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Abstract  

 Recently, DNA molecules have received great attention because of their potential applications in 

material science. One interesting example is the production of highly fluorescent and tunable DNA-Agn clusters 

with cytosine (C) rich DNA strands. Here, we report the UV photofragmentation spectra of gas phase 

CǇtosiŶe…Ag+…CǇtosiŶe ;C2Ag+) and CǇtosiŶe…H+…CǇtosiŶe ;C2H+) complexes together with theoretical 

calculations. In both cases the excitation energy does not differ significantly from that of isolated cytosine or 

protonated-cytosine indicating that the excitation takes place on the DNA base. However, the excited state 

lifetime of the C2H+ (  = 85 fs), estimated from the bandwidth of the spectrum, is at least two orders of 

magnitude shorter than that of the C2Ag+ (  > 5300 fs).  

 The increased excited state lifetime upon silver complexation is quite unexpected and it clearly 

opens the question about what factors are controlling the non-radiative decay in pyrimidine DNA bases? 

This is an important result for the expanding field of metal-mediated base pairing, and may also be 

important to the photophysical properties of DNA-templated, fluorescent silver clusters.  
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 In the past years, natural and artificial DNA molecules have been of great interest because of their 

potential applications in biological and material science.1
2

-
34

5 The central idea is to exchange the natural 

canonical interaction between the DNA bases for new non-covalent interactions (i.e hydrogen bonding, 

hydrophobic interactions, structure complementarity and site-specific functionalization),6 leading to artificial 

base pairing. One of the recently established methods for site-specific functionalization is metal-mediated 

base pairing, that is to replace the hydrogen atom within hydrogen-bonded base pairs by metal ions.6  

Metal mediated base pairing constitutes a major advance in the attempt of expanding the genetic 

code, at least twenty three artificial metal mediated base pairs have been reported to stabilize the double 

helix structure of DNA (for a complete review the readers are referred to a recent work on metal-mediated 

DNA base pairs that address all the studies on this topics all over the time).6 Besides, the incorporation of 

metal mediated base pairing has proven to be a suitable and powerful tool for the potential development of 

artificial DNA based devices.7,8    

It is recognized that the T-T and C-C mismatch pairs can be transformed into very stable T-Hg2+-T9 and 

C-Ag+-C10,11 metallo-mediated base pairs, by incorporating Hg2+ or Ag+ cations, respectively. The strong metal-

base interactions are highly specific in both cases, and it can interfere in the replication and transcription of 

DNA and induce conformational changes (i.e. from random coil conformation to duplex conformation). This 

highly specific conformational changes have been used as analytical probe of Ag+ upon bio-recognition by C-C 

mismatching, by using circular dichroism spectroscopy to sense real time conformational changes12 or 

electrochemical methods to follow the conformational-dependent activity of Exonuclease III.13 

 One interesting application of the strong nucleobase-metal binding feature of DNA is the production 

of highly fluorescent and tunable hybrid DNA-Agn clusters. The optical properties of these hybrid systems (e.g. 

high fluorescence yield and absorption/emission wavelength tuning) are strongly dependent on the 

nucleobases sequence,14
15

-
16

17 cluster size,18 pH,19 temperature20 etc. These photophysical properties of silver 

clusters have led to the creation of a new generation of small and biocompatible fluorophores as biological 



labels, that exceed the commonly used semiconductors quantum dots and organic dyes in regard to 

fluorescence quantum yield, photostability and biocompatibility, due to the low toxicity and very small size of 

the Agn clusters.14,21 For more information about these fascinating systems the readers are recommended to 

refer to recent reviews on this topic. 14,22
2324

-
2526

27 

 The hybrid DNA-Agn clusters have two intense absorption bands, one in the visible which is tunable 

with DNA bases sequence and the other in the UV spectral region which is common to all of them, regardless 

of the position of the visible band.14,17,19,28 The UV excitation band is located in the spectral region where the 

