set of players, each of them

having a set of possible actions they can perform. A game

in normal form is represented as a payoff matrix stating for

each player the reward she will get for any combination of

actions of all players. NP-completeness [13] follows from

this representation or from a representation for which the

payoffs can be computed in polynomial time. Indeed, one

important problem of game theory is the compactness of

payoff representation because the matrix grows exponen-

tially with the number of players. Surprisingly, although

compactness can be achieved by switching to a combina-

torial setting for payoffs, there are few attempts to define

compact yet generic languages for the expression of games.

In this paper, we present Constraint Games which use

Constraint Satisfaction Problems (CSP) as basic tool for

expressing players preferences. In a constraint game, each

player controls a set of finite domain variables and their

Cartesian product defines a possible action space for the

player. In addition, each player owns a CSP on all players

variables which defines satisfaction. Given the partial state

defined by the other players moves, a player can choose

his variable assignment in order to satisfy his own CSP. A

global solution to such a problem is given by the notion

of pure Nash equilibrium, in which no player can improve

unilaterally his own satisfaction.

We propose four natural variants of this concept that differ

from whether optimization is allowed or not and from the

definition of the search space. In Constraint Satisfaction

Games (CSG), the payoff of a player is simply defined

as the satisfaction of a CSP. In Constraint Optimization

Games (COG), the objective of a player is to optimize some

value according to some constraints. We also introduce two

variants called CSG-HC and COG-HC (HC stands for hard

constraints) allowing to model problems in which all players

must respect some hard rules of the games besides theirs

preferences expressed by their goals.

Works on game theory are too numerous to be mentioned.

But Constraint Games inherit from different lines of work.

The closest framework is certainly the one of boolean

games [4], [14]. In boolean games, each player owns a SAT

problem which defines his satisfaction. However, unlike con-

straint games, there is no mean to specify inside the language

a non-boolean utility. This is why it is required to provide an

external way to define preferences. In [5], CP-nets [9] were

used to define players’ preferences. Another difference is

that we provide hard constraints that limit the equilibrium

condition to the satisfiable part of the search space. Games

with Hard Constraints (originally called Shared Constraints)



[23] are not related to constraint programming but to general

constrained optimization. No specific algorithm has been

proposed to solve boolean games.

Compact representation of utility is a challenge in compu-

tational game theory. Several proposals have contributed to

define more tractable representations, like Graphical games

[17], in which a player’s utility only depends on a subset

of the other players. Then it is possible to reduce the size

of the utility tables by only storing useful utilities just like

conditional probabilities in bayesian networks. There is no

problem to import this formalism to Constraint Games, as it

already defined for boolean games [3], and we leave this for

future work. Action-graph games [16] exploit properties of

certain games like context independence and anonymity to

achieve a polynomial representation and efficient solving but

they are not as declarative and natural as constraint games.

Congestion games [24], Routing games [25] are other kinds

of specific games that enjoy a compact representation, as

well as sparce, symmetric, anonymous, local-effect or mul-

timatrix games [21]. However they are not general games.

First, it may be noticed that Constraint Game encodings

are never larger than the normal form. But just like boolean

games, Constraint Games can be exponentially more succint

than the payoff matrix. An example is when an agent has

constraints encoded by a CSP xi = yi for 2n variables (xi)
and (yi) on a domain with d elements. The representation

takes n constraints while there are dn solutions, which

means that a payoff matrix, even in a sparse representation

that only keeps positive entries, would be exponential. In the

worst case, however, Constraint Games, just like CSP can

blow-up to a size similar to their set of models, as shown

by a simple counting argument (in any formal language,

using N bits we can encode 2N models while there are 22
N

Boolean functions of N inputs). As for CSP, our feeling

is that this worst case does not happen often in practice.

Moreover, we believe that the modeling facilities offered

by constraint languages, especially with global constraints,

allows to encode many useful problems in an elegant way.

