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Abstract

Classical constraint satisfaction problems (CSPs)
are commonly defined on finite domains. In real
life, constrained variables can evolve over time. A
variable can actually take an infinite sequence of
values over discrete time points. In this paper, we
propose constraint programming on infinite data
streams, which provides a natural way to model
constrained time-varying problems. In our frame-
work, variable domains are specified by ω-regular
languages. We introduce special stream operators
as basis to form stream expressions and constraints.
Stream CSPs have infinite search space. We pro-
pose a search procedure that can recognize and
avoid infinite search over duplicate search space.
The solution set of a stream CSP can be represented
by a Büchi automaton allowing stream values to be
non-periodic. Consistency notions are defined to
reduce the search space early. We illustrate the fea-
sibility of the framework by examples and experi-
ments.

1 Introduction

The standard domains of classical Constraint Satisfaction
Problems (CSPs) [Dechter, 2003] are of simple types, such
as integers, reals, and sets, which are inadequate in describ-
ing problems with values that change over time. Discrete
simulation of a person juggling indefinitely is an example of
constrained time-varying problems with discrete time points.
Changing continuously, the loci of the balls are governed by
the juggler’s throws, juggling rules, and laws of physics. In
addition, an experienced juggler should be able to exhibit
non-repetitive patterns so long as all the rules and laws are
obeyed. Modeling such a problem as a CSP would require an
infinite number of variables and constraints.

We propose Constraint Programming on infinite data
streams, which are difficult to manipulate due to the lack of
finite representation, especially for non-periodic ones. The
domains of stream variables are represented compactly us-
ing ω-regular languages which are recognizable by Büchi au-
tomata [Büchi, 1962]. Different from model checking, the
automata are modified during search and synthesized into dif-
ferent stream values. We define stream operators (a la Lucid

[Wadge and Ashcroft, 1985]) and constraints. The searching
approach used in classical CSP is no longer practical due to
infinite domain size. We propose a search scheme which lim-
its our attention to a window of time points. Consistency en-
forcement is integrated to the search procedure to eliminate
infeasible search space. We have implemented a prototype
solver, which is used to model and solve the simulation of
juggling and jazzy harmonization of music as proof of con-
cept.

2 Infinite Data Streams

Streams are infinite sequences of data items, called datons,
over natural number time points. A stream α is an ordered
sequence 〈α(0), α(1), α(2), . . .〉, where α(i) is a daton of α
at time point i ≥ 0. We use α(i, j), 0 ≤ i ≤ j, to de-
note the finite string 〈α(i), α(i + 1), . . . , α(j)〉. In partic-
ular, α(i,∞) is the stream 〈α(i), α(i + 1), . . .〉. We over-
load these notations to apply on a set of stream values simi-
larly. Given a set of streams S, S(i) = {α(i) |α ∈ S} and
S(i, j) = {α(i, j) |α ∈ S}.

Without loss of generality, we assume that datons are of
the same type. In particular, we focus on integer (Z) streams
in this paper. For example α = 〈1, 2, 3, 2, 4, 5, . . .〉 is an in-
teger stream, in which α(2) = 3, α(1, 3) = 〈2, 3, 2〉, and
α(3,∞) = 〈2, 4, 5, . . .〉.

An ω-regular language generalizes a regular language to a
set of infinite strings (a la streams), and can be expressed as a
finite union ∪n

i=0UiV
ω
i where Ui and Vi are regular languages

and the empty string ǫ /∈ Vi. The ω operator in V ω
i indicates

the infinite concatenation of the regular language Vi. In this
paper, we are interested only in problems whose solution sets
are ω-regular languages.

A Büchi automaton over an alphabet Σ is a 4-tuple A =
(Q, q0,△, F ) where Q is a finite set of states, q0 ∈ Q is an
initial state, △ ⊆ Q × Σ × Q is a transition relation, and
F ⊆ Q is the set of final states. The automaton A accepts an
infinite string if and only if there exists a run of the automaton
which visits at least one of the final states infinitely often.
An ω-regular language is recognizable by a Büchi automaton.
We use L(A) to denote the ω-regular language recognized by
A.

Temporal operators are defined over streams. The unary
first operator gives the stream formed by repeating the
first daton of the stream. Formally, first α = β, where
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∀i ≥ 0, β(i) = α(0). The unary next operator gives the
stream formed by removing the first daton of the stream.
Formally, next α = α(1,∞). The binary fby operator
takes two streams and gives the resulting stream by con-
catenating the first daton in the first stream and the second
stream. Formally, α fby β = γ where γ(0) = α(0) and
∀i ≥ 1, γ(i) = β(i− 1).

In addition to temporal operators, pointwise operators are
extensions to functions defined over integers. Given an n-ary
function f : Z

n �→ Z, an extension of f to a correspond-
ing pointwise operator f is defined by f(α1, α2, . . . , αn) = β
where ∀i ≥ 0, β(i) = f(α1(i), α2(i), . . . , αn(i)). In par-
ticular, we highlight some useful pointwise operators, which
will be used in infix notation as usual. Arithmetic operators,
including +, −, ×, and / (integer division) on numbers are
the extension of the usual operators over integers. When the
streams are pseudo-Boolean streams, containing only datons
0 (false) and 1 (true), there are logical operators and, or, and
not. Relational operators determine the truth of relation on
the stream values pointwisely and return a pseudo-Boolean
stream. The operators include ==, <>, <=, and >= on
numbers.

