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Abstract. Minimax Weighted Constraint Satisfaction Problems (formerly called
QWCSPs) are a framework for modeling soft constrained problemsaalitir-
sarial conditions. In this paper, we describe novel definitions and ingieations

of node, arc and full directional arc consistency notions to help redaaech
space on top of the basic tree search with alpha-beta pruning for solviag ultr
weak solutions. In particular, these consistencies approximate the lodempa
per bounds of the cost of a problem by exploiting the semantics of theifieen
and reusing techniques from both Weighted and Quantified CSPs. Laonadb
computation employs standard estimation of costs in the sub-problemsrused
alpha-beta search. In estimating upper bounds, we propose two eppesdzased
on the Duality Principle: duality of quantifiers and duality of constraints. The
first duality amounts to changing quantifiers franin to max, while the sec-
ond duality re-uses the lower bound approximation functions on duati@ints

to generate upper bounds. Experiments on three benchmarks d¢ognpasic
alpha-beta pruning and the six consistencies from the two dualities acemped

to confirm the feasibility and efficiency of our proposal.

Keywords: constraint optimization, soft constraint satisfaction, minimax game
search, consistency algorithms

1 Introduction

The task at hand is that of a constraint optimization probléth adversariesontrol-

ling parts of the variables. As an example, we begin with aegaized version of the
Radio Link Frequency Assignment Problem (RLFAP) [7] cotisgs of assigning fre-

quencies to a set of radio links located between pairs of,sitih the goal of preventing
interferences. The problem has two types of constraints. e prevents radio links
that are close together from interfering with one anothegrdstricting the links not
to take frequencies with absolute differences smaller théreshold. In practice, the

* We are grateful to the anonymous referees for their constructivenemis. The work de-
scribed in this paper was generously supported by grants CUHK4188D&UHK413710
from the Research Grants Council of Hong Kong SAR.



threshold is measured depending on the physical envirohraad is often overesti-
mated. The second type of constraints are technologicaiti@nts, where each con-
straint ensures the distance between frequencies of aliakifrom site A to B and
its reverse radio link from sit& to A must be equal to a constant. If the problem is
unsatisfiable, one approach is to find assignments viol#ti@dirst type of constraints
as little as possible. Suppose now a certain set of links laeeg in unsecured areas,
andadversariege.g. terrorists/spies) may hijack/control these linke. &k not able to
re-adjust the frequencies for the other links immediatelyninimize the interferences
on the functioning ones. One interesting question for §pe f scenarios is to find fre-
quency assignments such that we can minimize the degredioflirsks affected for the
worst possible case (i.e. finding the best-worst case). Tingepgoal is to understand
how well we can defend against the worst adversaries fonpigrpurposes.

The example is optimization in nature, and the adversarigiate from the un-
controllable frequencies being assigned on the links irecmsed areas. The question
can be translated to minimizing the interferences for afigiige combinations of fre-
quency adjustments the adversaries can control. One wagite ghis problem is by
tackling many COPs [2]/Weighted CSPs [15], where each ahth@nimizes the in-
terferences conditioned on a specific combination of fraquedjustments controlled
by the adversaries. Another way is to model the problem asantjied CSP [15] by
finding whether there exists combinations of frequency stdjents for us for all fre-
quency placements by the adversaries such that the taaflargnces is less than a cost
k. To avoid solving multiple sub-problems, Minimax Weigh@dnstraint Satisfaction
Problems (MWCSPs) (previously called Quantified Weightedsdaint Satisfaction
Problems) [16] are proposed to tackle such problems, cambijuantifier structures
from Quantified CSPs to model the adversaries and soft @nttrfrom Weighted
CSPs to model costs information. Previous work defines aisalas a complete as-
signment representing the best-worst case, gives an uttioth on how to adopt alpha-
beta prunings to tackle the problem in branch and bound, agdests two sufficient
pruning conditions to achieve prunings and backtrackings.

When tackling game problems, more specifically two-persoo-gam games with
perfect information [22, 23], games can be solved at diffetevels. Allis [1, 13] pro-
poses three solving levels for gametira-weakly solvegweakly solvedandstrongly
solved Ultra-weakly solved means the game-theoretic value ofrttial position has
been determined, which means we can determine the outcorie sicenario when
both players are playing perfectly (i.e. best-worst cadéakly solved means a strat-
egy, noted as winning strategy [4] in QCSPs, has been detedhfior the initial position
to achieve the game-theoretic value against any oppositongly solved is being
used for a game for which such a strategy has been deternonedl fegal positions.
Once a game is solved at a stronger level, the game is aut@ihasolved at weaker
ones. Finding solutions at stronger levels, however, iespsiubstantially higher com-
putation requirements. In particular in terms of spaceaukeak solutions are linear in
size, while the other two stronger ones are exponentiali-leviel programs, there are
cases in which we can assume there is a unique optimum foollbwér or we are con-
cerned with only the moves for the leader [11]. Finding ultr@ak solutions for these
cases are sufficient, and the generalized RLFAP is an exanmphelversarial game



playing, many game search algorithms, e.g. minimax andaaljgta [24], computes
strategies assuming optimal plays to reduce computatists clm fact, even determin-
ing just the ultra-weak solution in an offline manner is alsdraportant and interesting
line of research, e.g. a recent breakthrough on checke}s [25

The main focus of this paper is to further introduce novelsistency notions for
solving ultra-weak solutions, by approximating the lowed aipper bounds of the cost
of the problem. Lower bound computation employs standaithation of costs in the
sub-problems used in alpha-beta search. In estimating lyopeds, we adopt the Prin-
ciple of Duality in (integer) linear programming, which g&st to convert an original
(primal) problem to its dual form and tackle the problem gsioth forms. We con-
sider two dualities: duality of quantifiers and duality ohstraints. The first approach
allows us to formulate upper bound approximation functibphanging quantifiers
in the lower bound functions fromnin to max, while the second approach re-uses the
lower bound approximation functions on dual constraintgéoerate upper bounds.
Discussions on whether our proposed techniques are aplgitathe computation of
the two stronger solutions will be given. Experimental aasions on three benchmarks
are performed to compare six consistencies defined usingvtiheualities to confirm
the feasibility and efficiency of our proposal.