DNA bases absorb (260 – 270 nm). Very interestingly, the excitation of the common UV band leads to the 

same fluorescence spectrum as in the case of excitation of the tunable visible band. It was previously 

suggested that this peak could be due to excitation to higher lying states,28 however, recent  evidence indicate 

that the UV absorption band corresponds to excitation of the nucleobases.17  

 While DNA nucleobases29 and protonated nucleobases30 present mostly very short excited state 

lifetime on the sub-ps to ps time scale, highly fluorescent DNA-Agn clusters have excited state lifetime in the ns 

regime,10 although according to a previous report17 their excitation in the UV spectral region is on the DNA 

moiety for which short excited state lifetimes are expected. This is clear evidence of the effect of Ag on the 

excited state lifetime of these systems. In addition, it has been reported that the formation of highly 

fluorescent DNA-Agn clusters is favored when using C rich DNA strands as template.15,19 

The detailed mechanism responsible for the fluorescence enhancement is still elusive and whether 

metal-mediated DNA base pairs will behave in a similar way as natural DNA may be a major issue to take into 

account when analyzing biocompatibility. In this context, gas phase characterization of optical and structural 

properties of model systems, together with quantum modeling, has shown to be suitable for understanding 

the photophysics of related hybrid aminoacids or peptides clustered with Agn
+ or Aun

+ clusters. In previous 

seminal works, it has been shown that complexation of Ag+,31 Au+32 and Agn
+33

34

-
35

36 with aminoacids and small 

peptides significantly changes the optical properties of the system. In those cases it was manifested as a 



strong absorption band around 300 – 450 nm spectral region attributed to Charge Transfer (CT) excitation. For 

more information on this topic, readers are referred to a very recent and complete review that deals with 

these systems from basics towards sensor development.37   

Here we report the spectroscopic characterization in the UV region, where the nucleobase is expected 

to absorb, of the (Cytosine)2Ag+ complex (C2Ag+) and the related protonated cluster (C2H+) for comparison of 

their optical properties, as a reductionist approach to gain information about the molecular mechanism that 

controls the appealing photophysical properties of hybrid DNA-Agn clusters. It must be noted that although it 

was recently established that fluorescent DNA-Agn clusters do contain varying amounts of cationic silver, the 

presence of neutral silver clusters is crucial for emission of photons following excitation.38 Thus, a direct 

connection between the present results and fluorescent DNA-Agn clusters is not feasible at this point and 

more work considering hemi-reduced silver cluster is necessary. However, it constitutes a first approach to 

start understanding this interesting phenomenon. 

 The photofragmentation spectra of C2H+ and C2Ag+ were recorded in the spectral range (225 – 320 

nm) under similar experimental conditions for comparison are shown in Figure 1. In both cases the main 

fragmentation channel was the elimination of one neutral cytosine molecule. 

 The origins of the electronic transitions 286.9 nm for C2H+ and 299.1 nm for C2Ag+, are close and also 

similar to the origin of the electronic transition of CH+ (303.5 nm)30 and C (314.2 nm).39 An enlarged view of 

the spectra near the origin is shown in Figure 2, from which a very different vibronic structure and bandwidth 

can be observed for C2H+ and C2Ag+. The spectrum of the C2Ag+ complex shows a very low vibrational 

frequency progression (  = 24 cm-1) and another one at 123 cm-1 which correspond to in-plane intermolecular 

bending modes (N-Ag+-N angle), 2= 33 cm-1 and 5= 95 cm-1 as calculated in the ground state geometry at the 

MP2/SV(P) theory level (see Figure S1 in the Supporting Information). It should be noted that this angle 

changes from 159° in the ground state optimized geometry to 165° in the A´ state optimized geometry which 

is the main geometrical change between both equilibrium structures. 



 

Figure 1: Photofragmentation spectra of the C2Ag
+
 and C2H

+
 complexes in the whole spectral range analyzed in this work 

(225 - 320) nm. Vertical dashed lines show the wavelengths of the origins of the electronic transition of the individual 

components of both complexes, C
39

 and CH
+30

.The electronic transitions wavelength of Ag (328.2 nm)
40

 and Ag
+
 (110.7 

nm,111.2 nm and 119.6 nm)
41,42

 fall out of scale.  

