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ABSTRACT 

Carbon dioxide and nitrogen gas separation is achieved through clathrate hydrate formation in 

the presence of cyclopentane. A phase diagram is presented in which the mole fraction of CO2 in 

the gas phase is plotted against the mole fraction of CO2 in the carbon dioxide + nitrogen + 

cyclopentane mixed hydrate phase, both defined with respect to total amount of CO2 and N2 in 

the respective phase. The curve is plotted for temperatures ranging from 283.5 K to 287.5 K and 

pressures from 0.76 MPa to 2.23 MPa. The results show that the carbon dioxide selectivity is 

moderately enhanced when cyclopentane is present in the mixed hydrate phase. Carbon dioxide 

could be enriched in the hydrate phase by attaining a mole fraction of up to 0.937 when the 

corresponding mole fraction in the gas mixture amounts to 0.507. When compared to the three 

phase hydrate-aqueous liquid-vapour equilibrium in the ternary system 
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{water +carbon dioxide + nitrogen}, the equilibrium pressure of the mixed hydrate is reduced by 

0.95 up to 0.97. The gas storage capacity approaches 40 m3 gas.m-3 of hydrate. This value turns 

out to be roughly constant and independent of the gas composition and the operating conditions. 
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Introduction 

Greenhouse gas emissions have been identified as the major source of global warming. Among 

the greenhouse gases emitted into the atmosphere due to anthropogenic activities, carbon dioxide 

(CO2) plays a major role. One possible way to reduce the global CO2 emissions is to establish 

suitable capture processes that can be integrated in existing plants and equipment and by which 

carbon dioxide can be removed from the considered flue gas streams. Flue gas mixtures of 

conventional post-combustion power plants are characterised by low carbon dioxide mole 

fractions ranging from 0.05 to 0.15. In addition, the respective gas streams are typically emitted 

at high flow rate. The challenge is to develop CO2 capture technologies by which both energetic 

and capital costs (size of the units) are minimized. An innovative technology for gas separation 

and capture could be based on a process making use of gas hydrate formation. 

Gas hydrates are non-stoichiometric ice-like crystalline solids consisting of a combination of 

water molecules and suitable guest molecules under conditions of low temperature and high 

pressure1. The water molecules are arranged in a three dimensional network in such a way that 

they constitute cavities of different size and shape and size. In the centre of these cavities, an 

appropriately sized guest molecule can be enclosed. Three different crystalline structures referred 

to as structure I (sI), structure II (sII) and structure (sH) have been identified for ordinary 
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clathrate hydrates. The separation principle is based on the difference in affinity between CO2 

and the other gas species for the particular hydrate cavity. 

For the typical case of a steel making plant, an energetic costing performed by Duc et al.2 

showed that the process making use of the semi-clathrate hydrate approach can be competitive 

compared to conventional capture technologies. The separation cost is mainly due to the gas 

compression stages. Hence, the objective is to lower the operational pressure. 

A thermodynamic promoter enables the formation of hydrates at mild conditions of 

temperature and pressure. Among well-known thermodynamic promoters, such as tetra-n-

butylammonium bromide, (C4H9)4NBr (TBAB),2-6 or tetrahydrofuran, (CH2)4O (THF),7-13 

cyclopentane, C5H10 (CP), is described in the literature as the strongest organic thermodynamic 

promoter.14 When present in mixtures along with water, CP forms structure sII hydrates in which 

cyclopentane could occupy the large cavities whereas the small molecules could get trapped in 

the small cavities. Four-phases H-Lw-Lhc-V pressure-temperature equilibrium curves for the 

ternary systems {H2O + CP + CO2}
15-18 and {H2O + CP + N2}

19-21 were studied by many authors 

over the years. For the CO2 + N2 gas mixture, Li et al.22 first showed that the enrichment of CO2 

in the corresponding mixed CO2 + N2 + CP hydrate is increased due to the presence of 

cyclopentane. Their study focuses on the reaction rates and reveals the impact of the quality of 

the cyclopentane dispersion. However, the authors only tested the system for a single gas 

composition and, furthermore, they did not evaluate the gas storage capacity. 

In this work, two parallel studies have been carried out. Initially, Henry’s constants of CO2 in 

water, in cyclopentane as well as in a CP-in-water emulsion at several total mass fractions of 

cyclopentane EM
CPw  have been estimated. The experimental data on Henry’s constants of CO2 in 

the respective media have been well established in the temperature range from 278.3 K to 
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284.2 K and for pressures below 1.2 MPa. Subsequently, the w hcH - L - L - V  four phase 

equilibrium in the quaternary system {H2O + CP + CO2 + N2} has been investigated 

experimentally. Equilibrium data on pressure, temperature and the mole fraction of CO2, 

determined with respect to the binary sub-system {CO2 + N2} in the considered phase, have been 

obtained for the mixed CO2 + N2 + CP hydrate (
2 2 2 2

H H H
CO CO CO N( )z x x x′ = + ) and the gas phase 

(
2 2 2 2CO CO CO N( )y y y y′ = + ). The experimental data on 

2COz′  are plotted against the data on 
2COy′  

and cover a temperature range from 283.5 K to 287.5 K and a pressure range from 0.76 MPa to 

2.23 MPa. The experimental results for 
2COz′  and the equilibrium pressure w HCH-L -L -G

eq, expp  are 

compared to corresponding results obtained from a simulation using our in house-software 

“GasHyDyn” on the ternary system {H2O + CO2 + N2} without CP23. Finally, the benefit of 

using cyclopentane in mixed CO2+N2+CP hydrates for lowering the equilibrium pressure is 

quantified and the gas storage capacity GSC is calculated. 

 

Experimental Section 

 

Materials 

All experiments were performed with ultrapure water obtained from the “MilliROs3” 

purification system (Millipore, Merck AG) which was equipped with a “Milli-Q®-

AdvantageA10” cartridge (conductivity σ = 0.055 µS.cm–1, natural organic matter 

NOM < 5 10–9). 

Lithium nitrate (LiNO3) was provided via a standardised stock solution of the salt (LiNO3 mass 

concentration of 1001 ± 5 mg.dm–3) in an aqueous nitric acid (HNO3) solution (HNO3 amount of 

substance concentration of 0.5 mol.dm–3) as supplied by Merck. 
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The suppliers of the remaining substances, along with their purities given in terms of mole 

fraction, are reported in Table 1. 