From a modelling perspective, solution concepts are heav-

ily discussed in the game theory community, as pure Nash

equilibria do not provide a satisfactory notion of solution all

the time. The main directions are mixed equilibria [20] and

taking a subset of equilibria with additional properties like

Pareto-optimality or subgame equilibria [21].

There are few attempts to use Constraint Programming

in Game Theory. In [13], the authors presented a CSP

encoding of the reaction operator in graphical games. In

[7], it has been proposed to compute a mixed equilibrium

using continuous constraints. Some other formalism solve

one combinatorial problem by multiple agents, either with a

predefined assignment of variables to agents like in DCOP

[12] or by letting the agents select dynamically their variable

like in SAT-Games [28] and Adversarial CSP [10]. Other

types of equilibria such as Stackelberg equilibria have been

investigated within the QCSP framework [2], [6].

Elimination of dominated strategies can be seen as a form

of propagation for games [1]. Several types of domination

have been devised, among them the best known are strong

domination, weak domination and never best response. How-

ever, this detection is very costly (actually Σp
2-complete for

boolean games, see [4]).

In this paper, we introduce an algorithm based on tabu

search to compute equilibria in Constraint Games. We also

give an illustration of complex real-world problems that

can be modelled using this new framework in a concise

way and show on benchmarks that the constraint approach

goes beyond current state of the art in general strategic

game solving. Local search has been used to compute Nash

equilibria but only for two-player games and for mixed

equilibria [11].

The plan of the paper is as follows: we present Constraint

Games in Section II, we give examples in Section III, we

present algorithms in Section IV and experiments in Section

V.

II. CONSTRAINT GAMES

Constraints and CSP: Let V be a set of variables and

D = (DX)X∈V be the family of their (finite) domains. For

W ⊆ V , we denote by DW the set of tuples on W , namely

ΠX∈WDX . Projection of a tuple (or a set of tuples) on a

variable (or a set of variables) is denoted by |. For example,

for t ∈ DV , t|W = (tX)X∈W and for E ⊆ DV , E|W =
{t|W | t ∈ E}. For W,U ⊆ V , the join of A ⊆ DW and

B ⊆ DU is A ✶ B = {t ∈ DW∪U | t|W ∈ A ∧ t|U ∈ B}.

When W ∩ U = ∅, we denote the join of tuples t ∈ DW

and u ∈ DU by (t, u). A constraint c = (W,T ) is a couple

composed of a subset W = var(c) ⊆ V of variables and a

relation T = sol(c) ⊆ DW (called solutions). A Constraint

Satisfaction Problem (or CSP) is a set of constraints. We

denote by var(C) =
⋃

c∈C var(c) its set of variables and by

sol(C) = ✶c∈C sol(c) its set of solutions.

Constraint Satisfaction Games: Let P be a set of

players and V a set of variables. Each player i is given a

set of controlled variables Vi ⊆ V . The sets (Vi)i∈P are

disjoint. Thus each variable is controlled by at most one

player. A variable which is not controlled by any player is

called an existential variable and belongs to VE .

Definition 1 (Constraint Satisfaction Game): A Con-

straint Satisfaction Game (or CSG) is a 4-tuple (P, V,D,G)
where P is a finite set of players, V is a set of variables

composed of a family of disjoint sets (Vi) for each player

i ∈ P and a set VE of existential variables disjoint of all

the players variables, D = (DX)X∈V is the family of their

domains and G = (Gi)i∈P is a family of CSP on V .

The CSP Gi is called the goal of the player i. The intuition

behind CSG is that, while a player i can only control her

own subset of variables Vi, her satisfaction will depend also

on variables controlled by all the other players. A controlled
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Figure 1. Boolean payoff matrix of Example 1. Nash equilibria are
depicted in bold and italics (italics stands for equilibria in which no player
is satisfied).

variable is called a decision variable. The intuition behind

existential variables is that they are existentially quantified

(but most of the time they will be functionally defined from

decision variables).