A stream expression can involve different operators as in
“α+ β − (γ fby (next α))”.

3 Stream Constraint Satisfaction

A Constraint Satisfaction Problem (CSP) P is a tuple
(X ,D, C) where X is a finite set of variables, D is a finite
set of (variable) domains, and C is a finite set of constraints.
A variable X ∈ X can only take a value from its correspond-
ing variable domain D(X) ∈ D. Each constraint C ∈ C has
scope(C) corresponding to the list of variables involved in
C. A constraint C limits the combinations of values that can
be taken by the variables in scope(C). A solution to a CSP
is an assignment of values from the variable domains to all
variables such that all constraints in P are satisfied simulta-
neously. We denote the set of solutions to CSP P as sol(P).

3.1 Stream Constraints

Stream constraints are relations on stream expressions, which
are composed of stream variables, stream constants, and
stream operators. Stream constants have the same daton over
all the time points which are denoted with the daton in bold,
such as 2 = 〈2, 2, 2, . . .〉. The relations can be =, �=, ≥, ≤,
and → (implication), which are all enforced pointwisely. An
example constraint is “X + 3 = Y fby Z”. When the con-
straints involve ≥ or ≤, the set of datons, such as Z in this
paper, is assumed to have some ordering.

A stream constraint C ∈ C with scope(C) =
(X1, X2, . . . , Xn) is a subset of (Zω)n, i.e. C ⊆ (Zω)n. Re-
lational operators are different from stream relations. The for-
mer are functions returning pseudo-Boolean streams, while
the latter are constraints to be enforced.

In a Stream CSP (St-CSP), variables take on stream val-
ues so that domains are possibly infinite sets of streams. Ex-
pressions and constraints involving streams are those defined
earlier. We require stream variable domains to be ω-regular
languages. For simplicity, initial domains are specified in the

form of Σω where Σ is the set of possible datons at each time
point.

The following shows an example St-CSP having variables
X , Y , and Z, with domains D(X) = D(Y ) = D(Z) =
(0|1|2)ω , where “ | ” denotes choice. The two constraints are:

X = next Y + 1 and Y = X fby Z
This problem has infinitely many solutions. Three such so-
lutions are: (a) {X = (1)ω , Y = 1(0)ω , Z = (0)ω}, (b)
{X = 121(2)ω , Y = 1010(1)ω , Z = 010(1)ω}, and (c)
{X = 211(212)ω , Y = 2100(101)ω , Z = 100(101)ω}. For
example, solution (b) satisfies all constraints since “next Y ”
gives 010(1)ω and “010(1)ω + 1” is 121(2)ω which is equal
to X’s value. Furthermore, “X fby Z” takes the first daton
of X , i.e., 1, followed by the stream Z = 010(1)ω , which
gives 1010(1)ω and is equal to Y ’s value.

An St-CSP can be viewed as a classical CSP with an in-
finite number of variables and constraints. A stream vari-
able X corresponds to an infinite sequence of daton variables
〈X(0), X(1), . . .〉 in which D(X(i)) = D(X)(i). Simi-
larly, a stream constraint C corresponds to an infinite se-
quence of daton constraints C(0), C(1), . . .. Each daton con-
straint C(i) of C can be obtained by applying translation op-
eration Ti with the rules listed in Table 1 such that Ti(C)
gives C(i). Thus, each stream constraint C is translated to
the set {Ti(C) | i ≥ 0}. For example, the stream constraint
“X = Y fby Z” at time point 0 is translated by Rule 3 from
“T0(X = Y fby Z)” to “T0(X) = T0(Y fby Z)”, and then
by Rules 6 and 1 to “X(0) = Y (0)”. For time point i > 0,
“Ti(X) = Ti(Y fby Z)” is translated by Rule 7 to “Ti(X) =
Ti−1(Z)”, and then by Rule 1 to “X(i) = Z(i− 1)”. There-
fore, the stream constraint is equivalent to the conjunction of
daton constraints: X(0) = Y (0), X(1) = Z(0), X(2) =
Z(1), . . .. An St-CSP P = (X ,D, C) can be viewed as a
classical CSP P ′ = (X ′,D′, C′) where X ′ = {X(i) | i ≥
0 ∧ X ∈ X}, ∀X(i) ∈ X ′, D′(X(i)) = D(X)(i), and
C′ = {Ti(C) | i ≥ 0 ∧ C ∈ C}.

3.2 Characterizing the Solution Space

We consider a variable assignment as a tuple. The
solution set of an St-CSP contains possibly infinite
number of tuples of streams. We introduce the ⊗ op-
erator on streams such that α1 ⊗ α2 ⊗ . . . ⊗ αn =
〈(α1(0), α2(0), . . . , αn(0)), (α1(1), α2(1), . . . , αn(1)), . . .〉.
The operator turns a sequence of streams into a
stream of tuples of corresponding datons. Then,
given a set of tuples of streams S, we define
L(S) = {α1 ⊗ α2 ⊗ . . .⊗ αn | (α1, α2, . . . , αn) ∈ S}.

Lemma 1. L(sol(P)) is isomorphic to sol(P).

Lemma 2. Given a stream constraint C, L(C) is an ω-
regular language.

The solution set of an St-CSP is, mathematically, the con-
junction of constraints and the Cartesian product of variable
domains. Since stream domains and stream constraints are ω-
regular languages, by the closure of operations for ω-regular
languages [Thomas, 1990], we have the following theorem.