2 Background

In the first part, we give definitions and semantics of MWCSBlowed by an exam-
ple. In the second part, sufficient conditions allowing upédform backtracking/prun-
ings used in alpha-beta search are highlighted.

2.1 Definitions and Semantics

A Minimax Weighted Constraint Satisfaction ProbldMWCSP) [16]P is a tuple
(X,D,C, Q,k), whereX = (z1,...,z,) is defined as an ordered sequenceanf-
ables D = (Ds,...,D,,) is an ordered sequence of findemains C is a set ofsoft
constraints @ = (Q1,...,Q,) is aquantifiers sequencerhere ), is either max
or min associated withe;, and k is the global upper bound. We denotg = v;
an assignmengssigning valuey; € D, to variablez;, and the set of assignments
I ={z1 = v1,29 = vo,...,x, = v,} acomplete assignmemin variables int,
wherew; is the value assigned tg. A partial assignment[S] is a projection of onto
variables inS C X. C is a set of(soft) constraintseachC's of which represents a func-
tion mapping tuples corresponding to assignments on a sabsariablesS, to a cost
valuation structur& (k) = (]0...k], ®, <). The structurd’/ (k) contains a set of integers
[0...k] with standard integer ordering. Addition @ is defined by:©b = min(k, a+b).
For any integer andb wherea > b, subtractions is defined bya © b = a — b if
a # k,anda © b = k if a = k. Without loss of generality, we assume the existence
of Cy denoting the lower bound of the minimum cost of the problehit. is not de-
fined, we assumé€’;, = 0. Thecostof a complete assignmehtin X" is defined as:
cost(l) = Co & D e CsU[S]).

In an MWCSP, ordering of variables is important. Without lo$generality, we
assume variables are ordered by their indices. We definéabi@awithmin (max resp.)



quantifier to be a minimization variable (maximization edfe resp.). LetP[x;, =
ai, )z, = ai]... [z, = a;, | be thesub-problemobtained fromP by assigning
valueq;, to variablez;,, assigning value,, to variablez,,,. .., assigning value; , to
variablex; . Letfirstx(P) returns the first unassigned variable in the variable secpie
If there are no such variables, it returns Supposé€ is a complete assignment &f.
TheA-cost(P) of an MWCSPP is defined recursively as follows:

cost(l), if firstx(P) = L
A-cost(P) = { max(My), if firstx(P) = z; andQ; = max
min(M;), if firstx(P) = z; and@; = min

wherel is the complete assignment of the completely assignedemuBl(i.e. firstx(P) =
1), andM; = {A-cost(P[z; = v])|v € D;}. An MWCSPP is satisfiablaff A-cost(P) <

max min

Fig. 1. Constraints for Example 1 Fig. 2. Labeling Tree for Example 1

We now define three solution concepts for
MWCSPs based on the definition df-costs. s
An ultra-weak solutionof an MWCSPP isa /,
complete assignmedtr; = vy,..., 2, = vy} Q
S.t. A-cost(P) = A-cost(Plz1 = n]...[z; =
v;]), V1 < ¢ < n. Solving an ultra-weak solution
corresponds to finding the scenario when bot
players are playing perfectly. To capture weal
(strong resp.) solutions, we re-use the concepiax min min max
of winning strategies [4]. Without loss of gen-
erality, we assume thmax player is the adver-  Fig. 3. Constraints for Example 2
sary. Aweak solutiorn(strong solutiorresp.) is a
set of functions#, where each functiorf; € F corresponds to anin variablez;.
Let G; be the set of domains ohax variables (all variables resp.) preceding i.e.
G; = {D; € D|Q; = maxAj < i} (G; = {D; € D|j < i} resp.). We define
fi : Xpjec,Dj — D;. If G; is an empty set, thelfi is a constant function returning
values fromD;. Let P’ be a sub-problem of an MWCSP, where the next unassigned
variablex; is amin variable, and be the set of assigned values fouax variables (all
variables resp.y; wherej < i. For weak solutions, we further require the assigned
values ofmin variablesz; wherej < i in P’ follow f;. We require allf; to satisfy:
A-cost(P'[x; = fi(1)]) = A-cost(P’). In other words, we requirg; () to return the




best value for thenin player, and the set of functions will then be a best strategy
for the min player. This work focuses on ultra-weak solutioméote that computing
ultra-weak solutions essentially computes theosts of an MWCSP, which are de-
fined based on constraints and quantifiers, and in generaputing theA-costs of an
MWCSP is PSPACE-hard [16]. A special case is that if all thenjfiers of an MWCSP
aremin quantifiers, finding an ultra-weak solution is equivalenfibaling a complete
assignment with the minimum costs (i.eargmin, cost(1)). The problem reduces [16]
to a Weighted CSP.

