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Abstract 

Carbonation of solid calcium oxide by gaseous carbon dioxide was monitored by 

thermogravimetry (TG). A kinetic model of CaO carbonation is proposed in order to interpret 

the first rapid step of the reaction. By taking into account the existence of large induction 

period as well as the sigmoidal shape of the kinetic curves in this kinetic-controlled region, a 

surface nucleation and isotropic growth kinetic model based on a single nucleus per particle is 

proposed and the expressions of the fractional conversion and the reaction rate versus time are 

detailed. The induction period is found to have a linear variation with respect to temperature 

and to follow a power law with respect to CO2 partial pressure. The areic reactivity of growth 

decreases with temperature increase, and increases with CO2 partial pressure increase. A 



mechanism of CaCO3 growth is proposed to account for these results and to determine a 

dependence of the areic reactivity of growth on the temperature and the CO2 partial pressure. 

1. Introduction 

Carbonation of CaO reaction is involved in the carbonation/decarbonation cycles which are 

known as a possible way of CO2 capture. It was shown that the most important limitations of 

carbonation process are related to the reversibility of the reaction. CaO rapidly loses its 

activity towards CO2, so the maximum extent of carbonation decreases as the number of 

carbonation cycles increases.  

Several experimental studies were reported in the past on the reaction of CaO carbonation. 

Bathia et al. [1] have reported that the carbonation curve has a sigmoidal shape with a rapid 

first step and a slow second step. Bathia et al. [1], Silaban et al. [2] and Bouquet et al. [3] 

explained this shape by a decrease in porosity and Abanades et al. [4] by the formation of a 

layer of CaCO3 covering CaO aggregates. The effects of the experimental conditions on CaO 

carbonation were also studied. Thus, Nikulshina et al. [5] showed an acceleration of the rapid 

step and a higher final conversion when temperature increased. Grasa et al. [6] showed that 

increase of CO2 partial pressure resulted in acceleration of the rapid step. Some studies have 

also been conducted on the effect of H2O partial pressure and Nikulshina et al. [5] 

demonstrated that increase in H2O partial pressure had an accelerating effect. Finally, it has 

been shown that the decarbonation conditions of CaCO3 were important and CaO sintering 

inhibited carbonation [7]. 

If numerous studies were performed to determine the influence of experimental conditions on 

carbonation reaction, much fewer studies dealt with kinetic modeling of CaO carbonation. 

Two different scales of modelling were considered:  



- at the grain scale, authors based their interpretations on the shrinking core model. 

Thus, Sun et al. [8] applied this model to only a short linear part. Bouquet et al. [3] 

also used this model and explained the first step of carbonation;  

- at the aggregate scale, the gradient of CO2 partial pressure inside aggregate pores and 

the closing of pores were considered. So, Bathia et al. [1] applied the random pore 

model and Sun et al. [9] performed a coupling between random pore model and grain 

model with a discrete pore size distribution. Nevertheless, the random pore model did 

not allow to represent the entire curves, and in Sun’s study, the results were not totally 

satisfactory at low temperature and low CO2 partial pressure. 

In a previous paper [10] we have described a complex behavior of CaO carbonation kinetics. 

The “φ Sm”  test [12] clearly showed that the reaction path passes through three distinct kinetic 

domains over the entire range of fractional conversion. Thus the CaO carbonation reaction 

kinetics can be decomposed into three successive domains, the first and the last ones being 

governed by a rate-determining step of growth, the intermediate one resulting from a mixed 

regime of reaction and gaseous diffusion through the pores. First, the reaction begins at the 

grain scale and the kinetics is governed by a rate-determining step in all parts of the 

aggregates; the corresponding range of fractional conversion varies from 0–0.15 to 0–0.4 

when the temperature increases from 450 to 550°C. In the intermediate domain the reaction 

follows a non-Arrhenius behavior, explained by approaching the CaO–CaCO3 equilibrium 

conditions into the pores due to increasing pressure gradients as far as the reaction proceeds. 

In the last domain, another rate-determining step governs the kinetic behavior, which could be 

due to porosity closure at the periphery of the aggregates; at this time, diffusion through a 

dense CaCO3 shell around the aggregates should be involved, as proposed by Mess et al. [11].  