Theorem 1. Given an St-CSP P , L(sol(P)) is an ω-regular
language.
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Table 1: Translation rules for stream constraints and stream expressions at time point i
Rule Expression Translation

1 Ti(α) α(i)
2 Ti(X) X(i)
3 Ti(expr1 rel expr2) Ti(expr1) rel Ti(expr2) where rel is a stream relation

4 Ti(first expr) T0(expr)
5 Ti(next expr) Ti+1(expr)
6 T0(expr1 fby expr2) T0(expr1)
7 Ti(expr1 fby expr2) Ti−1(expr2) where i > 0
8 Ti(f(expr1, expr2, . . . , exprn)) f(Ti(expr1), Ti(expr2), . . . , Ti(exprn)) for n-ary function f

Proof. We prove it by induction. When there is one stream
variable in the problem P , the set of solutions L(sol(P))
is the conjunction of the initial domain and the set of con-
straints. Since domains and constraints are ω-regular lan-
guages, by the closure of ω-regular languages over con-
junction, the resulting set is also an ω-regular language.
Given two ω-regular languages L1 and L2, we let S =
{(α1, α2) |α1 ∈ L1, α2 ∈ L2}. Since S is an ω-regular lan-
guage, the induction applies.

Thus we can solve an St-CSP by constructing a Büchi
automaton for L(sol(P)). In addition, by the nature of ω-
regular languages, solution streams of an St-CSP can be non-
periodic.

4 Solving Stream CSPs

An St-CSP has infinite domains. The tree search method
[Dechter, 2003] widely applied in solving traditional finite
domain CSPs is not applicable in this case as stream variable
domains can never be enumerated exhaustively. We propose
a depth-first search approach which determines the datons in
the stream variables in the order of time points. We define a
dominance relation among the search states or nodes so that
when a search state is dominated by an ancestor node in the
search tree, the search down that branch can terminate.

4.1 Search Tree

A search state is an St-CSP P . Given P1 = (X1,D1, C1)
and P2 = (X2,D2, C2), P1 is a sub-problem of P2, denoted
P1 ⊆ P2, when X1 = X2, D1 ⊆ D2, and C1 = C2. In a
search tree, a parent search state P has a finite set of child
states P ′

i such that ∀i,P ′
i ⊆ P ∧ ∪isol(P

′
i) = sol(P).

Figure 1 shows the first 7 nodes of the search tree for an
St-CSP P , having variables X and Y with the initial domains
D(X) = D(Y ) = (1 | 2)ω and a constraint X = first Y .

The search procedure attempts to determine the daton as-
signment in the order of increasing time points. We define the
current time point of a variable X as t(X) which is the maxi-
mum time point before which all the daton variables of X can
be fixed according to D(X). Formally, t(X) = min{i | i ≥ 0
s.t. |D(X)(i)| > 1}. The current time point of an St-CSP P ,
t(P) is the minimum current time point among all the vari-
ables in P , i.e. t(P) = min{t(X) |X ∈ X}. Thus, there
exists at least one variable whose daton variable at time point
t(P) is unbound in a given P . When t(P) = ∞, all the daton
variables are bound. For example, in P2 of the search tree in
Figure 1, the datons in both domains D2(X) and D2(Y ) are
fixed up to time point 0; therefore t(P2) is 1.

P = ({X,Y }, {D(X) = D(Y ) = (1 | 2)ω}, {C : X = first Y })

P0 : t(P0) = 0
D0(X) = (1 | 2)ω

D0(Y ) = (1 | 2)ω

P1 : t(P1) = 0
D1(X) = 1(1 | 2)ω

D1(Y ) = (1 | 2)ω

P2 : t(P2) = 1
D2(X) = 1(1 | 2)ω

D2(Y ) = 1(1 | 2)ω

P3 : t(P3) = 1
D3(X) = 11(1 | 2)ω

D3(Y ) = 1(1 | 2)ω

P4 : t(P4) = 2
D4(X) = 11(1 | 2)ω

D4(Y ) = 11(1 | 2)ω

P2

Y (1) = 1

P5 : t(P5) = 2
D5(X) = 11(1 | 2)ω

D5(Y ) = 12(1 | 2)ω

P2

Y (1) = 2

X(1) = 1

P6 : t(P6) = 1
D6(X) = 12(1 | 2)ω

D6(Y ) = 1(1 | 2)ω

X

X(1) = 2

Y (0) = 1 Y (0) = 2

X(0) = 1 X(0) = 2

Figure 1: A search tree for an St-CSP.

In each search state P , a variable X with t(X) = t(P) is
selected. With each d ∈ D(X)(t(P)), P is branched with the
assignment X(t(P)) = d. In Figure 1, upon completion of
assignment to datons in time point 0 at P2, the search selects
a variable with current time point as t(P2) for daton assign-
ment. The search tree here first selects X(1) and branches for
X(1) = 1 and X(1) = 2 respectively.

Note that t(P0) = t(P1) = 0, but t(P2) = t(P1) + 1. We
say that there is an advancement of current time point from
P1 to P2 but not from P0 to P1. We define the set of search
states with advancement of current time point from their par-
ent search states plus P0 to be Φ = {Pi | t(parent(Pi)) <
t(Pi)}∪{P0}, where parent(P) gives the parent search state
of P and P0 is the root node of the search tree. Each search
state in Φ corresponds to a complete assignment to all daton
variables at and before a time point. In the search tree in Fig-
ure 1, Φ includes P0, P2, P4, and P5 among the first 7 nodes.