Example 1.We use the generalized Radio Link Frequency Assignmentl@&roin-
troduced in the previous section as an example. The probtamists of four links
1,102,153, andl,. Two of the links/; andl, connect sitesA and B, and the other two
links I3 andl, connect site3 andC'. Link [y (I4 resp.) is the reverse link fdg (I3
resp.). There is a variable, in the MWCSPP for each linkl;, which is used to rep-
resent the chosen frequency for libk Site C' is not secure and linkg andl, are
subject to control. We need to pay costs if two links intexfesiith each other. There-
fore, we want to find frequency assignments fpand/, such that we can minimize
the total costs for interference in the worst case. We segjtiamtifier sequence i®
as(@Q1 = min, Q> = min, Q3 = max, Q4 = max). For simplicity, we assume links
[, andl3 have two frequency choices, and the other two links havesthiée measure
the costs for interference only for links andis, and linksl; andi,. These costs will
be modeled by constraints on variablesand z3, and also on variables, and z4.
In addition, we maintain the technological constraint kesw linksl; andi,, which
will be modeled by a binary constraint on variablgsandz.. Figure 1 indicates there
is one unary constrain®’y and three binary constraints; », C; 3, andCs 4. For the
unary constraint, non-zero unary costs are depicted irssiciecle and domain values
are placed above the circle. For binary constraints, noo-zmary costs are depicted
as labels on edges connecting the corresponding pair césalnly non-zero costs are
shown. We set the global upper bountb be 11. By following the partial labeling tree
in Figure 2, we can easily infer thie-cost of the subproblen®’ = P[z; = a] is 7, and
{z1 = a,r5 = a,z3 = b, x4 = a} is one of the ultra-weak solutions f@Y.

2.2 Pruning Conditionsin B & B

MWCSPs can be solved by applying alpha-beta pruning in bramth bound
search [16] (Figure 4), by treatingax andmin variables asnax andmin players re-
spectively. Alpha-beta pruning utilizes two boundsnd3, for storing the current best
costs formax andmin players. We rename andg as lowerlb and uppe:b bounds to

fit with the common notations for bounds in constraint anéget programming. We
initialize Ib (ub resp.) to the lowest (largest resp.) possible costs, i.¢.1@<gp.), and
maintain the two bounds during assignments by the brancthamad. When a smaller
costs (larger costs resp.) forin (max resp.) variable is found after exploring sub-trees,
ub (Ib resp.) will be updated (line 6 and 8).ilf > ub, then one of the previous branch
must dominate over the current sub-tree, and we can perfaokitack (line 9).

Lee, Mak, and Yip [16] give pruning conditions that allow ther derivation of
consistency notions, and we introduce them as followsRlet ;,—1 = vy ;—1,2; =
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1function al pha_beta(P, | b, ub):

2
3
4
5
6
7
8
9

i

0

if firstx(P) == L: return cost(P)
i =firstx(P)
for vinD:
if @ ==nmn;:
ub = mn(ub, al pha_beta(P[ X =v],|b, ub))
el se:
I'b = max(l b, al pha_beta(P Xi =v],|b, ub))
if ub <= 1b: break
return (@ == mn)?ub:lb

Fig. 4. Alpha-beta for MWCSPs

v] denote the subproblef[z, = v1][z2 = va]...[x;—1 = v;_1][z; = v]. Formally, we
consider two conditionsiv € D; s.t. Yvy € Dy, ...,v;_1 € D;_1:

A-cost(P[z1..i-1 = v1..i—1,%; = v]) > ub 1)
A-cost(P[z1..i-1 = v1..i—1, 2 = v]) < 1b )

whereub and b are the upper and lower bounds in alpha-beta prunings rédgglgc
When either of the above conditions is satisfied, we can appigipgs according to
Table 1.

Checking Condition (1)/(2) by finding
the exactvalue of theA-cost for each sub- Table 1.When can we prune/backtrack
problem is computationally expensive. Alter- Acost | >ub | <Ub
natively, we allow approximating functions  |[@: = min| prunev |backtrack
to perform bounds approximations. Function |@: = max|backtrack prunev
ubaf(P,z; = v) (Ibaf(P,z; = v) resp.) is
an upper bound (a lower bound resp.) approximation fundfiéapproximates the
A-cost for the setS of sub-problems, where:

S ={Plz1.i-1 = vi.i—1,2; = v][Vv1 € D1,...,vi-1 € Di—1}
s.t. VP’ € S, A-cost(P’) < ubaf(P,x; = v)
(> baf(P,z; = v) resp.)

From the definition, we can easily obtain:

Ibaf(P,z; = v) > ub = Condition (1)
ubaf(P,z; = v) < lb = Condition (2)

By implementinglbaf()/ubaf() with good approximations, we can identify non-
ultra-weak solution values from variable domains or penfdracktracking earlier in
search according to Table 1.

3 Consistency Techniques

In Weighted CSPs, consistency notions [15, 9] not onlyzditionstraint semantics, but
also take the costs of constraints into account. This sediscusses how we utilize
costs information from unary constraints and binary camsts to formulate node and
(full directional) arc consistencies. We start by givinglaaf () for node consistency



calledney,,(), which formulates lower bounds by gathering unary coststhéa fur-
ther describe a strongéba f () for (full directional) arc consistency calledt;;(). To
approximate upper bounds, we propose two approaches gngithe Duality Princi-
ple: duality of quantifiers and duality of constraints. le thst part, we discuss how to
strengthen our consistency notions, by incorporatingrtiegtes in Weighted CSPs. We
write C; for the unary constraint on variable, C; ; for the binary constraint on vari-
ablesz; andz; wherei < j, C;(u) for the cost returned by the unary constraint when
u is assigned ta;, andC; ;(u,v) for the cost returned by the binary constraint when
u andv are assigned to; andx; respectively. To simplify our notations, we write the
minimum costsmin,e p, Cj(u) and maximum costsax,ep, C;(u) of a unary con-
straintC; asmin C; andmax C; respectively. We further writ§) ;C; to meanmin C;

if @; = min, andmax C} if (); = max.