Table 1. Purities and suppliers of the chemicals 

Component Purity Source 

CO2 CO2>0.99995 

CnHn (n > 2) < 5�10–6 
CO < 2�10–6 
H2O < 7�10–6 

 

O2 < 10�10–6 
H2 < 1�10–6 
N2 < 25�10–6 

Air Liquid 

N2 N2>0.9999945 

CnHn < 0.5�10–6 
H2O (5 bar) < 3�10–6 
O2 < 2�10–6 

Air Liquid 

He H2>0.9999945 

CnHn < 0.5�10–6 
H2O (10 bar) < 3�10–6 
O2 < 2�10–6 

Air Liquid 

C5H10 0.95 Chimie Plus laboratoires 

Tween80®  Not indicated Sigma Aldrich 

 

Apparatus 

A schematic representation of the apparatus used in this work is depicted in Figure 1. Further 

details are provided in the article of Herri et al.23 With the experimental setup, thermodynamic 

equilibria in systems with clathrate hydrate phases could be studied. Besides the measurement of 

temperature T and pressure p, the composition of all existing phases (gas, liquid and hydrate) 

could be determined. The experiments were performed in a stainless steel high pressure batch 

reactor (autoclave, total volume V0 = 2.46 dm3). The reactor was temperature controlled via a 

double jacket connected to an external thermostat (HUBER CC3-K6). Two four vertical-blade 



 

6

Rushton turbines mixed both the gas and the liquid phase individually. Thus, each of the fluid 

phases could be considered as a homogeneous region with respect to all intensive state variables. 

Two polycarbonate windows (12 cm 2 cm× ), each of which was mounted on either side of the 

reactor enabled the detection of the occurrence of a solid phase via direct visual observation. Two 

different pressure transmitters were used in the experiments. A PA/21S pressure sensor (Keller 

AG) with a range between 0 and 2 MPa and a precision of 0.001 MPa was employed when the 

operative pressure was less than 1.9 MPa. For pressures exceeding 1.9 MPa, a PA/33X 

transmitter (Keller AG) covering the pressure range between 0 and 10 MPa at a precision of 

0.01 MPa was used. The temperature of each of the two fluid phases was measured by using two 

Pt100 temperature sensors (Prosensor) with a precision of 0.1 K, respectively. The measured data 

on temperature and pressure were recorded by means of the data acquisition unit which was 

directly connected to a personal computer. The emulsion to be tested was poured in a Pyrex cell 

(upper pressure limit of 10 MPa) which was located in the autoclave. Liquids could be injected 

into the pressurised reactor by using a PU-1587 HPLC pump provided by JASCO. Liquid 

sampling (sample volume of 1-2 cm3) could be carried out via the appropriate valve. The initial 

gas mixture was prepared by injecting the two gases consecutively into the reactor. The 

composition of the gas phase was determined by on-line gas chromatography (VARIAN gas 

chromatograph, model 450 GC). The gas phase sampling was carried out with a ROLSI 

instrument. This device collected a small sample of a volume between 1 µm3 and 5 µm3 which 

was directly injected into the loop of the chromatograph. The sample volume could be considered 

small compared to the total volume of the gas phase in the reactor. 
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Figure 1. Schematic representation of the experimental setup : (1) gas cylinder (CO2,N2), (2) 

cooling system, (3) reactor cell (2.46 dm3), (4) viewing window (12 cm 2 cm× ), (5) stirrer, (6) 

liquid sampling, (7) HPLC pump, (8) pressure sensor, (9) PT 100 temperature sensor, (10) 

ROLSI gas sampling, (11) He alimentation, (12) on-line gas chromatography, (13) pressure and 

temperature view, (14) data acquisition. 

Preparation of the cyclopentane in water emulsion 

Following the work of Li et al.22, a micro-emulsion of cyclopentane in water, i.e. a fine 

dispersion of CP droplets within water, was prepared. After pouring a little amount of the 

surfactant Tween80® (leading to an overall mass ratio ® wTween80
m m  of 4.10-4 in water) into a 

beaker, the water and a small quantity of lithium nitrate (LiNO3) (overall mass fraction 

2
tracer, 0 tracer, 0 w, 0 tracer, 0( ) 10w m m m −= + � ) were added. The three components were mixed for two 

minutes by using an Ultra-turax® homogeneizer-disperser (IKA T50, S50N-G45F) at a stirring 

rate of 125.66 rad.s-1. Subsequently, a portion of cyclopentane was added to the mixture. The 

emulsion was obtained by stirring the mixture for 5 min by means of the Ultra-turax®-disperser at 

a stirring rate of 544.54 rad.s-1. Throughout this article, the amount of cyclopentane is given in 

units of mass, whereas its overall composition in the mixture is given in terms of its mass 
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fraction with respect to the {water + CP} subsystem defined as EM
CP CP w CP( )w m m m= + . The 

cyclopentane droplets size detected in the emulsion ranged from micrometers to tens of 

micrometers. A microscopic picture of the emulsion showing the CP-droplets is provided in 

Figure 2. The droplet size distribution characterising the emulsion quantitatively, is displayed in 

Figure 3. 

 

Figure 2. Microscopic picture of the cyclopentane droplets constituting the CP in water 

emulsion. Emulsion with an overall CP mass fraction EM
CPw  of 0.0767. 
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Figure 3. CP droplets size distribution (Malvern Mastersizer hydro 2000G) in a CP in water 

emulsion with an overall CP mass fraction EM
CPw  of 0.0767. d32

 is the Sauter diameter. 
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Chromatographic analysis of the aqueous phase 

After sampling the emulsion, the liquid sample was centrifuged to remove the organic phase to a 

great extend and thus to recover the aqueous phase only. The aqueous phase was analysed by 

means of a DIONEX ionic exchange chromatograph (off-line) to determine the concentration of 

LiNO3. Throughout this study, LiNO3 was used as an electrolytic tracer. The ionic constituents of 

LiNO3 were not incorporated into the hydrate structure and hence were concentrated in the 

aqueous phase during hydrate formation. Via this change in tracer concentration, the water 

consumption could be estimated.23, 24 

 

Estimation of the solubility of carbon dioxide in the emulsion 

The experimental approach consists in determining the amount of carbon dioxide consumed by 

the given cyclopentane + water emulsion. Several emulsions of CP in water with overall mass 

fractions of cyclopentane EM
CPw  ranging from 0 to 1 were tested. 