Example 1: We consider the following CSG: the set of

players is P = {X,Y, Z}. Each player owns one variable:

VX = {x}, VY = {y} and VZ = {z} with Dx = Dy =
Dz = {0, 1, 2}. The goals are GX = {x 6= y, x > z},

GY = {x ≤ y, y > z} and GZ = {x+ y = z}.

A strategy for player i is an assignment of the variables Vi
controlled by player i. A strategy profile s = (si)i∈P is the

given of a strategy for each player.

Definition 2 (Winning strategy): A strategy profile s is

winning for i if it satisfies the goal of i: s ∈ sol(Gi).

A CSG can be interpreted as a classical game with a boolean

payoff function which takes value 1 when the player’s CSP is

satisfied and 0 when not. The boolean payoff 3-dimensional

matrix of Example 1 in normal form is depicted in Figure

1.

We denote by s−i the projection of s on V − Vi. Given

a strategy profile s, a player i has a beneficial deviation if

s 6∈ sol(Gi) and ∃s′i ∈ DVi such that (s′i, s−i) ∈ sol(Gi).
Beneficial deviation represents the fact that a player will

try to maximize her satisfaction by changing the assignment

of the variables she can control if she is unsatisfied by the

current assignment. Then we define the notion of solution

of a CSG by consistent Nash equilibrium (see Section VI

for a discussion on solution concepts):

Definition 3 (Nash Equilibrium): A strategy profile s is

a Nash equilibrium of the CSG C if and only if no player

has a beneficial deviation

Example 2 (Example 1 continued): Each solution of GX

is a winning strategy for player X . For example, 100 (which

stands for x = 1, y = 0, z = 0) is a winning strategy for

player X . However, 100 is not a solution of the CSG because

Player Y may deviate from 0 to 1 to get the winning strategy

110 solution of GY . Player Z is able to do the same with

101. The strategy profile 120 is a Nash equilibrium because

it is solution for X and Y , and Player Z is unable to deviate

because neither 120, 121 or 122 are solution of GZ .

Proposition 1 (derived of [4]): CSG are Σp
2-complete.

Hard Constraints: The players goals could be con-

sidered as soft constraints or preferences. It may happen

however some games have rules that forbid some strategy

profile as they model impossible situations. It is natural

to reject such profile by setting hard constraints shared

by all players. Hard constraints have been introduced in

game theory under the name of shared constraints [23]

and were not related to constraint programming but to

general optimization under constraints. Hard constraints can

be easily expressed in the framework of Constraint Games

by adding an additional CSP on the whole set of variables

in order to constrain the set of possible strategy profiles:

Definition 4 (CSG with Hard Constraints): A CSG with

Hard Constraints (or CSG-HC) is a 5-uplet (P, V,D,C,G)
where (P, V,D,G) is a CSG and C is a CSP on V .

The intended meaning of the hard constraints is that ben-

eficial deviation is only allowed in the satisfiable subspace

defined by the additional CSP. It is useful to distinguish

a strategy profile which does not satisfy any player’s goal

from a strategy profile which does not satisfy the hard

constraints. The former can be a PNE if no player has a

beneficial deviation while the latter cannot. Therefore hard

constraints provide an increase of modelling expressibility

(without however changing the general complexity of CSG).

Constraint Optimization Games: By adding an opti-

mization condition it is possible to represent classical games.

A Constraint Optimization Game (or COG) is an extension

of CSG in which each player tries to optimize his goal.

This is achieved by adding for each player i an optimization

condition min(x) or max(x) where x ∈ Vi is a variable

controlled by i.
Definition 5 (Constraint Optimization Game): A Con-

straint Optimization Game (or COG) is a 5-tuple

(P, V,D,G,Opt) where (P, V,D,G) is a CSG and Opt =
(Opti)i∈P is a family of optimization conditions for each

player of the form min(x) or max(x) where x ∈ V .