3.1 Node Consistency: Lower Bound

We first give the definition fornc;, (). We will then sketch the proof showing;,() is
anlbaf() using a lemma. Without loss of generality, we now consideryiWCSPs,
which are MWCSPs witlinary constraints onlyWe will show that computing\-costs
for any sub-problems of unary MWCSPs are efficient (lineaejirand therefore, com-
puting the lower bound for these sub-problems are efficMfet.then show using the
same procedure on general MWCSPs, by viewing unary contstrairy, the bound is
still correct.

Definition 1. Theney,(P,z; = v) function approximates thd-cost for a setS of

Sub-problemS{P[xl,,i_l =V1.4i—1,T; = U]|VU1 €Dq,...,v;1 € Di—l}- Define
new(P,z:i =v) = Co & (P minC)) @ (Ci(v) ® (P Q;C))
Jij<i jui<j

whereQ; € Q is the quantifier for variabler; wherej > 1.

Lemma 1. The A-cost of an MWCSPP with only unary constraints is equal to
@?:1 chz
The proof of Lemma 1 follows directly from the definition Afcosts for MWCSPs.

Theorem 1. The functionnc;, (P, z; = v) is a lower bound approximating function
Ibaf(P,x; = v).

Lemma 1 suggests the computation ofcosts for unary MWCSPs can be done in
O(nd), wheren is the number of variables antlis the maximum domain size. There-
fore, computing the\-costs for any sub-problems is also efficient. The functian, ()

can be seen as a function extractifgeosts for the sub-problem %’ with minimal
A-costs following Lemma 1, by partitioning unary constraints inkwee groups: (a)
Cj,j <1, (b)Cy, and (c)Cy, j > i. We skip the detailed reasoning on how to choose
costs for these unary constraintsAfhas only unary constraints, we can observe func-
tion nc;, () computes not only a correct lower bound frbut also the exack-cost for

the sub-problem with minimum costs. Note that MWCSPs may baary constraints
and even high-arity constraints, but, these constraintst mire positive costs to the
problem. Therefore, by considering only unary constradfitgeneral MWCSPS;.¢;;,()

still returns a correct lower bound.



Example 2.We re-use Example 1. Suppose we are at sub-proBles Plz; = a] and

we have just visited the further sub-probl@f{xz> = a] which have a new upper bound
of 7. Before visitingP’ [z, = b], we try to prune some values according to Table 1 using
the new upper bound. Figure 3 shows the constraint grapR’faBuppose nowc; ()

is applied and no unary costs for bounded variablesCie= 0. We want to check if
the valueb can be pruned fronD,. In the sub-problen®’[z, = b], the quantifier);
and(@, are bothmax, and they will take at least the maximum unary cest C'; and
max Cy. We haveCy + Co(b) + maxC3 + maxCy =0+ 0+4+3 =7 > ub. The
cost of any assignment in the sub-probl@fjz, = 0] is at least 7. The valug can
therefore be removed from domaid,. Notice that such a node cannot be pruned by
basic alpha-beta pruning.

3.2 Arc Consistency: Lower Bound

To obtain stronger lower bound, we further define functiop() based omc;; (). With-
out loss of generality, we restrict our attention to MWCSPsciwthaveonly unary
constraints and one binary constrais/e will show that computing any sub-problems
for these MWCSPs are efficient (polynomial time), and theesfoomputing the lower
bound for these sub-problems are again efficient. By similgument, viewing unary
constraints plus one binary constraint on general MWCSIeddlind is still correct.

Definition 2. Theac;; [C; ;](P, x; = v) function approximates th&-cost for the setS
of sub-problem§P [z ;—1 = v1. -1, 2; = v]|Vv1 € D1,...,v;—1 € D;_1}. Define

acw[Ci j)(P,zi = v) = Co @ (€D minCx) & (Ci(v))

k:k<i
e B .l o (Q; {Ci(uw) & Cijv,u)})
kii<kAj#k u€D;

where@; € Q is the quantifier for variabler;, andQ, € Q is the quantifier for variable
wherek > 7 andk # j.

The first three terms are the same asuin, (). The fourth term is equivalent to the
last term innc; (), except we do not consider costs for constraifif which will be
considered in the fifth term.

Lemma 2. TheA-cost ofan MWCSPP = (X, D, C, Q, k) with only unary constraints
andone binary constraintC; ; is equal to

b Qr Cr(uw)® Qi [ Q; [Ci(u) ® Cj(v) ® Cij(u,v)]]

ke[1...n]\{i,j} “ED* weD; veD;
WhereQia Qj? Qk € Q
The proof of Lemma 2 follows from the definition @f-costs. Theorem 2 follows.

Theorem 2. The functionac;,[C; ;](P,z; = v) for binary constraintC; ; is a lower
bound approximating functiolvaf (P, z; = v).



Note that Definition 2 is only one possible approach to defitever bound approxi-
mation function for AC, following Lemma 2. It is designed inch a way that onlpne
binary constraint is used in bounds calculation for costisnegion, and our approach
is similar to AC in QCSPs [20, 12]. Itis natural for us to fugthask for stronger/tighter
functions which consider more than one binary constrainteNhat in classical local
consistency enforcement such as: AC in CSPs [2]; AC* in WC3BE and (Q)AC [20]
in QCSPs, we usually handle one (binary) constraint at a @onasistency enforcement
will be performed many times at each node of the search trekcansidering multiple
constraints at a time may cause a huge increase in time crityp\/e have to main-
tain a balance between amount of reasoning at each searetandé@mount of pruning
achieved. There are stronger consistency notions withefti@algorithms which con-
sider more than one binary constraint, e.g. Max Restricdu®ansistency [10] in CSPs
and OSAC [8] in WCSPs/VCSPs. Investigations on strongeionstfor MWCSPs is
an interesting future work. One possibility to enhamneg, is to consider a subset of
constraints that form a tree and employ a dynamic programmaproach to compute
such notions.