The present work was undertaken to interpret kinetic data in the first domain cited above with 

a model involving both nucleation and growth processes to account for the initial accelerating 



part of the fractional conversion α dependence on time curves. Indeed in this domain, the 

gaseous transfer into the aggregates porosity is supposed to be rapid and assuming that  a  

steady-state  is  established  since  the  beginning  of  the  reaction, the reaction rate can be 

written as follow: 

( ) ( ),...,...,
d
d

m tSPT
t iφ=α

  (1) 

where φ(T,Pi,...) is the areic reactivity of growth (in mol m-2 s-1) which depends only on the 

thermodynamic variables, and the Sm(t) molar space function is time-dependant (expressed in 

m2 mol-1) and is related to the extent reaction area where the rate-determining step of growth 

takes place. 

This paper presents the kinetic model developed to explain the experimental data, especially 

in the case of slow nucleation and rapid growth. The description of this model and the 

mathematical expressions of both the fractional conversion and the reaction rate versus time 

are detailed. Finally the comparison between kinetic model and experimental results are 

presented and variations of induction period and areic reactivity of growth with temperature 

and CO2 partial pressure are obtained.  

2. Experimental kinetic curves 

2.1 Kinetic curves 

Using a symmetrical TG system (Setaram TAG 16), the kinetic data of CaO carbonation were 

recorded with a sample of about 10 mg. The CaO powder used in this study was obtained in 

situ from the thermal decomposition of CaCO3 powder supplied by Prolabo Corp. with a 

purity of 99.5 wt%. The entire experimental procedure is described elsewhere [10]. This way, 



we performed carbonation reaction under isothermal and isobaric conditions for temperatures 

in the range of 450-650°C and CO2 partial pressures in the range of 2–30 kPa. 

Figures 1 and 2 present the dependence of the fractional conversion on time of reaction 

obtained at various temperatures and CO2 partial pressures, respectively. All the kinetic 

curves exhibit a similar shape and can be divided into three stages: first an induction period, 

then a very fast carbonation stage up to a breakpoint and finally a sluggish stage up to the end. 

The duration of the induction period depends on the experimental conditions of temperature 

and CO2 partial pressure. 

3. Description of the kinetic model  

The kinetic curves reveal the existence of an induction period which is sometimes longer than 

the rapid step of carbonation (until the kinetic slowing down). It is well admitted that 

induction periods are linked to the nucleation process, typically to the time required for 

appearance of nuclei. The presence of large induction periods indicates that the nucleation 

process can be sluggish depending on experimental conditions. This observation can be 

correlated with an ab initio study of the calcite nucleation at the CaO surface [14] which has 

shown that nucleation can be a tricky process on some surfaces due to strong structural 

instabilities related with CO2 insertion. Indeed the (100) surface of the CaO crystal appears 

unfavorable for nucleation whereas the (111) surface emerges as much more stable for CO3 

incorporation. Since the (100) surface is the most stable and the (111) surface is the least 

stable of CaO low index surfaces [15,16], nucleation of CaCO3 at the CaO surface may thus 

be a very difficult process. Moreover, the sharp accelerating shape of the α versus time curves 

indicates that the nuclei which appear at the end of the induction period are really numerous. 

So on one hand, the nucleation process takes a long time to occur and on the other hand, the 

time necessary to transform most of the grains due to growth is of the same order as the 



induction period. These considerations led us to base the kinetic model on the assumption that 

only one nucleus appears at the surface of a dense grain. 

After the induction period, kinetic curves α(t) exhibit a fast carbonation step with a sigmoid 

shape. This sigmoid shape is characterized by an acceleratory period followed by a 

deceleratory one. In isothermal and isobaric conditions, the areic reactivity of growth φ 

remains constant and Eq. (1) indicates that the reaction rate varies with time only due to the 

variation of the Sm function. Assuming that the rate-determining step is an interfacial step, the 

variation of Sm with time corresponds to the variation of the area of this interface. At the same 

time as the reaction rate increases then decreases, this area increases then decreases. Given 

that there is only one nucleus per grain, the only possibility path for such an interface area to 

increase then decrease is an isotropic and inward growth with a rate-determining step located 

at the internal CaO/CaCO3 interface.  

So, to describe the phenomena occurring into the second stage of the kinetic curves, we based 

our model on six hypothesis : i) only one nucleus appears at the surface of each grain ; ii) the 

nuclei appear at same time on all grains ; iii) the growth of the nuclei is isotropic (same rate in 

all the directions of the space) ; iv) grains are spherical with the same initial radius r0 ; v) the 

direction of growth is inwards ; vi) the rate-determining step is located at the internal 

interface. 

Figure 3 shows a schematic representation of one grain partially transformed with these 

previous assumptions.   