 

The excited state lifetimes have been estimated, as in a previous study,30 from the widths of the bands 

fitted to Voigt profiles to account for the rotational contour and the laser Gaussian bandwidth (11 cm-1) 

convolution. The intrinsic Gaussian profile of the laser is shown in the Figure S2 (see Supporting Information) 

along with the experimental profiles recorded for both complexes. The relationship between the Lorentzian 

full width at half maximum (FWHM) and the excited state lifetime ( ) is given by the uncertainty principle, 

which can be written as: 

 

121 1 5.3 10( ) (2 c ) ( )
xFWHM cm s

    (Eq. 1) 

 



where c stands for the speed of the light. This procedure is valid if it can be assumed that the broadening is 

only due to the excited state lifetime and not to spectral congestion (e.g. rotational contour or low frequency 

active vibrational modes). The spectrum of the C2Ag+ complex clearly shows that the spectral resolution is 

good enough to resolve the different vibronic transitions, even in the case of vibrational frequencies as low as 

24 cm-1, while the rotational broadening can be neglected since the temperature of the experiment is low (40 

K)30. Therefore, the broadening in the C2H+ spectrum is due to non-radiative process leading to a short excited 

state lifetime. From the bandwidth analysis, the Lorentzian FWHM for the C2Ag+ complex is less than 1 cm-1 

and can be associated to an excited state lifetime  > 5000 fs, while the bandwidth for the C2H+ complex is 

FWHM = 62 cm-1 with an associated lifetime ≈ 85 fs, which is at least two orders of magnitude shorter than 

that of the former complex. This remarkable difference shows the effect of the Ag+ cation on the excited state 

dynamics of the complex. The long excited state lifetime estimated for the C2Ag+ complex is compatible with 

high fluorescence quantum yield of DNA-Agn clusters, with C rich oligonucleotide strands.9,10,14,16 The lifetime 

of the C2H+ complex is quite similar to the ones observed for the free protonated cytosine (133 ± 20) fs,30 

indicating that it is not strongly perturbed by the dimer formation. 

 The electronic ground state structures of the protonated cytosine dimer43,44 and modified cytosine 

dimer,43-
44

45 and C2Ag+46 in the gas phase have been previously determined by Infrared Multiphoton Dissociation 

(IR-MPD) spectroscopy together with quantum chemical calculations. Both complexes are planar (Cs 

symmetry) and have equivalent structures, in which each C molecule is found in the keto-amino form with the 

NH groups where the glycosidic bonds are expected, in transoid orientation as in the case of the i-motif 

structure of DNA. The H+ as well as the Ag+ cation acts as a bridge between the hetero-nitrogen atoms in each 

C (Table 1). In addition, theoretical calculations have shown that these structures are the most stable ones in 

the electronic ground state.43,44,46,47  

 



 

 

 

 

 

 

 

Figure 2: Low energy part of the spectra of the C2H
+
 (a) and C2Ag

+
 (b) complexes. In panel (b) the inset shows an 

amplification with better resolution of the first 150 cm
-1

 of the spectrum of the C2Ag
+
 complex, in which a low vibrational 

frequency progression composed of narrow bands is observed. The vibrational bands were fitted to Voigt profiles. 

 

To help the interpretation of the results and get more insight into the structure and excited state 

dynamics of these complexes, ground and excited state optimizations were performed at the MP2 and RI-

ADC(2) (SV(P) basis set) theory levels, respectively.  

The ground state optimization at the MP2 level, lead to the same planar structures as in previous 

studies at other levels of  theory.43,44,46,47 The vertical energies (Evert) of the first excited states of 

A´(symmetrical versus the molecular plane) and A” (antisymmetrical versus the molecular plane) symmetry 

were also calculated (Table 1). 

In many free neutral or protonated DNA bases, the S1 optimization leads to out-of-plane deformations 

and to an avoided crossing between S1 and S0 states, which is responsible for a fast non-radiative decay.48 For 

the C2H+ and C2Ag+ complexes, the size and complexity of the systems imposed to limit the calculation to the 

accessible Franck-Condon region, so the excited states were only optimized in Cs (planar) symmetry since the 

ground state geometry is planar. Moreover, the A” and A’ states being very close in energy, any optimization 

without Cs symmetry leads to calculation failure. 



The optimization of the geometry in the A´ and A´´ excited states allows determining the equilibrium 

(lowest energy) structure in each excited state and then the Cs adiabatic transition energies (Ead), which is the 

energy involved to reach the equilibrium geometry in the excited state from the equilibrium geometry in the 

ground state. Since the ground state is planar, they can be considered as the adiabatic potential accessible in 

the Franck–Condon window from the ground states and indeed the calculated Ead values are in good 

agreement with the experimental transition energies (0-0exp). All the results are summarized in Table 1 and 

Figure 3. As usual for this type of calculations the calculated adiabatic values are within 0.2 eV from the 

experimental ones.30 

 

Table 1. Experimental and theoretical electronic excitations energies of C2Ag+ and C2H+ clusters for the first 

A´and A” symmetry excited electronic states in planar Cs symmetry.   