3.3 NC & AC Upper Bounds by the Duality Principle

In linear programming, duality [21, 27] provides a standa&ay to obtain lower bounds
(for minimization problems). In fact, the Principle/Thgaf Duality [21] suggests that
we can convert the original (primal) problem to its dual forand tackle the problem
by using both forms. In QCSPs, dual consistency [5] was definyecreating the dual
QCSP problem, involving negation of the original constigiiVe will now show how

to implement upper bound approximation functions,,() and ac,;() by using the

duality principle in MWCSPs.

Duality of Constraints One approach to creaie:,;()/ac.() is to utilize the con-
straint duality property, which is similar to dual consistg [5] in QCSPs. We first
define the dual problem of an MWCSP.

Definition 3. Given an MWCSPFP = (X, D,C, Q, k). The dual problem of is an
MWCSPP = (X, D,CT, Qf, k) s.t. for a complete assignment

Coo @ Cs(llS) =-1x (Cho @ ciuls))

Csec clect

where the valuation structure &' is ([—k...k], ®, <), Q] = minif Q; = max, andQ! = max

if Q; = min.

We can observe that-cost(P) = —1 x A-cost(P'), and a straightforward method to
construct thelual constraintsin the dual problem is to multiply costs for all constraints
in the original problem by-1. We then show how we utilize the dual problem to check
ubaf (P, z; = v) < b (Condition 2) foran MWCSPP.

Theorem 3. Given an MWCSFP and its dual problenP’. Suppose there is a lower
bound approximation functiolbaf().

Ibaf(P',z; =v) > —1 x Ib = Condition (2).
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The proof of Theorem 3 can be shown by observing the labetegydf the dual prob-
lem, and inferringbaf (PT, z; = v) x —1 is an upper bound approximation function
for the original problem. In fact, the upper bound (lower boundb' resp.) of Pt is
equal to—1 times the lower bounéb ( upper bound:b resp.) of P. Therefore, we fur-
ther defineub’ = —1 x Ib, andlb’ = —1 x ub. We then implementc,; () andac,;(),
via checking theuc;;, () andacy,,() for the dual problem.

Definition 4. An MWCSPP is dual constraint node consistent (DC-NC) Vft; €
X,Yv € D : new(P,x; = v) < ub A ncy(Ph oz, =v) < ubl.

Definition 5. An MWCSPP is dual constraint arc consistent (DC-AC) iff is DC-
NC, VC’ i € C,Yv € D; 1 acy[Ci j](P,x; = v) < ub, andVCiTj € Cl,ww e D, :

acp[C} ](P r; = v) < ubl.
Theorem 4. DC-AC is strictly stronger than DC-NC.

The proof follows from the definitions.

Duality of Quantifiers Another way to check condition (2) for an MWCSPis to
scrutinize functions implementingbaf (P, z; = v), by repeating similar reasonings
for neg () on unary MWCSPs (plus a binary constraint). The idea is to hiseluality
of quantifiers, by replacinghin quantifiers tanax in the reasoning process. Recall we
have three groups of unary constraints to consider. Onetdivay is to consider the
maximum costs, instead of minimum costs from constrainthénfirst group (group
(a)), hence changing quantifiers framin to max. However, using the resulting up-
per bound approximation functions, by reasoning on unary MBR€is incorrect for
general MWCSPs. We cannot neglect costs given by high aritgtcaints. One way
to make the bound correct is to add the maximum costs for @nt&t which will not
be covered in the function, and we pre-compute these coftsebgearch. Function
neg (P, x; = v) andacy, (P, x; = v) are given as follows, and we wriigax C* to
mean the maximum costs for constraints which are not corezida the function.

Definition 6. Thenc,,(P,x; = v) function approximates tha-cost for a setS of
SUb-prOblequ[l‘l_i_l = V1.i-1,Ti = v]|Vv1 € Dy, € Do,... 0,1 € Di—l}-
Define:

new(P,xi =v) = Oz @ @ max C}) @ Q;C;) ® (maxC™)
J:g<i Ji<j
where@; € Q is the quantifier forz;, j > 1.

We can easily observeax C* is equal to@m#k max Cjy, if there are only unary
and binary constraints.

Definition 7. The functioruc,;[C; ;](P, z; = v) approximates the\-cost for the set

S of Sub-problemS:{P[ml,,i,l = V1.i-1,L; = U]|VU1 € Di,v0 € Do,...,0,_1 €
D,_,}. Define:
acuw[Cij](P,xi =v) =Co ® @ max Cj) @ EB QrC)
Jii<i kri<kANj#k

©Qjuep,{C5(w) & Cij(v,u)} & (max C7)
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where@Q;, is the quantifier for variabler;, wherek > ¢ andk # j, and@); is the quantifier for
variablex;.

If there are only unary and binary constraintsyx C* is equal to®,, |z max Cy 1,

whereB = {C}; € C|k # I} — {C; ;}. We now define the node and arc consistencies
by utilizing the constructed functions.

Definition 8. An MWCSPP is dual quantifier node consistent (DQ-NC) ¥k, <
X, Vv € D; : new(P,x; =v) < ub A neyy(P,x; =v) > 1b.

Definition 9. An MWCSPP is dual quantifier arc consistent (DQ-AC) #fis DQ-NC,
andVvC; ; € C,Yv € D; : acip[Cy j1(P,z; = v) < ub A acyy[C ;](P,x; = v) > 1b.

Theorem 5. DQ-AC is strictly stronger than DQ-NC.