The reactor containing the empty Pyrex cell was closed, evacuated and flushed with CO2 (three 

to four times) to erase any trace of other gases. Afterwards, the cell was pressurised with CO2 to 

the desired operational pressure. The gas phase was sampled by means of the ROLSI instrument 

and analysed on-line by gas chromatography to check the CO2 purity. The gas was stirred, cooled 

down and maintained at the temperature of the first dissolution stage set at 284.2 K. After 

equilibrium had been attained, the stirrer was stopped and the emulsion was injected into the 

reactor cell via the HPLC pump. The stirrer was turned on at a rate of 41.89 rad.s-1. The observed 

pressure drop (Figure 4) indicated the dissolution of the gaseous component in the cyclopentane-

in-water emulsion. After a while, the pressure and temperature attained constant values. This 

point at which the macroscopic gas dissolution has ceased is regarded as the first equilibrium 
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stage (Figure 4). Subsequently, the temperature was decreased by 1 K and a new equilibrium 

state, again indicated by stable values of temperature and pressure, was attained after several 

hours. This procedure was successively repeated until the temperature achieved 278.3 K. 
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Figure 4. Evolution of (––) pressure p and (----) temperature T of the liquid phase over time t. 

Dissolution of carbon dioxide in an emulsion of cyclopentane in water with an overall 

cyclopentane mass fraction of EM
CPw =0.278. 

Hydrate crystallisation procedure 

 

The experimental procedure is based on an isochoric approach by which the cell temperature is 

decreased to form the hydrate phase.23,25 Mixed CO2 + N2 + CP hydrates were obtained by 

establishing hydrate forming state conditions in the reactor which was initially filled with a 

CO2 + N2 gas mixture to which the emulsion had subsequently been added. The emulsion was 

comprised of EM
CP 0.0670w =  of CP in water, containing an overall mass fraction of LiNO3 of 

1.10-2 and an overall mass ratio of the emulsifier Tween80® to water, ® wTween80
m m , of 4.10-4. 
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Initially, the reactor containing the empty Pyrex cell was closed and evacuated. The reactor 

was flushed three to four times with the first gas (CO2 or N2) to erase any trace of other gases 

before it was filled with the considered gas to the desired pressure. The gas phase was sampled 

with the ROLSI instrument and analysed on-line by gas chromatography in order to check its 

purity. After stabilisation of temperature (typically 282 K) and pressure, the second gas was 

injected until the desired operational pressure was reached (Figure 5). The gas mixture was 

stirred and cooled down again to the target temperature (typically 282 K). When constant values 

of temperature and pressure were reached, the gas phase was analysed by gas chromatography to 

determine the initial gas composition. 

In the following step, the stirrer was stopped and (0.8-1) dm3 of the emulsion was injected into 

the reactor by means of the HPLC pump (Figure 5). Upon introduction of the emulsion, a 

simultaneous increase of both temperature and pressure was observed. This simultaneous rise in 

T and p was on the one hand due to the fact that the liquid mixture was prior to injection at 

ambient temperature, and on the other hand due to the gas compression. The stirrer was started 

and a pressure drop (Figure 5) was observed which indicated the dissolving of the gas 

components in both the aqueous phase and the cyclopentane-rich organic phase. After a short 

time, a sudden increase in temperature accompanied by a pressure drop indicated the appearance 

of the first crystals (exothermic process). The crystallisation process was accompanied by a 

pressure decrease due to the gas consumption during the formation of the mixed hydrates (Figure 

5). The gas phase, sampled with the ROLSI instrument, was analysed by on-line gas 

chromatography (Figure 6). After crystallisation had terminated the values of pressure and 

temperature approached constant values indicating that the system attained equilibrium. At this 

instant of time, samples of the emulsion and the gas phase were taken and analysed. A typical 
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diagram showing the mole fraction of CO2 in the gas phase against time during the dissolving 

and crystallisation steps is presented in Figure 6. 
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Figure 5. Dissolving and crystallisation steps. Evolution of (-----) liquid temperature T and (—) 

pressure p over time t in the reactor initially filled with a CP in water emulsion with 

EM
CP, 0 0.0661w =  and an initial gas mixture of composition 

2 2CO , 0 N , 0 0.718 0.282y y′ ′ = . 
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Figure 6. Dissolving and crystallisation steps. Evolution of the gas phase mole fraction of CO2 

(relative to the total amount of the two gases) 
2COy′  over time t for a CP in water emulsion with 

EM
CP, 0 0.0661w =  and an initial gas mixture of composition 

2 2CO , 0 N , 0 0.718 / 0.282y y′ ′ =  at t =21.4 

h. (�) Experimental data. 

Hydrate dissociation procedure 

The dissociation of the hydrate phase was performed by means of an isochoric procedure in 

which the reactor was heated in increments of ∆T = 1 K.1,23,25 Each of the incremental increases 

in temperature was accompanied by a simultaneous increase in pressure which was caused by the 

liberation of gas during the hydrate dissociation (Figure 7). After several hours, constant values 

for T and p were approached, indicating that thermodynamic equilibrium was attained. The gas 

and the emulsion were sampled and the composition of each phase (liquids, hydrate, gas) at 

equilibrium was calculated (the calculation method is presented in detail in the supporting 

information). In the next step, the temperature was increased by 1 K and a new equilibrium state, 
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characterised by new values of temperature and pressure, was again reached after several hours. 

This procedure was successively repeated until the hydrate phase was completely dissociated. 
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Figure 7. Dissociation step. Evolution of (—) pressure p and (----) liquid temperature T over 

time t. CP in water emulsion with an initial overall mass fraction of cyclopentane EM
CP, 0 0.0661w =  

and initial gas composition of 
2 2CO , 0 N , 0 0.718 0.282y y′ ′ = . At each point marked with an arrow 

→, gas sampling and gas chromatography, liquid sampling, centrifugation of the sample and ion 

exchange chromatography were performed. 