Since the streams are defined on infinite time points, the
search procedure will advance the time point forever. To
avoid infinite search, we define the notion of dominance
of one search state over another. A search state Pi =
(X ,Di, C) is dominated by Pj = (X ,Dj , C), denoted as
Pi ≺ Pj , if and only if Pi,Pj ∈ Φ, Pj is an ancestor of
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Pi, and ti = t(Pi), tj = t(Pj), ∀X ∈ X , Di(X)(ti,∞) =
Dj(X)(tj ,∞)∧∀C ∈ C,

∏
X∈scope(C) Di(X)(ti,∞)∩C =

∏
X∈scope(C) Dj(X)(tj ,∞) ∩ C. The conditions for domi-

nance ensure the solution space of both Pi and Pj , when only
considering the time points after t(Pi) and t(Pj) respectively,
is the same, since the domains are the same and each con-
straint represents the same set of tuples of streams.

The search states P4 and P5 in Figure 1 are dominated by
P2. Since D4(X)(2,∞) = D2(X)(1,∞), D4(Y )(2,∞) =
D2(Y )(1,∞) and ((D4(X) × D4(Y )) ∩ C)(2,∞) =
((D2(X) × D2(Y )) ∩ C)(1,∞) = ((1, 1) | (1, 2))ω . This
is similar for P5.

Suppose Pi is dominated by Pj , where Pi,Pj ∈ Φ. There
is a path from Pj to Pi in the search tree. The path cor-
responds to a sequence of daton assignments, denoted as s,
between time points t(Pj) and t(Pi) − 1. Therefore, for all
α ∈ L(sol(Pi)), sα ∈ L(sol(Pj)), where sα is s appended
with α. As Pi and Pj share the same solution space after a
certain time point, such operation can be done infinitely many
times and sω is one of the solutions to Pi and Pj . For exam-
ple, in Figure 1, the path from P2 to P4 corresponds to the as-
signment {X(1) = 1, Y (1) = 1}. Since P4 is dominated by
P2, the solution space of P2 is the same as that of P4 after 1
time point. Therefore, the assignment {X(i) = 1, Y (i) = 1}
can always be satisfied and {X = (1)ω, Y = (1)ω} is one of
the solutions.

As the domains can be infinite, the computation of con-
junction of constraints and domains is infeasible. We pro-
pose simple and sufficient conditions for dominance detec-
tion. Given an St-CSP P = (X ,D, C). As all the datons
are fixed before time point t(P), we limit our attention to
time point t(P) and onwards. We define a limited view of

P to be P̂ = (X , D̂, Ĉ), which can be obtained from P
by removing the time points from 0 to t(P) − 1 such that

∀X ∈ X , D̂(X) = D(X)(t(P),∞) and Ĉ = {Ĉ(i) | ∀i ≥

0, C ∈ C } where Ĉ(i) is C(i) with all the occurrences of
X(i), i < t(P), replaced by the assigned values to X(i)’s.

Theorem 2. Given Pi,Pj ∈ Φ. If P̂i = P̂j and Pj is an
ancestor of Pi, then Pi ≺ Pj .

Proof. Suppose Pi = (X ,Di, C), Pj = (X ,Dj , C), ti =
t(Pi), and tj = t(Pj). Since Pi,Pj ∈ Φ and, Pj

is an ancestor of Pi, we only have to show that when

P̂i = P̂j , (1) ∀X ∈ X , Di(X)(ti,∞) = Dj(X)(tj ,∞)
and (2) ∀C ∈ C,

∏
X∈scope(C) Di(X)(ti,∞) ∩ C =

∏
X∈scope(C) Dj(X)(tj ,∞) ∩ C are true.

When P̂i = P̂j , condition (1) is satisfied by the defini-

tion of limited view, as ∀X ∈ X , D̂i(X) = D̂j(X). Since

∀C ∈ C, Ĉi = Ĉj and by condition (1), condition (2) is also
satisfied.

Next, we analyze the termination and complexity of this
search approach. From Table 1, we observe that different
translation rules are applied to the fby operator depending
on the time point i. A stream constraint C, in which the
maximum nested applications of fby is n, for all time points

Part (1) (2) (3)

Time 0 1 2 3 . . .
D(X) = 1 1 (1 | 2) (1 | 2) . . .
D(Y ) = 1 (1 | 2) (1 | 2) (1 | 2) . . .

Figure 2: The division of time line into three parts for search
state P3 in Figure 1.

i ≥ n, Ti(C) is translated with the same set of rules. There-
fore, we have the following property.

Property 1. Given a stream constraint C with n nested ap-
plications of fby. ∀i > n, Ti(C) share the same structure as
Tn(C).

Two daton constraints C(i) and C(j) share the same struc-
ture when C(i) becomes C(j) after replacing i by j. Take
the above stream constraint “X = Y fby Z” as an example,
since there is only one fby operator, for all time points i ≥ 1,
the daton constraint is X(i) = Z(i− 1).

When P̂i = P̂j , Pi and Pj share the same search space
after t(Pi) and t(Pj) respectively. The order of variable as-
signment in the search strategy divides the time line into three
parts: (1) all daton variables are fixed, (2) some daton vari-
ables are fixed, and (3) no daton variables can be fixed. For
example, the search state P3 in Figure 1, the window of part
(1) is [0, 0], that of part (2) is [1, 1], and that of part (3) is
[2,∞] which is depicted in Figure 2.