The proof follows from the definitions.

3.4 Consistency Enforcement

To enforce DC-NC and DC-AC, one major step is to computg() and acy,(), by
computing costs from unary and binary constraints in bathoitiginal and dual MWC-
SPs. For DQ-NC and DQ-AC, we compute,;() andac,;() instead of the dual. To
achieve these consistencies, we perform prunings/batibigs according to Table 1.
Similar to cascade propagation [2] in CSPs, a value of a blribeing pruned may
trigger prunings of other values in other variables andaeqgutation of thébaf() and
ubaf() functions. In addition, prunings caused by lower bound apipnations may
tighten upper bound approximations (and vice versa), aggers extra prunings. Our
propagation routine repeats until no values can be furtheraa, or backtracks occur.

3.5 Strengthening Consistencies by Projection/Extension

Consistency algorithms for WCSPs use an equivalence piagdransformation called
projection[9] to move costs from higher arity constraints to loweryadhes to extract
and store bound information. Some further utilizagensior{9], which is the inverse
of projection, to increase the consistency strength. Wegwse to re-use WCSP con-
sistencies, especially the parts related to projectiodsexiensions, to strengthen the
approximating functions for MWCSPs.

WCSPs consistencies consist of two kinds of conditions: on@rfuning and one
for projection/extension. Since their pruning conditi@re unsound w.r.t. MWCSPs,
we adopt only their projection/extension conditions soaasttengthen DC-NC, DC-
AC, DQ-NC, and DQ-AC. The projection/extension conditidos NC*, AC*, and
FDAC* [15, 14] are as follows:

proj-NC* :.¥C;,3v € D; : Ci(v) =0
proj-AC* : proj-NC* AVC; ;,Vv; € D;,3v; € Dj : Ci j(vi,v5) =0 A
VCi,5,Yv; € Dj,3v; € D; = Cs 5(vi,v;) =0
proj-FDAC* : proj-AC* AVC; ;i < j,Yv; € D;, Jv; € Dj : Cy 5(vi,v;) ® Cj(v;) =0
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Note that the enforcing algorithm for proj-FDAC* may decsea unary costs fanax
variables and increases unary costsifan variables; hence weakening the approx-
imating functions. We tackle this issue by re-ordering theables when enforcing
proj-FDAC*, with max variables first. To further enforce these projecting caodg
on the dual problem in DC-NC/DC-AC, we need to perform normalon, by trans-
ferring costs fromC to constraints with negative costs until all constraintseptC'y
return non-negative costs. We now re-define DC-NC, DC-AC;Q and DQ-AC, to
allow users plugging in general projection/extension ¢oors 7.

Definition 10. An MWCSPP is DC-NC[r] (DC-AC[ ] resp.) iff P is DC-NC (DC-AC
resp.), and all projection/extension conditiongor both P and the dual problen®?
are satisfied. An MWCSP is DQ-NC[r] (DQ-AC[7] resp.) iff P is DQ-NC (DQ-AC
resp.), and all the projection/extension conditianor P are satisfied.

Previous work [16] shows experimental results on an implaaten of DQ-NCJ[proj-
NC*] and DQ-AC[proj-AC*], where DQ-NCJ[proj-NC*] and DQ-A{proj-AC*] are
named as node and arc consistency respectively.

3.6 Tackling Stronger Solution Definitions

This section discusses the scopes and limitations of obntgaes on solving MWCSPs
for the other two stronger solved levels: weakly solved a@nehgly solved.

In terms of space, the solution sizes for solving MWCSPs wlteakly, weakly,
and strongly vary fromO(n), O((n — m)d™), to O(d"™) respectively, where: is the
total number of variablesp < n is the number of variables owned by adversaries,
andd is the maximum domain size of the MWCSP. A direct consequendtieat we
need exponential space to store weak/strong solutionagiggarch, and most often,
compact representations to represent weak/strong sodugice more desirable.

In terms of prunings in branch and bound tree search, a sowmdng condition
when solving a weaker solution concept may not hold in steolges. This is caused
by the removal of the assumption of optimal/perfect playgmbealing with stronger
solution concepts. For example in alpha-beta pruningsnvwhemin player obtains
an A-costs which is lower than théb (i.e. max player’s last found best), we cannot
immediately backtrack if we want to tackle weakly solvedusioins, where we assume
themax player is the adversary. The reason behind is that we caissatree thenax
player must play a perfect move. We have to consider all mmreébemax player. The
situation is similar if we assume thein player is the adversary. By similar reasonings
and inductions, we cannot perform prunings/backtrackingshe < ib column ¢ ub
columnresp.) in Table 1 if we want to tackle weakly solvediiohs, assuming th@ax
player (min player resp.) is the adversary. For solving strong solstitime situation is
even worse. We cannot assume optimal plays for both playéerefore, we have to
find A-costs for all sub-problems, and all prunings/backtrackingsdétions in Table 1
cannot be used. In general, the fewer sound pruning/basmig conditions available,
the larger search space we have to search. By using tredse@rcan observe finding
stronger solutions is much harder than weaker ones.

When tackling real-life problems, one can ask for solutiohgW solve the problem
in an intermediate level. For example, if the adversarie® maultiple optimal strate-
gies, we can require solutions containing responses ty eliferent optimal choice
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the adversaries may choose. In this case, the solved legabétween ultra-weak and
weak. One way to handle is to relax the bound updating proesidu the lower bound
(upper bound resp.) in alpha-beta pruning (Line 6 and 8 inrf€id), where we assume
the max (min resp.) player is the adversary. When a larger lower bdarn@maller
upper boundub resp.) is found, we update the lower boundioe- 1 (upper bound to
ub 4 1 resp.). The major focus of this work is to give consistenciiams to improve
the search in finding the best-worst case, i.e. ultra-wehlkisns, of a game.