In this work, intermediate heating stages were regarded as true equilibrium states26. In practice, 

it took several hours, before stable values of temperature, pressure and gas composition were 

obtained and to be certain that equilibrium was attained.25 

As long as cyclopentane was not completely consumed during the mixed hydrate phase 

formation, the equilibrium stages, visualised in Figure 7, were independent of the overall 

cyclopentane composition. 
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Experimental results and discussion 

Results of the solubility measurements of CO2 in the cyclopentane in water emulsions 

From the series of measurements of the solubility of carbon dioxide in the cyclopentane in 

water emulsions, experimental data on Henry’s constants for CO2 in water w

2

L
H, CO , w( , )k T p  and in 

cyclopentane hc

2

L
H, CO , CP( , )k T p  were derived in the temperature range from 278.3 K to 284.2 K and 

at pressures below 1 MPa. The emulsions investigated are reported in Table 2. For an overall 

mass fraction of cyclopentane less than 0.1723, the system is a cyclopentane in water emulsion. 

At values for the overall mass fraction of cyclopentane greater than 0.2780, the system appears as 

an emulsion of water in cyclopentane. 

Table 2. Characteristics of the emulsions in terms of the overall mass fraction of cyclopentane 

EM
CP, 0w a, the total mass of emulsion EM

0m a and the number of runs. 

Initial overall CP mass fraction 
EM
CP, 0w

 

Total mass of emulsion 
EM
0 gm  

Number of runs 

0 800.00 2 

0.0176 818.01 1 

0.0183 800.04 1 

0.0360 800.06 1 

0.0767 800.52 1 

0.1723 810.76 1 

0.2780 737.17 1 

0.6354 587.62 1 

1.00 605.31 2 

a Relative standard uncertainty EM
r 0( ) 0.003u m =  and combined relative standard uncertainty EM

c, r CP, 0( ) 0.005u w = . 
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This procedure allows us firstly to check the reciprocal influence of water and CP on the gas 

solubility. By varying the overall mass fraction of CP EM
CP,0w , a case study analysis has been 

performed coupled with a repeatability measurement, the Henry’s constant hc

2

L ,
H, CO , CP CP

o( , )k T p σ  and 

w

2

L ,
H, CO , w w

o( , )k T p σ  being measured from a slope determination. 

Henry’s constant of CO2 in water and in CP, respectively, were calculated based on hypothesis 

and according to equations described in detail in the supporting information. Briefly, a general 

relation (eq 1) between the total amount of carbon dioxide dissolved in the emulsion EM
jn , 

Henry’s constant of CO2 in cyclopentane hcL ,
H, , CP CP

o( , )jk T p σ  and in water wL ,
H, , w w

o( , )jk T p σ  and the 

overall mass fraction of cyclopentane in the emulsion EM
CP, 0w  was obtained from mass balances. 

hc w w

EM
w EM w

CP, 0 2L L L, , ,
0 CP H, , CP CP H, , w w H, , w w

o o o

1 1
;

( , ) ( , ) ( , )
j

G EM
j j j j

n M M
w j CO

pm M k T p k T p k T pσ σ σφ
 

= − + =  
 

        (1) 

In eq 1, wM  and CPM  are the molar mass of water and cyclopentane, G
jφ  is the fugacity 

coefficient of CO2 in the gas phase, p is the pressure and EM
0m  is the total mass of emulsion. 

The total amount of carbon dioxide dissolved in the emulsion EM
jn  could also be derived from 

the mass balance in the gas phase. 

  
G

EM 0 R
2G G

0 0 ,0 0

1
; CO

( , , ) ( , , )j
j j

p V pV
n j

R Z T p n T Z T p n T

 
= − =  

 
          (2) 

In eq 2, R = (8.3144621 ± 0.0000075) J.K–1.mol–1 is the universal gas constant.27 The subscript 

0 is used to designate the initial value of the state variables. Hence, 0T , 0p  and G
0 0 ,0( , , )jZ T p n  

denote the initial values of temperature, pressure and compressibility factor at the instant prior to 

the introduction of the emulsion. The corresponding quantities without the index “0” refer to 

each of the equilibrium stages, respectively, after the emulsion had been introduced into the 
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reactor. The total volume of the gas phase GV  was calculated by the following relation in which 

the reactor volume RV  and the emulsion volume EM
0V  were known 

     G EM
R 0V V V= −             (3) 

According to eq 1, by plotting the term EM G EM
w 0j j jn M y p mφ as function of the overall initial 

mass fraction of cyclopentane in the emulsion EM
CP, 0w , Henry’s constants in the cyclopentane 

phase and in the water phase, hc

2

L ,
H, CO , CP CP

o( , )k T p σ  and w

2

L ,
H, CO , w w

o( , )k T p σ , respectively, could be 

derived. The average values of Henry’s constants are presented in Table 3. Details about the 

calculation of their respective relative errors can be found in the supporting information. 

Table 3. Experimental data on Henry’s constant of CO2 in water w

2

L ,
H, CO , w w

o( , )k T p σ  and in 

cyclopentane hc

2

L ,
H, CO , CP CP

o( , )k T p σ , respectively, as function of temperature T a. 

KT  w

2

L ,
H, CO , w w

o( , ) MPak T p σ  hc

2

L ,
H, CO , CP CP

o( , ) MPak T p σ  

278.3 79.9 9.3  
279.2 86.3 9.4  
280.2 90.5 9.6  
281.2 94.1  9.8  
282.2 97.5  10.0  
283.2 104.3  10.1  
284.2 108.7  10.3  

aRelative standard uncertainty in temperature 
r ( ) 0.004u T =  and combined relative standard uncertainties in 

Henry’s constants of CO2 in the two solvents w

2

L ,
c, r H, CO , w w

o( ( , )) 0.110u k T p =σ  and ( hc

2

L ,
c, r H, CO , CP CP

o( ( , )) 0.116u k T p =σ . 

The 
2

,
H, CO ,

o( , )s sk T pπ σ  data are, along with corresponding values calculated from correlations 

of Holder et al.28 and Sloan and Koh,1 plotted in the diagram of Figure 8. 
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Figure 8. Experimental data and correlations of Henry’s constant of carbon dioxide in water 

w

2

L ,
H, CO , w w

o( , )k T p σ  and in cyclopentane hc

2

L ,
H, CO , CP CP

o( , )k T p σ  as function of the inverse temperature T. 