4. Mathematical expression of the kinetic rate 

Due to the previously mentioned hypothesis i) and ii), the calculation of the rate dα/dt 

corresponding to the entire sample may be obtained from the calculation done for a single 



grain since all the grains will be transformed in the same manner. We have shown in the 

‘introduction’ section that the reaction rate can be expressed by Eq. (1) where φ is the areic 

reactivity of growth (in mol m-2 s-1) and Sm is the molar space function (expressed in m2 mol-

1). The six assumptions chosen in the previous section allow to determine the expression of 

the space function Sm. Indeed Sm is linked with the area of the zone where the rate-

determining step occurs. In our case this zone is the internal interface between CaO and 

CaCO3. 

In order to calculate the expression of the reaction rate dependence on time, it is interesting to 

express the rate in two different ways: using the expression of the rate based on Eq. (1) and 

using the rate at which the CaO volume decreases.  

The calculation of the rate of CaO volume change is based on the evaluation of the area of the 

CaO/CaCO3 interface, noted Si. According to the scheme of Fig. 4, Si corresponds to the 

surface of a spherical cap which has for center the G point where the nucleus appeared. This 

spherical cap has a radius r at time t. Thus Si can be calculated by considering the solid angle 

Ω of the cone with apex angle 2θ.  Si is expressed by:  

2
i rS Ω=  (2) 

with ( )δ−π=Ω cos12    

where δ is the angle between CG and MG. If r0 is the initial radius of the CaO dense grain, 

since cos δ  is equal to the ratio 
02r

r
, the expression of Si becomes:  
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Given that the rate-determining step of carbonation is assumed to occur at the internal 

interface and that Sm is by definition equal to the ratio of Si to the initial amount of CaO in the 

grain [17], the expression of the reaction rate dα/dt is obtained by substituting the expression 

of Sm into Eq. (1), which gives:  
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where n0 is the initial amount of CaO and r0 the initial radius of the dense grain of CaO.  

The rate at which the CaO volume decreases is given by:  
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Given that:  
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where ξ is the extent of reaction and Vm,CaO is the molar volume of CaO, and combining Eqs. 

(4), (5) and (6), the relationship between dr and dt can be written: 

tVr CaOm dd , φ=  (7) 

By integrating between 0 and r for t between τ  and t (τ is the induction period and 

corresponds to the date of birth of the nucleus), the expression of r can be obtained:  

( )τ−φ= tVr CaOm,  (8) 

The expression of dα/dt is given from Eqs. (4) and (8):  
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By integration, the expression of the fractional conversion α is then:  
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The surface nucleation and isotropic growth model with a single nucleus per grain leads to 

sigmoïdal α(t) curves. In fact, it is easy to see from Fig. 3 that the area of the CaO/CaCO3 

interface passes through a maximum as far as the growth of CaCO3 progresses inside the 

grain.  

The expressions of the fractional conversion (Eq. (11)) and the reaction rate (Eq. (10)) 

dependence on time involve four values: the molar volume of CaO which is equal to 1.67 10-

5 m3 mol-1, the initial radius of CaO grains which was previously determined by SEM 

observations and which was about 1 µm for all of the individual grains [10], and finally the 

areic reactivity of growth, φ, and the induction period, τ, used as the adjustable kinetic 

parameters when comparing the model to the experimental curves. The numerical fitting has 

to be done up to a value which corresponds to the frontier between domains I and II as 

determined in our previous article from the “φ Sm” test [10]. These limiting values are 

reported in Table 1, beyond them the model is not applicable due to a change in the kinetic 



regime to reaction-gas diffusion mixed regime. The values of the areic reactivity of growth φ 

and of the induction period τ can thus be determined for each experimental settled condition. 

It is thus possible to obtain the changes of both the areic reactivity of growth and the 

induction period dependence on CO2 partial pressure and temperature of carbonation. 

5. Results and discussion 

For each experimental condition, the values of both the areic reactivity of growth, φ, and the 

induction period, τ, are adjusted by the least squares method in order to obtain the best 

agreement between both the calculated curves and the experimental ones. 

5.1. Results of optimization  

Optimizations using both parameters, φ and τ, have been performed for experimental data 

obtained for various temperatures in the range 450-650°C and various CO2 partial pressures in 

the range 2-30 kPa. As noted previously the fitting has been done from α equal to zero up to 

the fractional conversion given in Table 1 for each experimental condition. 

Experimental and calculated kinetic curves α(t) and rate curves dα/dt(α) are shown in Figure 5 

for experiments carried out at 723 K under 30 kPa of CO2 and at 873 K under 5 kPa of CO2.  