Theorem 3. The time complexity for dominance detection on
a pair of search states is O(w(d|X | + a|C|)), where w is the
width of part (2), d is the maximum number of possible da-
ton at any time point, and a is the maximum arity of stream
constraints.

Proof. (Sketch) The starting point of part (2) for an St-CSP
P is t(P). To check domain equivalence, we can consider
only part (2) of the time line since there is no difference for
part (3). This takes time O(wd|X |). We then check constraint
equivalence. Every constraint can involve only a finite num-
ber of fby operators. By Property 1, after a finite number of
time points, all the daton constraints share the same structure.
As the constraint may involve a finite number of daton vari-
ables before time point t(Pj) or t(Pi), we have to check the
equivalence of the values which are assigned to those daton
variables. This checking takes O(wa|C|).

The sufficient condition (Theorem 2) depends on the num-
ber of datons, width of part (2), and the number of vari-
ables. As all are finite, there must be two search states in
each branch matching the condition for dominance detection.

Lemma 3. Each branch in a search tree is finite and must
either (a) end in failure or (b) contain search states Pi and
Pj such that Pi ≺ Pj and the branch terminates at Pi.

Proof. The search procedure branches for each possible da-
ton for a selected variable at a time point. Since the daton
domain is finite, there is a finite number of branches. The
branch ends in failure once there is no consistent daton to be
assigned; otherwise, the branch continues. At every advance-
ment of time point, the search performs dominance detection.

600



P0start P2

P4

P5

(1, 1)

(1, 1)

(1, 2)

ε

ε

Figure 3: A Büchi automaton representing a subset of all so-
lutions of the St-CSP in Figure 1.

As there are finite possible datons and finite number of stream
constraints in the problems, there must be two search states
along a branch of the search tree that satisfy the dominance
relation.

Theorem 4. The search procedure terminates.

Proof. The theorem follows directly from Lemma 3.

Among the first seven search states shown in Figure 1, the
search states P4 and P5 are dominated by P2. In search state
P6, the assignment X(1) = 2 cannot satisfy the constraint
X = first Y and the search fails.

4.2 Construction of Solution Set

When solving solutions of St-CSP P through the search pro-
cedure, we are actually building the corresponding Büchi au-
tomaton A, which can recognize and thus also generate the
solution set. We want L(A) = L(sol(P)).

The automaton A = (Q, q0,△, F ) is built according to the
search tree. For each search state Pi ∈ Φ, Pi is associated to
a state state(Pi) in A, thus Q = {state(Pi) | Pi ∈ Φ}. The
root node of the search tree, P0, is associated with the starting
state of A where q0 = state(P0). For every non-root search
state Pi ∈ Φ\{P0}, there is an edge pointing from state(Pj)
to state(Pi) where Pj is the nearest ancestor of Pi in Φ.
The edge is labelled with the assignment tuple made from
the search state Pj to Pi. For each leaf node Pi associated
with state state(Pi), if Pi ≺ Pj , there is an edge pointing
from state(Pi) to state(Pj) labelled with an empty string ǫ.
Since the automaton is generated from the search tree, all the
possible runs correspond to solutions. The set of final states
contains all the states in the automaton, thus F = Q. The
final automaton can be simplified. When a path in search tree
leads to failure, there are some states in A cannot be included
in any accepting runs. These states can be removed. When
Pi ≺ Pj , state(Pi) can be merged with state(Pj) such that
the edge labelled with ǫ can be eliminated.

Figure 3 shows the subset of solutions corresponding to the
first seven search states in Figure 1. The associated search
states are labelled on the states in the automaton. From the
automaton, the subset of solutions is (1, 1)((1, 1) | (1, 2))ω .

The solution automaton A corresponds to the structure of
search tree, where every search state Pi ∈ Φ is a state and
every complete daton assignment is an edge.

Theorem 5. The solution automaton takes O(wa|C|+ d|X |)
space, where w is the width of part (2), a is the maximum
arity of constraint, and d is the maximum number of possible
datons at any time point.

P = ({X,Y }, {D(X) = D(Y ) = (1 | 2)ω}, {C : X = first Y })

P0 : t(P0) = 0
D0(X) = (1 | 2)ω

D0(Y ) = (1 | 2)ω

P1 : t(P1) = 1
D1(X) = 11(1 | 2)ω

D1(Y ) = 1(1 | 2)ω

P2 : t(P2) = 2
D2(X) = 111(1 | 2)ω

D2(Y ) = 11(1 | 2)ω

P1

Y (1) = 1

P3 : t(P3) = 2
D3(X) = 111(1 | 2)ω

D3(Y ) = 12(1 | 2)ω

P1

Y (1) = 2

X(0) = 1 X(0) = 2

Figure 4: A search tree for an St-CSP enforced with prefix-1
consistency.

Proof. Each advancement of current time point in the search
corresponds to a state in the automata. The number of nodes
Pi, where Pi ∈ Φ along the search path, is O(wa|C|), which
is the number of different patterns in part (2). Each state con-

tributes at most d|X | edges for every possible daton assign-
ment.

The following theorem shows that the constructed automa-
ton recognizes all solutions and only solutions of P .

Theorem 6. (Soundness and Completeness) Given a Büchi
automaton A constructed from the search procedure for an
St-CSP P , (α1, α2, . . . , αn) ∈ sol(P) ↔ α1 ⊗ α2 ⊗ . . . ⊗
αn ∈ L(A).