A winning strategy for player i is still a strategy profile

which satisfies Gi. However, the notion of beneficial devi-

ation needs to be slightly adapted. Given a strategy profile

s, a player i having as optimization condition min(x) (resp.

max(x)) has a beneficial deviation if ∃s′i ∈ DVi such that

s′ = (s′i, s−i) ∈ sol(Gi) and s′|x < s|x (resp s′|x > s|x).

Given this, the notion of solution is the same as for CSG.

In addition, COG can be extended with hard constraints the

same way CSG are, yielding COG-HC.

III. MOTIVATING EXAMPLES

Here we give examples of problems which acknowledge

the usefulness and versatility of Constraint Games.



Example 3 (Prisoner’s dilemma): The classical priso-

ner’s dilemma [22] introduces two prisoners put in jail

without being able to talk to each other. The police plans

to sentence both of them one year, but proposes to each of

them to testify against his partner in exchange of liberty for

him and three years for his partner. But if both testify, then

both are sentenced to two years in jail. In this game, each

player has possibility to play 0 (defect) or 1 (cooperate) with

respect to the other player. The prisoner’s dilemma can be

represented by the values given in Figure 2 by the following

COG:

• P = {A,B}
• VA = {x}, VB = {y}, VE = {zA, zB}
• D(x) = D(y) = {0, 1}
• GA = {zA = −x+2y+1}, GB = {zB = 2x− y+1}
• OptA = min(zA), OptB = min(zB)

y
0 1

x
0 (1,1) (3,0)

1 (0,3) (2,2)

Figure 2. Prisoner’s dilemma: COG representation on the left and
bimatrix normal form on the right.

Example 4 (Cloud Resource Allocation Game):

Resource allocation is a central issue in cloud computing

where clients use and pay computing resources on demand.

In order to manage conflicting interests between clients, [15]

has proposed the framework of CRAG (Cloud Resource

Allocation Game) in which resource assignments are

defined by game equilibria. According to the authors, this

allocation shows a performance increase from 15 to 88%

with respect to standard round-robin scheduling commonly

used by cloud vendors.

A cloud computing provider owns a set M =
{M1, . . . ,Mm} of m machines, each machine Mj having

a capacity cj representing the amount of resource avail-

able (for example CPU-hour, memory). The cost of using

machine j is given by lj(x) = x × uj where x is the

number of resources requested and uj some unit cost. A set

of n clients P = {1, 2, .., n} wants to use simultaneously

the cloud in order to perform tasks. Client i ∈ P has mi

tasks {Ti1, ..., Timi
} to perform, with respective requested

capacity of {di1, ..., dimi
}. Each client i ∈ P chooses

selfishly an allocation rik for the task Tik (k ∈ 1..mi) and

wishes to minimize her cost costi =
∑

k=1..mi
lrik(dik). We

assume that the provider’s resources amount is sufficient to

accommodate the resources requested by all of the clients:∑
i∈[1..n]

∑
k∈[1..mi]

dik ≤
∑

j∈[1,..m] cj . This problem can

be modelled by the following COG-HC:

• P = {1, .., n}
• ∀i ∈ P, Vi = {ri1, ..., rimi

}
• ∀i ∈ P, ∀k ∈ [1, ...,mi], D(rik) = {1, . . .m}

• C is composed of the following constraints:

– channelling constraints for boolean variables stat-

ing that machine j is requested by task tik: (rik =
j) ↔ (choiceijk = 1)

– capacity constraints: ∀j ∈ [1, ..,m],∑
i∈[1..n]

∑
k∈[1..mi]

choiceijk × dik ≤ cj

• ∀i ∈ P, Gi is composed of the following constraint:

costi =
∑

j=1..m

∑

k=1..mi

choiceijk × lj(dik)

• ∀i ∈ P, Opti = min(costi)

Example 5 (Network Game): This example is inspired by

[8] and taken from telecommunication industry. A network

provider owns m links to transfer data. Each link j is

specified by 3 parameters: capacity cj , speed per data unit sj
and price per data unit pj . A group of n clients would like

to transfer data across theses links (client i from a source xi
to a target yi, each source and target are fully connected to

each link of the vendor and each path has to cross a tolled

arc). In order to reach a link j of the network, a client i has

to pay a fixed fee αij and a fixed delay βij .