Figure 5 shows that, for each temperature or CO2 partial pressure, experimental points are 

correctly described by the isotropic growth model with 1 nucleus per grain in the first domain 

(this first domain is represented in grey on the Fig. 5). Table 1 lists, for each condition of 

temperature and CO2 partial pressure, the values of the areic reactivity of growth and of the 

induction period 

As it can be seen in Table 1, CO2 partial pressure has an effect on the duration of the 

induction period: the higher the CO2 pressure, the shorter the induction period. The variation 



amplitude is very important for pressures from 2 to 5 kPa of CO2, but much less important 

between 5 and 30 kPa. 

Only three CO2 partial pressures were studied by thermogravimetry at temperature 

T0 = 923 K. However, a power law seems to fit the experimental points, as shown in Fig. 6. 

The change in the induction period with the CO2 partial pressure therefore seems to be 

mathematically described by the following law:  

( ) 724.051006.4 −=τ PPP   (12) 

with P in Pa. 

The effect of the temperature of carbonation on the induction period has also been studied at a 

CO2 partial pressure P0 = 5 kPa. Figure 7 shows that induction period linearly increases when 

temperature increases. Indeed, the change in the induction period in function as a temperature 

can be described by the following linear law:   

( ) 6.23873069.3 −=τ TTT  (13) 

with T in Kelvin.  

The values of the induction periods obtained here by kinetic modeling τsimulation can be 

compared with experimental values τexp previously determined [10] using the time elapsed 

from the CO2 partial pressure equilibration (3 min after CO2 introduction) until the mass gain 

began to exceed the thermobalance noise (∆m < 1 µg). These values of τexp are given in Table 

1. One can note that τexp and τsimulation are quite similar, which makes the numerical fitting 

procedure reliable. 

From Eqs. (12) and (13), it was derive Eq. (14) describing the variation of τ versus both 

temperature and CO2 partial pressure. Figure 8 shows the good agreement between Eq. (14) 



and the experimental values for temperatures in the range 450-650°C and for CO2 partial 

pressure in the range 2-30 kPa.  

���, �� = �		��� +	��	���� − ����
��  (14) 

where P is the CO2 partial pressure (in Pa), T the temperature (in K), τT(T) et τP(P) are given 

by Eqs. (12) and (13) respectively, and τP(P0) = τP(5 kPa) = 852 s. 

 

Table 1 lists the values of the areic reactivity of growth for each experimental condition. One 

can note that the areic reactivity of growth does not follow the classical Arrhenius law since 

the values decreased when the temperature increases (for P(CO2) = 5 kPa). Such a non-

Arrhenius behavior has already been seen in the case of decomposition reaction, as for 

example during the dehydration of trehalose dihydrate [18] and has been discussed elsewhere 

[19,20]. 

To determine a theoretical law giving the variations of the areic reactivity of growth with both 

the temperature and the CO2 partial pressure, a mechanism of growth is proposed. Using the 

Kröger’s notation [21], the following elementary steps are proposed to describe the 

mechanism of growth: 

I) CO2 adsorption at the CaCO3 surface 

( ) sCOsgCO −⇔+ 22  

II)  External interface reaction with creation of an interstitial CO2 group in the CaCO3 

phase 

sCOsCO exti +⇔− ,22  



III)  Diffusion of the interstitial CO2 group from the external interface to the internal 

one 

int,2,2 iexti COCO ⇔  

IV)  Internal interface reaction with creation of a building unit of CaCO3  

3int,2 COOCO Oi ⇔+  

In agreement with the kinetic model, the rate-determining step is assumed to be located at the 

internal interface, i.e. step (IV) is considered as the rate-determining step. By considering the 

steps (I), (II) and (III) at equilibrium, it is possible to calculate the expression of the areic 

reactivity of growth from Eq. (15). 

 [ ] '
int,2 IViIVIV kCOk −=φ  (15) 

which leads finally to: 
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with IVk  the rate coefficient of step IV, 'IVk  the rate coefficient of the inverse step, KI and KII 

the equilibrium constants of steps I and II respectively, Peq the equilibrium CO2 pressure (in 

Pa) and PCO2 the experimental CO2 partial pressure (in Pa). 