Data on Henry’s constant of CO2 in water: (�) experimental results of this work, values 

calculated from correlations of (�) Holder et al.,28 and () Sloan and Koh.1 Experimental data 

on Henry’s constant of CO2 in cyclopentane, this work: CP as droplets in emulsion (�), CP 

phase only (����). (—) Empirical correlations. 

The expression used for correlating Henry’s constant ,
H, ,

o( , )j s sk T pπ σ  for w hcL , Lπ =  with 

temperature was taken from an equation proposed by Holder et al.28 

  ,
H, , 1, , 0, ,

o 1
( , ) MPa expj s s j s j sk T p

T
π σ λ λ−

 = + 
 

   for w hcL , Lπ =          (4) 

By plotting the term ,
H, ,

oln( ( , ))j s sk T pπ σ  as function of 1 T  (see Figure 8), the empirical 

coefficients 0, ,j sλ  and 1, ,j sλ−  were obtained from the experimental data. They are compiled in 

Table 4 along with their respective relative uncertainties. 
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Table 4. Coefficients for Henry’s constant H, ,j skπ  correlation28 with temperature T according to 

eq 4a. 

Gas j Solvent  Phase π H, ,[ ]j skπ  0, ,j sλ  1, , Kj sλ−  

CO2 H2O wL  MPa 17.03 -3509.07 

CO2 CP hcL  MPa 7.28 -1407.44 

a Combined relative standard uncertainties 
2 2c, r 0, CO , H O( ) 0.037u λ = , 

2c, r 0, CO , CP( ) 0.009u λ = , 
2 2c, r 1, CO , H O( ) 0.056u λ− =  

and 
2c, r 1, CO , CP( ) 0.038u λ− = . 

 

For water, our data are found to be in good agreement with the data obtained from the 

correlation of Sloan and Koh1 (see Figure 8). However, they seem to deviate slightly from the 

values calculated by means of the parameters of Holder et al.28 

For cyclopentane, we did not find a suitable correlation to compare our data with. However, 

experimentally we observed that the solubility of CO2 in pure CP is similar than the solubility of 

CO2 in CP droplets. 

Establishing the data on Henry’s constants of CO2 is essential for estimating the carbon dioxide 

solubility in the liquid phases (i.e, in cyclopentane and in water) at phase equilibrium, when the 

mixed CO2 + N2 + CP hydrate, the liquid phases and the gas phase coexist with each other. For 

nitrogen, due to the very low solubility of the gas in water, we did not succeed in measuring it 

experimentally. Hence, the correlation for Henry’s constant of nitrogen in water, w

2

L
H, N , w ( , )k T p , 

provided by Holder et al.,28 was used to estimate the solubility. 
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Experimental w hcH-L -L -G  equilibrium data involving a mixed cyclopentane + carbon dioxide + 

nitrogen hydrate phase 

 

Mixed hydrate phase composition is defined through mass balance equations under the 

condition of w hcH-L -L -G  four phase equilibrium. Details on the mass balance calculations are 

provided in the supporting information. Briefly, the initial amount of substance of each gasj , 

G
, 0jn  ( 2 2CO  or Nj = ), is known. After the emulsion had been introduced and a solid hydrate 

phase had been formed, four phases, the hydrate phase (H ), a liquid aqueous (wL ), a liquid 

cyclopentane-rich organic (hcL ) and a gas phase (G ) co-existed in the system. Under these 

conditions, the initial amounts of the two gases were distributed between these four phases. 

Hence, the following mass balance equation for gas amounts could be set up: 

    G H EM G
,0j j j jn n n n= + +    ( 2 2CO , Nj = )           (5) 

In eq 5, H
jn  and G

jn  stand for the mole number of the gas j in the hydrate phase and the gas 

phase, whereas w hcL LEM
j j jn n n= +  denotes the mole number of gas j in the emulsion (organic phase 

dispersed in the aqueous phase). The mole number of species j in the different phases in eq 5 was 

determined from mass balance considerations along with certain hypothesis (for further details it 

is referred to the supporting information). The complete set of experimentally derived 

equilibrium data, i.e. data on pressure p, temperature T, the mole fraction of j (j = CO2 or N2) in 

the gas phase 
2 2

G G G
CO N( )j jy n n n′ = +  as well as in the mixed hydrate phase 

2 2

H H H
CO N( )j jz n n n′ = +  is 

reported in Table 5. 
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Table 5. Experimental equilibrium data on the mole fraction jz′  of component j in the mixed 

CO2 + N2 + CP- hydrate and the gas phase jy′ a, respectively, at temperature T and pressure p 

T / K p / MPa 
2COy′  

2Ny′  
2COz′  

2Nz′  

283.5 0.761 0.279 0.721 0.728 0.272 

285.1 0.923 0.507 0.493 0.931 0.069 

285.2 0.766 0.769 0.231 0.999 0.001 

285.3 1.100 0.256 0.744 0.804 0.196 

285.8 1.94 0.081 0.919 0.395 0.605 

286.1 1.061 0.551 0.449 0.958 0.042 

286.1 0.866 0.791 0.209 0.988 0.012 

286.2 1.225 0.309 0.691 0.776 0.224 

286.3 2.18 0.126 0.874 0.549 0.451 

286.4 1.99 0.095 0.905 0.341 0.659 
287.2 2.20 0.136 0.864 0.513 0.487 

287.3 1.418 0.351 0.649 0.828 0.172 

287.5 1.130 0.836 0.164 1.000 0.000 
a Relative standard uncertainties ur are 

r ( ) 0.004u T = , 
r ( ) 0.005u p =  for p > 1.9 MPa and 

r ( ) 0.0017u p =  for 

p < 1.9 MPa. Combined relative standard uncertainties 
c, r( ) 0.0215ju y′ =  and 

c, r( ) 0.09ju z′ = . 