Hence, with any link j customer i chooses, she has to

pay an addition cost αij per data unit and it also takes an

additional time βij per data unit to transit on the tolled arc.

Each customer could always choose another provider with

cost ψi, so if the provider’s price offered is competitive, she

therefore wishes to minimize her transferred data time. This

problem can be modelled as a COG-HC as follows:

• P = {1, .., n}
• ∀i ∈ P, Vi = {ri}
• ∀i ∈ P, D(ri) = {1, . . .m}
• C is composed of the following constraints:

– channelling constraints for boolean variables stat-

ing that link j is requested by data di: (ri = j) ↔
(choiceij = 1)

– capacity constraints:

∀j ∈ [1, ..,m],
∑

i∈[1..n]

choiceij × di ≤ cj

• ∀i ∈ P, Gi is composed of the following constraints:

– costi =
∑

j=1..m choiceij × di × (pj + αij)
– costi ≤ ψi

– timei =
∑

j=1..m choiceij × di × (sj + βij)

• ∀i ∈ P, Opti = min(timei)

IV. SOLVING CONSTRAINT GAMES

Solving games is a remarkably difficult task. We are

not aware of any efficient complete algorithm for games

expressed in normal form [27]. Hence, we present here a

local search algorithm based on tabu search called CG-tabu.

It allows to find the first pure Nash equilibrium in game

instances whose size is way beyond the size accessible to

algorithms based on normal form.



Figure 3. Possible moves for player X when player Y chooses value 2 are
given in braces. In black are depicted forbidden states that do not satisfy
hard constraints.

Algorithm IV.1 function br-csg(CSG C, player i, strategy

profile x) returns strategy profile

1: initialize TmpSolver with Gi and hard constraints (if

exists);

2: for all y ∈ V−i do

3: TmpSolver.add constraint(y = x|y);

4: end for

5: set search tree strategy to begin with Vi = x|Vi
;

6: return TmpSolver.getSolution();

In CG-tabu, the notion of move is given by the deviation

a player may perform to get her optimal strategy profile

(see Figure 3). The tabu list is used to forbid a player to

be chosen too early after he has moved. In contrast with

classical search space where a local search algorithm wants

to escape local optima, it may happen that the trajectory gets

stucked in cycles. Thus a tabu list of size S allows to avoid

direct cycles of length S and in practice allows also larger

cycles to be escaped. Algorithm IV.1 (br-csg: best response

for CSG) and IV.2 (br-cog: best response for COG) detail

how to find the best neighbor of a player.

Algorithm IV.2 function br-cog(COG C, player i, strategy

profile x) returns strategy profile

1: initialize TmpSolver with Gi and hard constraints (if

exists);

2: for all y ∈ V−i do

3: TmpSolver.add constraint(y = x|y);

4: end for

5: set search tree strategy to begin with Vi = x|Vi
;

6: add objective Opti
7: return TmpSolver.getOptimalSolution();

Algorithm IV.1 aims at finding a strategy profile satisfying

the goal of player i. If the current strategy profile already

satisfies the goal of player i, there is no reason to move so

the algorithm simply returns the state itself. We do that by

Algorithm IV.3 function CG-tabu(C*G C) returns strategy

profile

1: Nash = false; Tabu list = ∅; iter = 0;

2: current = choose a strategy profile at random;

3: while (not Nash) and (iter < max tries) do

4: Nash = true;

5: Restart = false;

6: for all i ∈ (P – Tabu list) do

7: strategy = br-c*g(C,i,current);

8: if (strategy 6= current and strategy 6= null) then

9: Nash = false;

10: Add (i,tabu length) to Tabu list;

11: current = strategy;