Since the rate coefficient IVk  and the equilibrium constants KI and KII obey Arrhenius’ law, 

the expression of the areic reactivity of growth φIV can be written: 
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where A is a pre-exponential factor and Θ is a temperature coefficient equal to Ea,IV + ∆HI + 

∆HII. Ea,IV is the real activation energy of step IV, ∆HI and ∆HII are the enthalpy variation of 

steps I and II respectively. 

 

Eq. (17) has been matched to the values of φ deduced from the kinetic modeling (cf. Table 1) 

by adjusting the values of the parameters A and Θ. Fitting procedure was done by the least 

square method by considering each triplet (T,P(CO2),φ) of Table 1 and the value φ=0 at 

T=923 K and P(CO2)=Peq=993 Pa. The best fit was obtained with A equal to 6.32 10-10 mol m-

2 s-1 Pa-1 and Θ equal to -23 147 J mol-1 and is represented by the continuous lines on Figure 9 

and 10 which reports φ versus temperature and CO2 partial pressure respectively. 

Eq. (17) allows to successfully represent φ values obtained from the kinetic modeling for 

different CO2 partial pressures at 923K (Figure 10) and for different temperatures at 5 kPa 

(Figure 9). Indeed differences between φ values obtained from the kinetic modeling and φ 

values calculated from Eq. (17) are in the range of 2-12% for each condition of temperature 

and CO2 partial pressure, except for the value obtained at 873K and 5 kPa for which the 

difference is about 25%. So there is a good agreement between results obtained by fitting the 

kinetic rate equation to the experimental results, and the theoretical law φ (T,P(CO2)) 

determined from a mechanism of growth. 

 

6. Conclusion 

In a previous work [10], we highlighted that during CaO carbonation, there exists three 

distinct kinetic regimes. It had been noticed in particular that the first one corresponds to a 



chemical step control which simplifies the kinetic modeling since it is not necessary to take 

into account the gaseous transfers inside the porous aggregates. 

In this first domain, the presence of an induction period as well as the shape of the kinetic 

curves were in favor of a kinetic model of transformation based on surface nucleation and 

growth processes involving a single nucleus per grain and inward isotropic growth. The rate 

determining step of CaCO3 growth was assumed to be located at the interface between CaO 

and CaCO3. 

For each settled temperature or CO2 partial pressure, the experimental data were correctly 

described by the isotropic growth model with one nucleus per grain in the first domain and 

fitted values of the induction period and of the areic reactivity of growth could be obtained. 

Finally the dependence of the induction period and of the areic reactivity of growth on 

carbonation temperature and CO2 partial pressure could be determined. Using such 

dependence and the expression of the kinetic rate, it is possible to predict the kinetic behavior 

of CaO carbonation as far as the CO2 transport through the aggregates porosity remains fast 

relative to the chemical reaction rate.    
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Figures 



 
Figure 1: Isothermal and isobaric kinetic curves of CaO carbonation under a CO2 partial pressure of 5 kPa. 

 

Figure 2: Isothermal and isobaric kinetic curves of CaO carbonation at 650°C: a between 0 and 1 200 min; b 

between 0 and 120 min 
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Figure 3:  Scheme of the isotropic growth model with 1 nucleus per grain.

 

Figure 4: Evaluation of the area of CaO/CaCO3 interface. 

 

Figure 5: Curves α(t) and dα/dt(α) for experiment at : a 723 K, 30 kPa of CO2 ; b 873 K, 5 kPa. 

Experimental and calculated curves are represented by black curves with squares and by grey curves 

respectively. 



 

Figure 6: Variation of the induction period versus CO2 partial pressure for T = 923 K. 

 

Figure 7: Variation of the induction period versus temperature for P(CO2) = 5 kPa.

 
Figure 8: Comparison between experimental values of τ (crosses) and Eq. (16) (grey surface plot). 



 

Figure 9: Variation of the areic reactivity of growth versus temperature for P(CO2) = 5 kPa. 

   

Figure 10: Variation of the areic reactivity of growth versus CO2 partial pressure for T = 923 K. 

 

Tables 

T / K P(CO2) / kPa φ / mol m-2 s-1 τsimulation / s τexp / s 
723 30 3.1240 10-4 95 93 
748 5 1.2304 10-4 123 87 
773 5 1.1310 10-4 187 172 
823 5 9.9961 10-5 452 348 
873 5 9.5874 10-5 549 447 
923 5 5.9081 10-5 714 696 
923 2 2.3457 10-6 1487 1889 
923 30 3.5891 10-4 256 249 

 

Table 1: Kinetic constants determined by adjustment (φ and τsimulation) and directly from the experimental data 

(τexp) for each experimental condition. 

 