4 Performance Evaluation

In this section, we compare our solver in seven modes: Ahgta- pruning,
DC-NCJproj-NC*], DQ-NC[proj-NC*], DC-AC[proj-AC*], DQ-ACI[proj-AC*], DC-
AC[proj-FDAC*], and DQ-AC][proj-FDAC?*]. Values are labetkin static lexicographic
order. We generate 20 instances for each benchmark’s yartjgarameter setting. Re-
sults for each benchmark are tabulated with average timé (isesec.) and average
number of tree nodes encountered. We take average for siolsahcenly. If there
are any unsolved instances, we give the number of solveanoss beside the average
time (superscript in brackets). Winning entries are hgtied in bold. A symbol *-’
represents all instances fail to run within the time limiheTexperiment is conducted
on a Core2 Duo 2.8GHz with 3.2GB memory. We have also perfdrex@eriments on
QeCode, a solver for QCOPs [3], by transforming the instate€COPs according to
the transformation in previous work [16].

4.1 Randomly Generated Problems and Graph Coloring Games

We re-use benchmark MWCSP instances and graph coloring gasstances by Lee,
Mak, and Yip [16]. The random MWCSP instances are generatéid parameters
(n,d, p), wheren is the number of variableg] is the domain size for each variable,
andp is the probability for a binary constraint to occur betweeno wariables. There
are no unary constraints which makes the instances hamtkttha costs for each bi-
nary constraint are generated uniformly in [0..30]. QuaTs are generated randomly
with half probability for min (max resp.), and the number obaqtifier levels vary from
instances to instances. For the graph coloring game irestanambers are used instead
of colors, and the graph is numbered by two players. We partthe nodes into two

Table 2. Randomly Generated Problem
Alpha-beta DC-NCJproj-NC*] | DC-AC[proj-AC*] | DC-AC[proj-FDAC*]
(n,d, p) Time #nodes Time #nodes| Time  #nodes Time #nodes
(12,5,0.4) 6820 5,967,461 5.89 131,468] 2.54 30,165 | 2.13 20,397
(12,5,0.6) 52.05 4,782541 4.63 101,690| 2.61 26,0903 | 224 16,178
(14, 5,0.4)263.04'®) 19,770,953 5272 948,783 19.33 198,476 14.82 117,155
(14, 5,0.6)271.72'7) 17,249,858 70.12  1,185,08729.97 246,459 23.11 143,197
(16, 5,0.4) 517.24% 26,269,025332.65'%) 4,617,612121.78 1,047,900 102.82 706,913
(16, 5,0.6) 693.31?) 36,315,673461.68'%) 6,157,070259.51 1,816,642 208.52 1,054,326

QeCode DQ-NC[proj-NC*] | DQ-ACIproj-AC*] | DQ-AC[proj-FDAC*]
(n,d, p) Time #nodes Time #nodes| Time  #nodes Time #nodes
(12,5, 0.4 - - 3.68 158,179| 3.23 53,845 4.27 58,619
(12, 5, 0.6 - - 2.85 118,401| 3.24 41,596 4.17 45,698
(14,5,0.4 - - 33.39 1,135,37826.20 369,185| 41.74 482,053
(14,5, 0.6 - - 46.81  1,510,94645.85 450,407| 68.63 522,715
(16,5, 0.4, - - 217.13 5,780,07p141.07 1,654,538 173.96 1,745,527

(16,5, 0.6 - - 364.5119) 9,401,844341.71 3,071,036362.1317) 2,659,294
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Table 3.Graph Coloring Game
Alpha-beta DC-NCJproj-NC*] | DC-AC|[proj-AC*] | DC-AC[proj-FDAC*]
(v, ¢, d) Time #nodes | Time  #nodes | Time  #nodes | Time #nodes
(14,4,0.4) 19.88 1,572,978 6.71  122,266| 3.20 37,252 | 1.90 16,732
(14,4,0.6) 24.12 1,730,473 10.38 185,111| 5.88 59,359 | 3.48 23,515
(16,4,0.4) 167.75 10,050,80p048.37 688,200| 22.67 221,484| 12.09 92,875
(16,4,0.6) 166.83 9,213,029 45.71 625,944| 27.03 212,934| 15.64 85,920
(18, 4,0.4, 784.473) 33,914,968288.90 2,839,962114.63 792,220| 65.58 357,457

(18,4,0.6 - - 350.29 3,400,265163.70 993,099 80.06 343,146

QeCode DQ-NC[proj-NC*]| DQ-AC[proj-AC*] | DQ-ACI[proj-FDAC*]
(v, ¢, d) Time #nodes | Time  #nodes | Time  #nodes | Time #nodes
(14,4,0.4, - - 452 170,843| 3.36 63,298 | 3.74 53,722
(14,4,0.6 - - 7.29  269,179| 6.36 99,972 | 6.88 74,187
(16,4, 0.4, - - 34.43 1,002,14% 23.21 363,539| 24.36 281,229
(16,4,0.6 - - 33.82 949,861| 29.19 352,694| 31.99 280,426
(18,4,0.4 - - 204.86 4,095,998118.65 1,315,346140.95 1,207,566
(18,4, 0.6 - - 267.23 5,295,438180.38 1,711,948182.66 1,270,797

Table 4. Generalized Radio Link Frequency Assignment Problem
Alpha-beta| DC-NCJ[proj-NC*] | DC-AC|proj-AC*] | DC-ACI[proj-FDAC*]