5 Consistency Algorithm

Enforcing consistency helps reduce search space, by identify-
ing and avoiding infeasible search branches. In St-CSP, due to
the infinite domain size, it is expensive to enforce generalized
arc consistency (GAC) [Bessière and Régin, 1997]. Accord-
ing to the search strategy introduced in the previous section,
we define a weaker notion of consistency, namely prefix-k
consistency, which enforces GAC on the daton variables in a
size k window of time points.

In the search tree, the current time point t(P) of a search
state P contains the first unbound daton variable. We limit
our attention to the width k window of time points starting
from t(P), which is R = [t(P), t(P)+k−1]. Among the da-
ton variables in this window of time points, we enforce GAC.

By the definition of GAC [Bessière and Régin, 1997],
a daton variable Xv(i) in an St-CSP P is GAC with re-
spect to daton constraint C(j) if and only if D(Xv(i)) =
(
∏

Xu(m)∈scope(C(j)) D(Xu(m)) ∩ C(j)) ↓Xv(i) where

↓Xv(i) projects the tuples to Xv(i).
A stream variable X is prefix-k consistent with respect to

a stream constraint C if and only if ∀i ∈ R, X(i) is GAC
with respect to all the daton constraint C(j) ∈ C such that
X(i) ∈ scope(C(j)). An St-CSP P is prefix-k consistent if
and only if all the stream variables in P are prefix-k consistent
with respect to all C ∈ C.
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For example, in Figure 1, the search state P1 is not prefix-
1 consistent with respect to the constraint because there are
no datons d ∈ D(X(0)) such that X(0) = Y (0) when
Y (0) = 2. Figure 4 shows the search tree of the prob-
lem with prefix-1 consistency enforced. After the assignment
X(0) = 1 from search state P0, prefix-1 consistency is en-
forced at time point 0 and removes 2 from D(Y (0)). As both
X(0) and Y (0) are bound, the search advances the current
time point and enforces prefix-1 consistency at time point 1,
which gives the search state P1. We can see that the search
tree becomes smaller and some nodes leading to failure, such
as P6 in Figure 1, are pruned earlier.

The notion of prefix-k consistency is enforced on the daton
variables and daton constraints. The enforcement algorithm
in Algorithm 1 is based on the classical GAC enforcement,
but we are only interested in the daton variables X(i) whose
time point i falls in R. In the procedure PrefixK, only daton
variables with time points in the width R will be considered.
The Revise procedure checks if each of the values in the
daton variable domain can be extended to a tuple which is
consistent to the daton constraint. When there are changes
made to the domain, all the constraints with variables inside
the range of time points will be enqueued.

1 Procedure Revise(P, xi, c)
2 //xi and c are daton variable and daton constraint respectively.
3 change := false;
4 for dj ∈ D(xi) do
5 support := false;
6 for (d0, d1, . . . , dj , . . . , dn) ∈

D(x0)×D(x1)× . . .× {dj} × . . .×D(xn) do
7 if (d0, d1, . . . , dj , . . . , dn) ∈ c then
8 support := true;

9 if support = false then
10 D(xi) := D(xi) \ {dj};
11 change := true;

12 return change;

13 Procedure PrefixK(P, k)
14 R := [t(P), t(P) + k − 1];
15 Q := {(Xm(i), Cn(j)) |Xm(i) ∈ scope(Cn(j)) ∧ i ∈ R };
16 while Q �= ∅ do
17 take and remove (Xm(i), Cn(j)) from Q;
18 if Revise(P, Xm(i), Cn(j)) then

19 for Cn′(j′) ∈ C s.t. Xm(i) ∈ scope(Cn′(j′)) do

20 for Xm′(i′) ∈ Cn′(j′) do

21 if Xm′(i′) �= Xm(i) ∧ i′ ∈ R then

22 Q := Q ∪ (Xm′(i′), Cn′(j′));

Algorithm 1: Enforcing prefix-k consistency.

Theorem 7. (Correctness) If St-CSP P ′ is obtained from P
by applying Algorithm 1, then P ′ is equivalent to P and P ′ is
prefix-k consistent.

Proof. Given i ∈ R. Suppose ∃d ∈ D(X(i)) such that
∃C(j), X(i) ∈ scope(C(j)), d /∈ C(j) ↓X(i) and d remains

in D(X(i)) after executing Algorithm 1. In line 18 of the
algorithm, C(j) will be selected. In procedure Revise, the

condition in line 7 will never be satisfied. Thus d is removed
from the domain of D(X(i)) and this contradicts the assump-
tion.

Theorem 8. The algorithm to enforce prefix-k consistency
takes O(adak|C|) time, where a is the maximum arity of daton
constraints, and d is the maximum possible datons at any time
point.

Proof. The complexity of Revise is O(da) to check for sup-
port for each of the possible daton in the daton domain. The
procedure PrefixK enforces prefix-k consistency. There
are O(ak|C|) tuples in the queue Q, each of them will be put
into queue again for at most O(da) time.