 

Gas selectivity 

Figure 9 shows the “selectivity curve” in which for the system {H2O + CP + CO2 + N2} under 

the condition of w hcH-L -L -G  four phase equilibrium, the binary mole fraction of CO2 in the 

mixed CO2 + N2 + CP hydrate phase, 
2 2 2 2

H H H
CO CO CO N( )z n n n′ = + , is plotted against the binary mole 

fraction of CO2 in the gas phase 
2 2 2 2

G G G
CO CO CO N( )y n n n′ = + . This curve covers the temperature 

range from 283.5 K to 287.5 K and the pressure range from 0.76 MPa to 2.23 MPa. In addition to 

the experimental data, Figure 9 shows corresponding curves calculated via a simulation for the 

system without cyclopentane, i.e. for the system {H2O + CO2 + N2}, by means of the in-house 

programme “GasHyDyn” 23 at four different temperatures T. 
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Figure 9. Mole fraction of CO2 in the hydrate phase 
2COz′ as function of the corresponding mole 

fraction of CO2 in the gas phase 
2COy′ , both at equilibrium, for different temperatures T between 

282.5 K to 287.5 K. Symbols correspond to experimental data at (�) 282.5 K, () 285.3 K, (×) 

286.2 K and (�) 287.3 K. Literature data of Li et al.22 for (����) emulsion system, and ( ) system 

containing two “macroscopic” liquid phases. Simulations obtained by means of the in-house 

software “GasHyDyn”23 for the corresponding system without cyclopentane at (-----) 282.5 K, 

(– – –) 285.3 K, (–––) 286.2 K and (·····) 287.3 K. 

It can be seen in Figure 9 that the carbon dioxide selectivity in the mixed CO2 + N2 + CP 

hydrates is significantly increased compared to the theoretical selectivity of the gas hydrates 

without any promoter. For example, the mole fraction of CO2 relative to the system {CO2 + N2} 

present in the hydrate phase 
2COz′  approaches 0.931 for a corresponding mole fraction of CO2 in 

the gas phase 
2COy′  of 0.507. 

Experimental data presented by Li et al.22 for mixed CO2 + N2 + CP hydrates are added in 

Figure 9. Li et al.22 performed experiments on the system {H2O + CO2 + N2 + CP } in two 



 

23 

different ways. Firstly, the authors carried out measurements on the system in which 

cyclopentane appear in the form of an emulsion in water. Secondly, cyclopentane as a clear 

separated phase from water has been studied. The feed gas contains a CO2 mole fraction of 

0.166. This initial CO2 mole fraction drops to around 0.12 after crystallisation. It needs to be 

underlined that their data are calculated from a gas uptake measurement. Therefore, there is no 

distinction between the mixed CO2 + N2 + CP hydrate phase and the liquid phases. The 

temperature is fixed at 281.25 K and the equilibrium pressures are ranging from 2.49 MPa to 

3.95 MPa. Li et al.22 have observed differences in the gas uptake depending on the mesoscopic 

state of the solution, i.e., depending on whether it exists in the form of an emulsion, or as two 

separated macroscopic phases. If one takes a look at their data, the respective values are higher 

than the nitrogen or carbon dioxide equilibrium pressure (see Figure 10). Besides, some data are 

in the stability zone of the gas hydrate phase formed with carbon dioxide only. Thus, the 

formation of carbon dioxide gas hydrate might occur during the crystallisation procedure and the 

presence of two types of hydrates (CO2 gas hydrates and mixed hydrates of CP + CO2 + N2) 

might be realistic. Hence, it can be argued that the data of Li et al.22 are not at equilibrium and 

cannot directly be compared to the data presented in this work. 
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Figure 10. w hcH-L -L -G  or wH-L -G  p-T-equilibrium dissociation data for systems with and 

without cyclopentane. Symbols corresponding to experimental data. CO2 + CP mixed hydrates: 

data of (�) Galfré et al.29, (�) Zhang and Lee15
,
 Zhang et al.16 and (�) Mohammadi and Richon 

(2009)18; N2 + CP mixed hydrates: () data of Tohidi et al.19, (�) Du et al.20 and (�) 

Mohammadi and Richon (2011)21; CO2 + N2 + CP mixed hydrates: (�) this work; data of Li et 

al.22 for (����) emulsion system and ( ) system containing two “macroscopic” liquid phases. (----) 

Simulations obtained with the in-house programme “GasHyDyn”23 for carbon dioxide gas 

hydrates. The two encircled data points correspond to two points of dissociation of the hydrate 

phase.  

The w hcH-L -L -G  p-T equilibrium data on the system exhibiting a CO2 + N2 + CP mixed 

hydrate phase which are displayed in Figure 10 were obtained during the dissociation procedure 

(Figure 7). The change in the slope of the pressure versus temperature curve at 284 K 

characterises the beginning of the dissociation. The repeated change in the slope of the same 
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curve at 287 K characterises the end of the dissociation. The two encircled data points correspond 

to two points of dissociation. These points are presented in Table 5. 

Equilibrium pressure 

The w hcH-L -L -G  equilibrium pressure of the mixed CO2 + N2 + CP hydrate plotted against the 

composition of the CO2 + N2 gas phase in terms of 
2COy′ is shown in Figure 11. Equilibrium p-

2COy′ -curves obtained from a simulation of the wH-L -G  equilibrium on the system {H2O + CO2 

+ N2}
23 by means of the in-house programme “GasHyDyn” are shown for comparison in Figure 

11. 
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Figure 11. Gas hydrate w hcH-L -L -G  equilibrium pressure p as function of the corresponding 

mole fraction of CO2 in the gas phase 
2

'
COy  in the temperature range T from 282.8 K to 287.5 K. 

Symbols correspond to experimental data: (�) 282.5 K, () 285.3 K, (�) 286.2 K, (�) 287.3 K. 

Literature data of Li et al.22 for (����) (emulsion system) and ( ) (system containing two 

“macroscopic” liquid phases). Simulations on the wH-L -G  equilibrium for the corresponding 
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system without cyclopentane at 282.5 K (-----), 285.3 K (– – –), 286.2 K (–––) and 287.3 K (·····) 

obtained by means of the in-house “GasHyDyn” software.23 

Compared with the calculated equilibrium pressure for mixed CO2+ N2 -gas hydrates formed in 

the system without any promoter, the equilibrium pressure is drastically decreased for the system 

in which cyclopentane is additionally present. Quantitatively, the pressure reduction factor F 

defined in eq 6 does assume values ranging from 19 to 34, corresponding to a relative pressure 

reduction of 0.95 up to 0.97. 

     
w

w hc

H-L -G
eq, cal

H-L -L -G
eq, exp

p
F

p
=             (6) 

In eq 6, wH-L -G
eq, calp  is the equilibrium pressure estimated by means of the in-house “GasHyDyn”-

programme for gas hydrates formed in the ternary system 2 2 2{H O CO N }+ + . w hcH-L -L -G
eq, expp  is the 

equilibrium pressure measured for the four phase w hcH-L -L -G  equilibrium in the quaternary 

system 2 2 2{H O CP CO N }+ + +  exhibiting a mixed CO2 + N2 + CP- hydrate phase. 