 C2Ag+ 

0-0exp = 4.16 eV 

 

C2H+ 

0-0exp = 4.32 eV 

 

 

S0
a 

 
1A´(1)a  1A͟;ϭͿa 

 
S0

a 

 
1A´(1) a 1A͟;ϭͿa 

 

   Osc. Strength 
 

0.15 0.011 
 

0.13 0.0004 

S0 optimization 0.00 4.79 4.88 0.00 4.92 5.82 

A´ optimization 1.10 4.10 3.93 0.52 4.44 5.31 

A” optimization 2.00 5.32 3.04 3.29 6.11 3.63 

  a Excitation energy values are in eV.   

 



Highlighted in bold-black are the Ead from the S0 to the first A” excited state and in bold-red those that 

best match with the experimental values of the 0-0 transition that correspond to the transition from the S0 to 

the first A´ symmetry excited state in both complexes. The locally excited electronic state (A’ symmetry) is a 

* state in the C2H+ case while for C2Ag+, in addition it has a small partial CT character between both cytosine 

molecules (Figure 4).  

 

Figure 3: Scheme of the energy levels of C2Ag
+
 and C2H

+
. For each complex, the left side corresponds to the vertical 

energies at the ground state equilibrium geometry and the right side corresponds to the energies of the ground, * and 

n * states at the A´( *) excited state optimized structure conserving the planar geometry. In the C2Ag
+
 complex the * 

and n * states are very close in energy which might be related to the observed longer lifetime as compared with the C2H
+
 

complex.   
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*
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Figure 4: Main orbitals involved in the electronic structure of the two first states of A' and A" symmetry. 



In the case of the C2Ag+ complex, at the ground state equilibrium geometry the * state (A’Ϳ is loǁer 

in energy than the first (A͟Ϳ ŶAg * state. Upon excited state optimization of the A’ states in Cs symmetry, the 

first A” state becomes lower in energy than the optically allowed A’ state (Figure 3).  We have observed a 

similar behavior between two tautomers of protonated uracil:  the enol/enol tautomer has a short excited 

state lifetime while the enol/keto has a longer one.30 In this latter tautomer the n * is lower in energy than 

the * at the Cs * optimized geometry as in the case of C2Ag+. Upon slight out-of-plane deformation, the 

optimization process of the ͞A” state͟ brings it back in its planar geometry, ǁhile the ͞A’ state͟ teŶds to be 

stabilized upon out-of-plane deformation. This may lead to a crossing between these states and to a barrier 

along the out-of-plane deformation coordinate.  

 On the other hand, in the case of the C2H+ complex, the nO * state (A͟Ϳ stays higher in energy than the 

* (A’Ϳ upon optimization of the A’ states in Cs symmetry. In absence of Cs symmetry both states are mixed 

and optimization of the S1 state leads to a crossing with the ground state. Maybe, there is a correlation 

between the energy gap between the * and the n *, the lifetime being longer when the n * is slightly lower 

in energy at the * optimized geometry than when the n * is higher in energy. This should be tested 

theoretically but on simpler systems which less spectral congestion.   

 One may tentatively rationalize the variation of the excited state lifetime in the following way. The 

optical excitation prepares the * state in its Cs optimized geometry, i.e. planar or nearly planar.  If there is 

no n * state lower in energy, the S1 * state will easily undergo out-of-plane deformations, which leads to 

internal conversion. At the opposite if the n * is lower in energy than the * state, out-of-plane 

deformations will induce a crossing between these states, resulting in a barrier for the * state along the 

out-of-plane coordinate that will prevent the second crossing with the ground state at low excitation energies. 

Thus this state should have a longer lifetime. 