6 Examples and Experiments

To verify the feasibility of our framework, we have modelled
the periodic still life problem, traffic light scheduling, 15-
puzzle, simulation of juggling, and jazzy harmony generation
as St-CSPs. The periodic still life problem looks for initial
patterns that lead to oscillating patterns after a finite num-
ber of steps. The traffic light scheduling problem arranges
traffic light signals in a road junction such that the vehicles
will never crash. Though optimal solutions to a valid 15-
puzzle always involves finite number of moves, the problem
looks for all possible solutions so that the number of moves
is not known in advance. Due to space limitation, we de-
scribe only the juggling problem and harmony generation in
details. These problems have non-UP-stream solutions. We
implement a prototype St-CSP solver enforcing prefix-k con-
sistency. Comparison among different k values is conducted.
The solution automata are constructed automatically on-the-
fly during search and translation time is included in our re-
sults. Experiments are conducted on a Sun Blade 2500 ma-
chine with 2GB memory.

6.1 Simulation of Juggling

The task is to simulate basic juggling [Apt and Brand, 2006]

involving n balls. For simplicity, the patterns ensure that
there is at most one ball in hand at any time, and every ball
is thrown for maximum m time points after which the ball is
caught. Each problem is characterized by (n,m). We aim
to find all possible sequences of juggling patterns which may
change over time.

The n variables X1, X2, X3, . . . , Xn represent the time in-
terval after which the ball is caught. For example, if X1 has
daton 5 at time point 3, ball 1 will be in the air for 5 time
points and be caught at time point 7. The variable A indicates
the force to throw the ball, which reflects the time interval
for the ball in the air. A ball thrown with odd (even) units of
force will be caught by different (same) hand. The domain of
the variables are: ∀1 ≤ i ≤ n,D(Xi) = (1|2|3| . . . |m)ω and
D(A) = (0|1|2| . . . |m)ω . The variable A has daton 0 at the
time when no ball is at hand.

A ball falls down by 1 unit at a time, unless it is being
thrown with force A again. The constraints are: ∀1 ≤ i ≤ n,
(Xi == 1) → (next Xi == A) and (Xi �= 1) →
(next Xi = Xi − 1). Also, no two balls are being caught
simultaneously: ∀1 ≤ i < j ≤ n,Xi �= Xj .
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Left

Right

t 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Figure 5: Space-time diagram of a juggling pattern. The three
balls are represented by a solid, dashed, and dotted lines re-
spectively.

Table 2: Run time and number of fails for simulating juggling
for instance (n,m). The ‘-’ marks 6000 seconds timeout.

No Consistency Prefix-1 Prefix-2 Prefix-3

(n,m) Time Fails Time Fails Time Fails Time Fails

(3,3) 0.15 332 0.01 18 0.00 8 0.00 3
(3,4) - - 387.65 570049 259.40 235680 741.52 141277
(4,4) 13.88 1058 0.16 28 0.05 11 0.05 5
(5,5) 2644.42 2686 23.12 40 5.19 15 5.76 6
(6,6) - - 5452.18 55 1011.82 17 1112.05 7

One solution of instance (3, 5): X1 = (3, 2, 1, 4)ω, X2 =
(2, 1, 4, 3)ω, X3 = (1, 3, 2, 1)ω, A = (3, 4, 4, 1)ω which is a
UP solution, is shown in Figure 5 by a space-time diagram.
The automaton in Figure 6 recognizes a subset of solutions to
the problem. The solution can be obtained in a run starts at
state 0 and followed by sequence of states 1, 2, 3, 4 repeat-
edly. Other solutions can also be obtained by transversing
different edges, including non-UP solutions, such as: X1 =
〈3, 2, 1, 3, 2, 1, 4, 3 . . .〉, X2 = 〈2, 1, 3, 1, 4, 3, 2 . . .〉, X3 =
〈1, 3, 2, 3, 2, 1, 1 . . .〉, A = 〈3, 3, 3, 4, 4, 1, 4 . . .〉 which is the
run of states 0, 1, 5, 0, 1, 2, 3, 4, . . ..

We conduct experiments on instances of (n,m) with
prefix-k consistency where k ∈ {1, 2, 3} and the results are
listed in Table 2. When n = m, there are only repetitive
juggling patterns as solutions. After enforcing consistency,
the solutions can be easily obtained and thus the number of
fails is small in those cases. When k is larger, the consisten-
cies become stronger and thus more infeasible search space
is pruned. As the time complexity of prefix-k consistency in-
creases with k, the overall runtime cannot be compensated by
the extra pruning when k is large.

In the problem, all constraints relate daton variables across
only two time points, e.g. Xi(t) and Xi(t + 1) in the con-
straint (Xi == 1) → (next Xi == A). We conjecture that
the optimal solving performance is obtained when k is chosen
as the maximum difference of time points of all constraints in-
volving the “next” and “fby” operators. The long solving
time for instances (3, 4) and (6, 6) is due to the enumeration
of many solutions and large problem size respectively.

0start 1 2 3 4

5

(3, 2, 1, 3) (2, 1, 3, 4) (1, 4, 2, 4) (4, 3, 1, 1)

(3, 2, 1, 3)(2, 1, 3, 3)
(1, 3, 2, 3)

Figure 6: A Büchi automaton representing a subset of all so-
lutions for (X1, X2, X3, A) of instance (3, 5).

6.2 Towards Generating Jazzy Harmonization

This problem is to generate the harmonization of four-part
choral music. A choral music contains soprano, alto, tenor,
and bass. Given the soprano notes which are repeated indefi-
nitely, we have to determine the notes for alto, tenor, and bass
so that the music is pleasant to listen for human beings.