12: break;

13: end if

14: end for

15: if (Nash) then

16: for all i ∈ Tabu list do

17: strategy = br-c*g(C,i,current);

18: if (strategy 6= current and strategy 6= null) then

19: Restart = true;

20: break;

21: end if

22: end for

23: end if

24: if (Restart) then

25: Nash = false;

26: current = choose a strategy profile at random;

27: end if

28: iter++;

29: for all (i,length) ∈ Tabu list do

30: if (length = 0) then

31: remove (i,length) from Tabu list

32: else

33: decrement length

34: end if

35: end for

36: if (Nash) then

37: initialize TmpSolver with hard constraints;

38: for all y ∈ V do

39: TmpSolver.add constraint(y = x|y);

40: end for

41: if (TmpSolver.getSolution() = null) then

42: Nash = false;

43: end if

44: end if

45: end while

46: if (Nash) then

47: return current

48: else

49: return null

50: end if



#Machines 10 15 20

#Clients N/4 N/3 N/2 N/4 N/3 N/2 N/4 N/3 N/2
20 1.70 1.57 1.25 3.62 3.29 2.47 6.45 6.39 5.11

40 19.61 16.82 11.18 31.33 27.81 19.61 51.06 45.67 33.77

60 79.02 64.55 42.51 144.93 118.32 82.61 236.52 191.37 138.64

80 69.83 226.12 131.37 442.17 376.01 243.29 625.98 542.16 359.31

100 714.74 587.07 340.18 1046.62 875.17 553.34 1861.98 1497.26 809.80

120 804.62 641.21 381.93 2912.82 2463.06 1507.98 4687.44 3302.11 1622.21

140 3702.29 3207.02 1937.31 8495.97 7332.04 2913.71 8929.80 7007.92 3456.73

160 5982.00 4760.32 3146.78 12946.80 11359.80 5228.31 8349.11 6217.61 3830.52

180 3745.62 2867.99 1592.94 5148.36 4106.83 2466.34 11505.52 8891.57 5120.90

200 5865.95 4584.21 2575.30 9963.22 7655.15 4097.97 19008.18 14212.29 7926.21

Table I
AVERAGE TIME OF THREE CG-TABU VARIANTS ON CRAG

#Links 10 15 20

#Clients N/4 N/3 N/2 N/4 N/3 N/2 N/4 N/3 N/2
30 10.81 8.79 6.07 17.68 15.40 12.26 29.06 24.91 20.20

60 85.15 73.79 54.20 128.60 110.83 82.57 187.97 161.19 117.29

90 257.11 216.76 157.34 477.41 389.46 274.79 713.32 603.30 448.34

120 738.30 618.95 474.72 1712.33 1449.23 1034.00 1995.64 1650.89 1129.20

150 2087.465 1723.35 1347.01 2967.13 2495.77 1722.22 4730.62 3684.05 2558.09

180 4120.63 3450.34 2542.30 5539.07 4557.53 2966.74 12195.39 9937.90 6886.45

210 6736.89 5753.13 3677.70 10887.19 9146.39 6628.14 6594.18 5424.25 3575.65

Table II
AVERAGE TIME OF THREE CG-TABU VARIANTS ON NG

forcing the enumeration strategy to start with the current

state. In case there is no solution to the problem, the null

state is returned and no move is performed. Finding the best

response of a player in COG is depicted in Algorithm IV.2.

Due to the additional optimality check, the objective of the

player is added (line 6) in order to find the optimal solution.

Otherwise, the technique is the same.

Algorithm IV.3 specifies how CG-Tabu processes. The

notation c*g is a generic replacement for CSG and COG.

The main loop (lines 3-45) iterates until an equilibrium is

found or a maximum number of moves have been done. In

lines 6-14, non-tabu players are checked against deviation.