This idea has to be tested by more elaborate calculations on this system or even on the simplest 

protonated DNA bases for which there is now some experimental information.30 



In summary, the complexation of two cytosine molecules with Ag+ does not change drastically the 

character and energy of the electronic transition as compared to C2H+ or CH+, contrary to the silver/gold 

aminoacids case, for which a new absorption band appears in the near UV/visible spectral region (300 –  450 

nm), depending on the specific system, attributed to CT excitations.31
323334

-
3536

37 The present results are in agreement 

with previous results17 that suggested that, in bulk systems, the UV excitation of highly fluorescent DNA-Agn 

clusters is due to absorption of the DNA bases. On the other hand, the Ag+ complexation significantly changes 

the excited state lifetime of the complex as compared with H+ complexation. This change is explained as a 

consequence of the removal of a conical intersection between the excited and the ground states of C2Ag+ 

complex, which takes place in the C2H+ complex and leads to a fast non-radiative decay of the excited state of 

the latter. Therefore, a higher fluorescence quantum yield is expected upon Ag+ complexation and this could 

be the reason for the high fluorescence of DNA-Agn clusters, although in the latter case the fluorescence is 

observed upon chemical reduction of Ag+. However, it has been shown that cationic systems can give relevant 

and detailed information to understand the optical properties of hybrid biomolecules-noble metal clusters. 31
323334

-

3536

37   

The ultimate goal of noble-metal bioconjugation is to develop biosensing at the molecular level and gas 

phase studies can help to build model systems in a bottom-up strategy. In this regard, the next step will be to 

generate larger Agn
+ clusters conjugated with DNA bases, in which some reduction processes has taken place.  

 

Methodology 

a. Experiment 

 The electronic spectra of the C2Ag+ and C2H+ complexes were obtained via parent ion photo-fragment 

spectroscopy in a cryogenically-cooled quadrupole ion trap (Paul Trap from Jordan TOF Products, Inc.).49  The 

setup is similar to the one developed in several groups based on the original design by Wang and Wang.50-

51

52The complexes are produced in an electrospray ionization source built at Aarhus University,53 by introducing 



a solution of cytosine (500 µM) and silver nitrate (250 µM) in a methanol (50%)/water (50%) solvent . At the 

exit of the capillary, ions are trapped in an octopole trap for 90 ms. They are extracted by applying a negative 

pulse of c.a. 50 V and are further accelerated to 190 V by a second pulsed voltage just after the exit electrode. 

This time sequence of pulsed voltages produces ion packets with duration between 500 ns and 1 µs. The ions 

are driven by a couple of electrostatic lenses toward the Paul trap biased at 190 V so that the ions enter the 

trap gently avoiding fragmentation induced by collisions. A mass gate placed at the entrance of the trap allows 

selecting the parent ion. The Paul trap is mounted on the cold head of a cryostat (Coolpak Oerlikon) connected 

to a water-cooled He compressor. Helium as buffer gas is injected in the trap using a pulsed valve (General 

Valve) triggered 1 ms before the ions enter the trap as previously reported by Kamrath et al.51 The ions are 

trapped and thermalized at a temperature between 20 and 50 K through collisions with the cold buffer gas. 

The ions are kept in the trap for several tens of ms before the photodissociation laser is triggered. This delay is 

necessary to ensure thermalization of ions and efficient pumping of the He buffer gas from the trap to avoid 

collision induced dissociation of the ions during the extraction towards the 1.5 m long time-of-flight mass 

spectrometer. After laser excitation, the ions are stored in the trap for a delay that can be varied between 20 

and 90 ms before extraction to the TOF mass spectrometer. The complete mass spectrum is recorded on a 

micro channel plate (MCP) detector with a digitizing storage oscilloscope interfaced to a PC. The 

photofragment yield spectrum of each detected ion is normalized to the parent ion signal and the laser power.  

The photo-dissociation laser is an OPO laser from EKSPLA, which has a 10 Hz repetition rate, 10 ns pulse width, 

a resolution of 10 cm-1 and a scanning step of 0.02 nm. The laser is shaped to a 1mm2 spot to fit the entrance 

hole of the trap and the laser power is around 20 mW in the UV spectral region.  

 

b. Calculations  

 Ab initio calculations have been performed with the TURBOMOLE program package,54 making use of 

the resolution-of-the-identity (RI) approximation for the evaluation of the electron-repulsion  integrals.55  The 



equilibrium geometry of the clusters and the vibrational frequencies in their ground electronic state (S0) were 

determined at the MP2/ SV(P)  level. Excitation energy and equilibrium geometry of the lowest excited singlet 

state (S1) were determined at the RI-ADC(2)/SV(P) level. 

 Structure optimizations were done by the quasi-Newton Raphson methods using the exact gradient 

vector and an approximation to the Hessian matrix as implemented in the TURBOMOLE program package.  
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