 

Gas storage capacity 

In order to illustrate how much of gas, expressed in terms of its volume under defined p-T-state 

conditions, is incorporated into the hydrate structure, the so-called gas storage capacity GSC is 

introduced. The gas storage capacity of gas hydrates is defined as the ratio of the volume of the 

total amount of gas which is consumed in order to form the hydrate phase 

2 2 2 2

G H H
CO N ref ref CO N( , , , )V T p n n+ , normalised to reference state conditions of Tref = 273.15 K and 

pref = 0.101325 MPa, and the corresponding volume of the gas hydrate phase HV  by which the 

gases along with cyclopentane are captured. 
2 2

G
CO NV +  can be expressed by means of the mole 
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numbers of the enclathrated gases, 
2

H
COn  and 

2

H
Nn , that have previously been consumed from the 

gas phase upon hydrate formation, and the molar volume of the gas phase under reference 

conditions. The gas phase, consisting in good approximation of CO2 and N2 only, has a molar 

volume under reference conditions of 
2 2 2

G
m, CO N ref ref CO( , , )V T p y+ , which will in the following be 

abbreviated as 
2 2

G
m, CO N , refV + . The value of 

2 2

G
m, CO N , refV +  is estimated by means of the Soave-

Redlich-Kwong equation of state and is close to the ideal gas value of approximately 

22.4 dm3.mol–1. The volume of the hydrate phase HV  can be also expressed by means of the 

molar volume of the hydrate phase, H
mV , and the corresponding mole numbers of the constituents 

present in the solid phase H
wn , H

CPn , 
2

H
COn  and 

2

H
Nn . Thus, the expression for GSC reads: 

  2 2 2 2 2 2 2 2

2 2

G H H H H G
CO N ref ref CO N CO N m, CO N , ref

H H H H H H
w CP CO N m

( , , , ) ( )

( )

V T p n n n n V
GSC

V n n n n V
+ ++

= =
+ + +

         (7) 

As a non-stoichiometric solid, the hydrate phase is to be regarded as a solid solution of the 

guest components in the metastable host lattice.30 Therefore, as a property of a mixed phase, H
mV  

does also depend on composition. It can be estimated from crystallographic data of the sII unit 

cell by means of the following relation1 

 ( )
2 2 2 2

H
H uc Av

m H H H H H H H
w, uc sm CP sm CO sm N sm lg CP lg CO lg N lg1 ( ) ( )ν θ θ θ ν θ θ θ

=
+ + + + + +

V N
V

N
         (8) 

where H
w, ucN  designates the number of water molecules in the unit cell. iν  is the number of 

cavities of type i  per water molecule in the corresponding unit cell ( {sm, lg}i ∈ , with “sm” 

indicating the small and “lg” the large cavity, respectively, and sm 2 17ν =  and lg 1 17ν =  for sII 

hydrates). H
j iθ  is the occupancy factor of cavity i  by guest molecule j  ( 2 2{CP, CO , N }j ∈ ). 

23 1
Av 6.02214129(27) 10 molN −= ×  is Avogadro’s constant. 27 H

ucV  denotes the volume of the unit 
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cell of sII clathrate hydrate which can be calculated from its corresponding lattice parameter uca  

according to: 

      H 3
uc ucV a=             (9) 

The numerical value for the cell parameter provided in the monograph of Sloan and Koh1, 

uc 1.73 nma = , is a typical average value and used in this study as well. The occupancy factors 

H
smjθ  and H

lgjθ  and the number of guest molecules j  enclathrated in the unit cell, H
, ucjN , are 

related by 

  ( )H H H H H H
, uc sm, uc lg, uc w, uc sm sm lg lgj j j j jN N N N ν θ ν θ= + = +    2 2{CP, CO , N }j ∈       (10) 

Since at equilibrium the concentration of a given species in the unit cell is identical to the 

concentration in the macroscopic hydrate crystal, the ratio between H
, uckN  and H

kn , the mole 

number of species k in the macroscopic crystal, is constant for all 2 2{w, CP, CO , N }k ∈ . 

   2 2

2 2

H HH H
CO Nw CP

H H H H
w, uc CP, uc CO , uc N , uc

= = =
n nn n

N N N N
                                                      (11) 

By substituting H
mV  in eq 7 for the general expression given in eq 8 and taking into account eqs 

10 and 11 the following equation is derived for GSC 

   2 2 2 2

H H H G
w, uc CO N m,CO +N , ref

H H
w uc Av

( )N n n V
GSC

n V N

+
=                                            (12) 

Eq 12 expresses the gas storage capacity in terms of the experimentally accessible quantities 

H
wn , 

2

H
COn  and 

2

H
Nn . From this relation, the GSC values obtained from the experimental data were 

calculated. Alternatively, by again combining eq 7 with eqs 8, 10 and 11, the gas storage capacity 

can be expressed by means of the occupancy factors of the two gases as 

  2 2 2 2 2 2

H G H H H H
w, uc m, CO N , ref sm CO , sm N , sm lg CO , lg N , lg

H
uc Av

( ( ) ( ))N V
GSC

V N

ν θ θ ν θ θ+ + + +
=        (13) 
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In Figure 12, the gas storage capacity GSC for mixed hydrates is plotted against the 

composition of the CO2+N2 gas phase in terms of 
2COy′ . In this diagram, it can be seen that the 

GSC is in the range of (20-60) m3 gas.m-3 hydrate (Table 6), scattered around a mean value of 40 

m3gas.m-3 hydrate with a precision of 0.06 (see supporting information for details). 