We use variables X1, X2, X3, X4 to represent the se-
quences of notes for soprano, alto, tenor, and bass respec-
tively. A music note is encoded as a number. For exam-
ple, 60 is middle C (C4). We limit the range of notes to
two octaves from 48 (C3) to 72 (C5). The domains are
D(X1) = D(X2) = D(X3) = D(X4) = (48 | . . . | 72)ω .
Auxiliary variables help in modeling. For example, we have
a set of pseudo-Boolean variables indicating the notes of each
part, such as CInX1 , CsharpInX1 , and DInX1 which repre-
sent whether X1 takes the note C, C�, and D respectively.

In this problem, we use the first four bars
of the melody from “Twinkle Twinkle Lit-
tle Star” (CCGGAAG, FFEEDDC) as a sen-
tence and repeat it indefinitely: melody =
(60, 60, 67, 67, 69, 69, 67, 65, 65, 64, 64, 62, 62, 60)ω . The
end of the sentence is indicated by a pseudo-Boolean stream:
end = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1)ω .

We implement a number of rules for harmonization [Tsang
and Aitken, 1991]. For example, the parallel fifth rule is spec-
ified as ∀i < j,Xi −Xj == 7 → next(Xi −Xj) <> 7.
The rule requiring that voices should never cross each other
is expressed by ∀2 ≤ i ≤ 4, Xi > Xi−1.

The auxiliary variables can be constrained by CInXi =
(Xi/12 == 0), CsharpInXi = (Xi/12 == 1), DInXi =
(Xi/12 == 2), etc. The existence of a note in a chord can
be defined in terms of these auxiliary variables: existC =
CInX1 or CInX2 or CInX3 or CInX4 . Then, each of the
seven chord types can be given by constraints, e.g., chordI =
(existC and existE and existG) for Chord I. Now, we can
require that each chord must be one of the seven standard
types: chordI + . . .+ chordVII = 1

By changing pitch, tempo, and delay of harmony, we can
introduce jazzy feeling to the music.

When we decide to change the pitch of the song up to five
intervals, we have to change it for every note in a sentence.
Therefore, D(offset) = (−5 | . . . | 5)ω and not end →
(next offset = offset) and thus X1 = melody + offset .

The change of tempo is also applied to a sentence for up
to three times slower. D(tempo) = (1 | 2 | 3)ω which repre-
sents the multiples of tempo of the original note: not end →
(next tempo = tempo).

The last feature is delay of harmony. When this style is
applied to a chord, the harmony will be silent in the first half
of the time. However, this style cannot be applied frequently
to maintain pleasant feeling. Among any three consecutive
chords, at most one chord can apply this style. Moreover,
by the convention of music composition, the last note of each
melody should keep long, and thus the style cannot be applied
to the last note. We use a pseudo-Boolean variable delay
to indicate the application of this style with initial domain
(0 | 1)ω . The style is implied by imposing the following con-
straints: delay + next delay + next next delay ≤ 1 and
end → not delay .
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With the remaining constraints, we generate harmony for
a given soprano which contains a repeated melody. The har-
mony can vary as the soprano repeats over time based on the
solution automaton, which can serve as a basis for musical
improvisation. Sample MIDI files generated from our solver
can be downloaded online1.

7 Concluding Remarks

Streams are related to coinduction [Rutten, 2005]. Fages
and Rizk [2009] specify the problem using a formula in LTL
which is the first approach to softness and optimization by
quantifying the satisfaction degree of the formula. Pralet and
Verfaillie [2008] use different techniques to solve problems
in which variables have temporal dimension. Work on clas-
sical temporal constraints are too numerous to be mentioned
[Dechter, 2003]. Our work also has some loose connections
with online constraint solving [Verfaillie and Jussien, 2005].
The work by Gavanelli et al. [2005] is related but different
from ours. It is the variable domains that are changing with
possible values coming in incrementally, but variables still
take just a scalar value from the evolving but always finite
variable domains. In our case, each variable takes an infinite
data stream as value from a possibly infinite variable domain
of streams. Planning problems have been solved by constraint
programming [van Beek and Chen, 1999]. While the number
of steps is not known prior to solving, the problem is mod-
elled for a fixed number of steps. The problem is re-modelled
with increased number of steps until there is a solution found.

We consider data streams as a new domain for constrained
variables. The constraint language allows us to use any clas-
sical constraint interpreted pointwisely and temporal opera-
tors inspired by the data-flow language Lucid [Wadge and
Ashcroft, 1985]. The modelling examples show that the
St-CSP framework makes it possible to give a declarative
statement, such as the juggling specification, of the problem,
which separates problem formulation and solution methods.
This brings us one step towards the Holy Grail of program-
ming [Freuder, 1997]: the user states the problem, the com-
puter solves it. We have implemented a prototype solver for
the framework to find all solutions. By using Büchi automata,
the solver can give solutions including non-UP ones.

Optimization in St-CSP is an important future direction.
For example, in musical generation, some rules can be more
preferable to others. The framework opens a new direction
of research. We have described the application to simulate
the juggling and generate music harmonization in this paper.
Other real life applications, such as controller synthesis, are
worth for exploration. Interaction with live data streams is
another possible venue for future work. Studying the effect
of variable and value orderings is also worthwhile. Enhance-
ment on the search strategies, such as applying more accurate
heuristics for dominance detection, and introducing new con-
sistency notions to the St-CSP, can improve the search per-
formance. Improvement to the prototype solver in terms of
implementation techniques and the use of data structures is
also imminent.

1http://www.cse.cuhk.edu.hk/˜jlee/stcsp.mid
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