(i,n,d,r) |Time #node$ Time #nodes| Time  #nodes | Time #nodes
(1,24,4,0.2) - - 86.38 442,362 50.54 74,182 | 53.85 55,988
(0,24,4,0.4) - - 148.87 828,286/ 105.95 295,743|128.01 286,122
(1,22,6,0.2) - - 618.93  3,580,88807.58 352,439 |309.63 299,361
(0,24,6,0.2) - - 1230.33'9) 6,822,412500.18 738,245/479.50 651,762
QeCode DQ-NC[proj-NC*] | DQ-AC[proj-AC*] | DQ-ACI[proj-FDAC*]
(i,n,d,r) |Time #node$ Time #nodes| Time  #nodes | Time #nodes
(1,24,4,0.2) - - 45.62 449,164| 50.75 77,286 | 47.08 62,734
(0,24,4,0.4) - - 96.55 1,046,150101.49 451,090/208.79 692,470
(1,22,6,0.2) - - 338.42  3,719,348374.34 374,385/309.96 368,643
(0,24,6,0.2) - - 682.601%) 7,224,6771539.69 803,087|434.99 812,048

setsA and B. Player 1 (Player 2 resp.) will number sét(B resp.). The goal of player

1 is to maximize the total difference between numbers ofcadjanodes, while player

2 wishes to minimize. The aim is to help player 1 extracting est-worst case. We
generate instances with parameters:(d), wherev is an even number of nodes in the
graph,c is the range of numbers allowed to place, a@nid the probability of an edge

between two vertices. Player 1 (Player 2 resp.) is assignpthy the odd (even resp.)

numbered turns, and the node corresponding to each turméaed randomly. Time

limit for both benchmarks are 900 seconds. Table 2 and 3 shewesults.

4.2 Generalized Radio Link Frequency Assignment Problem (BLFAP)

We generate the GRLFAP according to two small but hard CELARisstances [7],
which are extracted from CELARG. All GRLFAP instances areegated with parame-
ters ¢, n, d, r), wherei is the index of the CELAR sub-instancé&3HLARG- SUB;), n is

an even number of linkg] is an even number of allowed frequencies, arnsithe ratio

of links placed in unsecured areéis< r < 1. For each instance, we randomly extract
a sequence af links from CELAR6- SUB; and fix a domain off frequencies. We ran-
domly choose (r x n+ 1)/2| pairs of links to be unsecured. If two links are restricted
not to take frequencieg; and f; with distance less thaty we measure the costs of
interference by using a binary constraint with violationaseremax (0, t — | f; — f;1).

We set the time limit to 7200 seconds. Table 4 shows the gesult

4.3 Results & Discussions

For all benchmarks, all six consistencies are significaasyer and stronger than alpha-
beta pruning.
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Comparing the two duality approaches, we observe dualigooktraints (DC) is
stronger than duality of quantifiers (DQ), and we conjecfareany projection/exten-
sion conditionsg-, DC-NCJr] (DC-AC[ 7] resp.) is stronger than DQ-NE]J(DQ-AC][ 7]
resp.). Note that enforcing projection/extension condii on DQ-NC/DQ-AC may
strengthen one approximation function, and weaken ther @hthe same time. DC-
NC/DC-AC extracts costs from different copies of constimand resolve this issue.

For all benchmarks, DQ-NCJ[proj-NC*] runs faster than DC{N®j-NC*]. In ran-
domly generated problems and the graph coloring game, D{p&E(FD)AC*] runs
faster than DQ-AC]proj-(FD)AC*], with DC-AC[proj-FDAC]He fastest. In GRLFAP,
DQ-NC[proj-NC*] runs faster than the others for smallertareces and stronger consis-
tencies are faster for larger ones. Enforcing proj-FDACHisre computational expen-
sive than proj-AC* and proj-NC*, and implementing dualiti/amnstraints requires im-
plementing two copies of constraints. Therefore, strorgesistencies are worthwhile
for larger instances, but not for smaller ones due to theslaagnputational over-head.

It is worth noting DQ[proj-FDAC*] prunes less than DQ[praic*], suggested
by the fact that adding stronger projection/extension dmrs from Weighted CSPs
naively may not always strengthen our approximation fumsi We have to further
consider quantifier information.

All QCOP instances for even the smallest parameter settimgdl benchmarks fail
to run within the time limit. QCOPs are, in fact, more gen¢t&l] than MWCSPs. By
viewing a more specific problem, it is natural for us to dewisaesistency techniques
outperforming QeCode.

5 Concluding Remarks

We define and implement node and (full directional) arc cgtesicy notions to reduce
the search space of an alpha-beta search for MWCSPs, by apptmg lower and
upper bounds of the cost of the problem. Lower bound comiputaimploys standard
estimation of costs in the sub-problems and we propose twooaphes: duality of
quantifiers and duality of constraints, based on the Du8lityiciple in estimating up-
per bounds. Details on strengthening the approximatioatioms by re-using Weighted
CSPs consistencies are given. We also discuss capabdéimitations of our ap-
proach on other stronger solution concepts. Experiment®oparing basic alpha-beta
pruning and the six consistencies from the two dualitiegparéormed.

There are two closely related frameworks, where both tactestraint problems
with adversaries. Brown et al. propose adversarial CSRsviith focuses on the case
where two opponents take turns to assign variables, eaittytty direct the solution
towards their own objectives. Another related work is Sestit CSPs [26], which can
represent adversaries by known probability distributid¥s seek actions to minimize/-
maximize the expected cost for all the possible scenarias.work is similar in the
sense that we are minimizing the cost for the worst case soena

Possible future work includes: consistency algorithmstigh arity (soft) con-
straints similar to those for WCSPs [18, 19, 17], value/N@eardering heuristics, the-
oretical comparisons on different consistency notionsklilag stronger solutions, and
online algorithms.
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