The GSC-data derived by means of eq 12 can be compared to different limiting values for this 

quantity. The first hypothetical limit is derived under the condition that the 16 small cavities are 

completely occupied by gas molecules while the large cavities are assumed to be occupied by 

CP-species only. Under these conditions, mathematically expressed by 
2 2

H H
CO sm N sm 1θ θ+ =  and 

2 2

H H H
CP lg CO lg N lg1 0θ θ θ= ⇔ + = , the limiting value lim,1GSC  obtained from eq 13 is given by 

  2

2 2

H G
w, uc sm m ref ref COH H H

lim,1 CO sm N sm CP lg H
uc Av

( , , )
( 1)

N V T p y
GSC GSC

V N

ν
θ θ θ= + = = =       (14) 

which leads to a numerical value of 3 -3115 m gas.m hydrate. The GSC-values derived from the 

experimental results should further be compared to a second hypothetical limiting value, 

lim, 2GSC , calculated for the condition that all of the cavities are completely occupied by gas 

molecules only. In this case, characterised by 
2 2

H H
CO sm N sm 1θ θ+ =  and 

2 2

H H
CO lg N lg 1θ θ+ = , the 

following relation is derived from eq 13 

2

2 2 2 2

H G
w, uc sm lg m ref ref COH H H H

lim, 2 CO sm N sm CO lg N lg H
uc Av

( ) ( , , )
( 1)

N V T p y
GSC GSC

V N

ν ν
θ θ θ θ

+
= + = + = =       (15) 

which leads to 3 -3
lim, 2 172.41m gas.m hydrateGSC = . 

Consequently, the GSC-value derived from our results for the system with CP is smaller by 

around 0.65 and 0.77 compared to the hypothetical bounds set by lim,1GSC  and lim, 2GSC . It is 

noted that the value of 40 m3 gas.m-3 hydrate was also measured by Duc et al.2 on systems based 
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on a different type of hydrates, the so-called (gas-) semi-clathrate hydrates, which can be formed 

when tetra-n-butyl ammonium bromide is additionally dissolved in the aqueous phase. 
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Figure 12. Gas storage capacity GSC for CO2+N2 gas mixtures from 282.5 K to 287.5 K as 

function of the mole fraction of CO2 in the gas phase 
2COy′  (with respect to the total amount of 

CO2 + N2, i.e., 
2 2CO N 1y y′ ′+ = )

 
. Symbols correspond to experimental data at (�) 282.5 K, () 

285.3 K, (����) 286.2 K, (�) 287.3 K. 
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Table 6. Experimental equilibrium values of GSC at corresponding gas mole fraction of CO2 

2COy′  and temperature Ta. 

T / K 
2COy′  GSC / m3gas.m-3hydrate 

283.5 0.279 29.8 

285.1 0.507 54.5 

285.2 0.769 43.6 

285.3 0.256 36.5 

285.8 0.081 46.7 

286.1 0.551 36.2 

286.1 0.791 38.8 

286.2 0.309 36.9 

286.3 0.126 29.0 

286.4 0.095 62.3 

287.2 0.136 32.4 

287.3 0.351 29.1 

287.5 0.836 21.4 
a The relative standard uncertainty 

r ( )u T  amounts to 
r ( ) 0.004u T = . The combined relative standard uncertainties 

for 
2COy′  and GSC are 

2c, r CO( ) 0.0215u y′ =  and 
c, r( ) 0.06u GSC = . 

The low occupancy of the hydrate lattice sites by the molecules of CO2 and N2 may be due to 

the fact that the stabilisation by cyclopentane molecules is very efficient and does not require a 

greater amount of additional gas to stabilise the structure. Contrary to our experimental results 

(Table 6), Li et al.31 did not observe CO2 molecules enclathrated in the different cavities of the 

sII hydrate structure via x-Ray analysis. However, their experiments were performed at 

276.15 K, i.e. at a temperature which is below the formation temperature of pure cyclopentane 

hydrate, located at 280.22 K.14 In this temperature zone, Herslund et al.32 demonstrated that there 

is a competition between the formation of gas-cyclopentane hydrate and the pure cyclopentane 

hydrate, the latter of which being the more rapid process. 

In the experimental study of Li et al.31 for example, cyclopentane molecules might have 

predominantly dissolved in the mixed hydrate phase obtained in their measurements. In other 
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words, the solid phase generated by the authors might actually constitute pure cyclopentane 

hydrate only which appears to be the most plausible explanation why they did not observe carbon 

dioxide in the hydrate structure. Therefore, experimental investigations on the formation of 

mixed gas + CP hydrates have to be carried out at a temperature above the temperature of pure 

cyclopentane hydrate formation. At those temperatures, trapping of CO2 and N2 is observed 

although the GSC is rather low. 

 

Conclusions 

An experimental method has been presented by which the phase equilibrium between a binary 

gas mixture, a solid hydrate phase, a liquid aqueous phase and a liquid CP-rich organic phase in 

the quaternary system {H2O + CP + CO2 + N2} was investigated. By this method, a phase 

diagram could be established in which the mole fraction of CO2 in the gas phase is plotted 

against the mole fraction of CO2 in the hydrate phase, both defined with respect to total amount 

of CO2 and N2 in the respective phase. 

Measurements have been carried out to generate data on the hydrate equilibrium from a 

CO2 + N2 gas mixture of fixed initial composition in presence of a thermodynamic promoter 

(cyclopentane) dispersed as an emulsion. Three principal conclusions can be drawn. Firstly, the 

selectivity of the hydrate based CO2 capture process using cyclopentane as a promoter is 

improved in comparison to the corresponding hydrate process based on the system without 

promoter. Secondly, the equilibrium pressure is drastically reduced (a drop of pressure by 0.95 

up to 0.97 is observed). Unfortunately, the gas storage capacity is lowered as well. Cyclopentane, 

which is a very good hydrate former, seems to stabilise the cavities in such a way that it prevents 

the complete occupation of the remaining cavities by gas molecules. 
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Figure 8. Experimental data and correlations of Henry’s constant of carbon dioxide in water and 

in cyclopentane as function of the inverse temperature T. 

 



 

39 

Figure 9. Equilibrium Mole fraction of CO2 in the hydrate phase as function of the corresponding 
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presence of cyclopentane. Comparison to simulations obtained by means of the in-house software 
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Figure 10. p-T-equilibrium dissociation data for CO2, N2 and CO2+N2 and systems with and 

without cyclopentane. Experimental data from literature and from this work, and comparison to 
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Figure 11. Gas hydrate equilibrium pressure p as function of the corresponding mole fraction of 
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Figure 1 (supporting information). Calibration curve for the gas chromatographic measurements 
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