If br-c*g returns the same state (line 7), the player is already

satisfied and we move to the next player. If it returns the null

state, then all assignments of player i are unsatisfiable and it

may be a case for an equilibrium. If no player can deviate,

then tabu players are also checked (lines 15-23) to ensure

that a Nash equilibrium is found. If only a tabu player can

deviate, a restart is performed (lines 24-27). Lines 29-35 are

devoted to the update of the tabu list. Then if the current

state is an equilibrium candidate, a last check is performed

on hard constraints to check whether they are satisfied or not

(lines 36-44). If not, then the state cannot be an equilibrium.

Proposition 2: CG-tabu is correct.

Proof: A reported equilibrium is correct because

it has been successively checked against deviation

for all tabu and non-tabu players and it satisfies

the hard constraints. �

V. EXPERIMENTS

We have implemented a solver called CG-Solve on top

of the constraint library Choco [26]. This solver allows to

express Constraint Games and solves them using CG-Tabu.

An important point is that our solver accepts all constraints

provided by Choco, and reuses the constraint propagators

already present in the library.

We provide here the experiment results on the Cloud

Resource Allocation Game (CRAG) and Network Game

(NG). All experiments have been run on a server with

four 12-core AMD Opteron processors 6174 at 2,2 GHz

and 256 GB of RAM memory. For CRAG, we have run

experiments with main parameters the number of clients and

the number of machines. For NG, the parameters are the

number of clients and the number of links. In both games, a

set of instances have been randomly generated to set the

other parameters (for example, for CRAG, it is capacity

and demand). The games considered are very large, up to

20400 strategy profiles (200 clients, 20 machines, 2 tasks)

for CRAG and 20210 (210 clients, 20 links) for NG.

All time reported are mean values of 50 runs, i.e. 5

instances, 10 times per instance with different initial points

randomly chosen. Table I and II show the runtime (measured

in seconds) obtained by three CG-tabu variants on the two

problems. The variants differ by the length of Tabu list:

N/4, N/3, et N/2 where N means the number of players.

They are launched on the same instances. As we can see

from the tables, in all of the game instances, the longer
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the Tabu tenure is, the faster the runtime is. The reason

is that the Tabu list allows larger cycles to be escaped.

So, the algorithm converges more quickly. An interesting

point of the overall performance is that results presented are

competitive with state-of-the art ad-hoc approaches for game

solving. For example, in [15], CRAG games are solved up

to 200 players like we do with CG-tabu. In comparison,

the only general solver publicly available is Gambit [19]

and is based on exhaustive enumeration. The largest CRAG

instance we were able to solve with this solver is for 6 clients

and 4 machines.

We also have studied standard deviation, and the results

are shown in Figures 4 and 5. In Figure 4, we have depicted

the average and standard deviation for a set of CRAG

instances. Each point corresponds to 10 runs on 5 different

instances. The deviation is around 4%. In Figure 5, we have

performed a more detailed test on only one set of parameters

(100 clients and 10 machines) on 50 different instances and

depicted the standard deviation for each instance along 10

runs of the algorithm.

An apparently interesting idea is to import a kind of “min

conflict“ heuristics. We have performed tests in which the

non-tabu player chosen by the algorithm is not the first one

but the player who has the best improvement of his goal.

Unfortunately, the time needed to evaluate all player moves

is too important and the overall performance is at least one

order of magnitude slower then the naive choice.

VI. CONCLUSION AND PERSPECTIVES

In this paper, we propose Constraint Games, the first

framework allows to model and solve in a natural way

strategic games by using Constraint Programming. Con-

straint Games come in two flavors: Constraint Satisfaction

Games (CSG) and Constraint Optimization Games (COG),

with or without hard constraints. The notion of solution

of a Constraint Game is the one of Nash equilibrium, a



situation in which no agent has an incentive to deviate

from the current situation. We present real-world problems

that can be modelled by Constraint Games, we propose a

local search solver based on tabu search to quickly find

the first Nash equilibrium and we demonstrate that it has

competitive performances with ad-hoc approaches on a set

of benchmarks.
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