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Abstract— In this work we present several implementation
strategies answering to different classical problems in multi-
agent systems. The model under consideration consists of a
discrete-time dynamics multi-agent system in which two agents
are able to communicate when an algebraic relation between
their states is satisfied. As emphasized in the literature, the
connectivity of the communication network is essential for
global coordination objectives. Thus, the primary goal of our
methodology is to characterize the controllers that preserve a
given topology allowing the global coordination. In a second step
we choose the controller appropriated to the main agreement
objective by solving a convex optimization problem associated
to the minimization of a well-chosen cost function. Examples
concerning full or partial consensus of agents with double inte-
grator dynamics illustrate the implementation of the proposed
methodology.

Index Terms— Multi-agent systems, LMI, consensus, decen-
tralized control.

I. I NTRODUCTION

The research on multi-agent systems and decentralized
control received an increasing interest during the last decade.
This is certainly due to the fact that they found many uses in
applications going from biology and medicine to transporta-
tion, communication and sociology [Reynolds(2001)], [Blon-
del et al(2008)], [Colizza(2007)], [Ratmann et al(2009)],
[Pavlopoulos et al(2011)]. The consensus problem has been
studied under different assumptions such as directed or
undirected interaction graph, connections affected or not
by delays, discrete or continuous, linear or nonlinear agent
dynamics, fixed or dynamic interaction graph, synchronized
or desynchronized interactions [Pecora & Carroll(1998)],
[Jadbabaie et al(2003)], [Olfati-Saber & Murray(2004)],
[Ren et al(2005)], [Moreau(2005)], [Olfati-Saber et al(2007],
[Morărescu et al(2012)]. It is noteworthy that control-
ling multi-agent systems in a decentralized manner of-
fers great opportunities for computation and communication
cost reduction [Shakkottai & Srikant(2007)], [Jadbabaie et
al(2003)], [Ren & Beard(2005)]. On the other hand the coor-
dination and performances of interconnected systems are re-
lated to the network topology. Most of existing works assume
the connectivity of the interaction graph in order to guaran-
tee the coordination behavior. However, some works have
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been oriented towards networks in which the global agree-
ment cannot be reached and only local ones are obtained
[Morărescu & Girard(2011)], [Touri and Nedic(2012)]. Oth-
ers propose controllers that are able to maintain the network
connectivity in order to ensure the global coordination [Za-
vlanos & Pappas(2008)], [Bullo et al(2009)], [Fiacchini &
Morărescu(2012)], [Fiacchini & Morărescu(2014)].

The aim of this paper is to provide implementation
strategies for the theoretical tools developed in our pre-
vious works [Fiacchini & Morărescu(2012)], [Fiacchini &
Morărescu(2014)]. Precisely, we consider a multi-agent sys-
tem with discrete-time dynamics and a dynamic intercon-
nection topology. Two agents are able to communicate if
an algebraic relation between their states is satisfied. The
connected agents are called neighbors. The agents updates
their state in a decentralized manner by taking into account
their neighbors state. A connection is preserved as far as
the algebraic relation is verified. Thus, we choose a minimal
number of interconnections ensuring the network connec-
tivity and making use of set theory [Fiacchini et al(2010)],
[Fiacchini et al(2011)], we design a decentralized controllaw
that ensures the satisfaction of the corresponding algebraic
constraints.

As shown in [Fiacchini & Morărescu(2014)], the condition
ensuring the topology preservation rewrites as a convex con-
straint that may be posed in Linear Matrix Inequality (LMI)
form, [Boyd et al(1994)], [Boyd & Vandenberghe(2004)].
Therefore, we not only proposed a new tool for decentralized
control but also an easy implementable one. It should be
noted that our procedure is quite flexible and, as we shall
see, additional global objectives can be addressed. Precisely,
we focus on the implementation of the topology preserva-
tion, presented in [Fiacchini & Morărescu(2014)], to tackle
specific problems concerning multi-agent systems. The sub-
systems composing the network are mobile agents moving
on the plane and whose communication capability is subject
to constraints on their distances. Different coordinationtasks,
as flocking, consensus and predictive control, are considered
and solved employing the LMI conditions for avoiding the
connections loss. Numerical illustrative examples allow us
to analyze the results and to compare the different control
strategies.

The paper is organized as follows. In Section II we
formulate the decentralized control problem under analysis.
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Some LMI conditions for network topology preservation are
recalled in Section III. Control design strategies for full
or partial state consensus of identical systems with double-
integrator dynamics are discussed in Section IV. In SectionV
we present some numerical examples illustrating the control
strategies proposed in section IV. Some conclusions and
remarks on further works are provided at the end of the
paper.

Notation: The set of positive integers smaller than or
equal to the integern∈ N is denoted asNn, i.e. Nn = {x∈
N : 1 ≤ x ≤ n}. Given the finite setA ⊆ Nn, |A | is its
cardinality. Given a symmetric matrixP ∈ R

n×n, notation
P> 0 (P≥ 0) means thatP is positive (semi-)definite. ByA†

we denote the left pseudoinverse of the matrixA. Given the
matrix T ∈R

n×m andN∈N, DN(T) ∈R
nN×mN is the block-

diagonal matrix whoseN block-diagonal elements are given
by T, while D(A,B, ...,Z) is the block-diagonal matrix, of
adequate dimension, whose block-diagonal elements are the
matricesA,B, ...,Z. Given a set ofN matricesAk with k∈NN,
denote by{Ak}k∈NN the matrix obtained concatenatingAk in
column. Given a square matrixA, denote withλmax(A) the
maximal eigenvalue ofA.

II. PROBLEM STATEMENT

Throughout the paper we consider a multi-agent system
with V ≥ 2 interconnected agents assumed identical. Let
us assume that each agent moves in a two dimensional
space and is able to select the variation of its velocity.
Modelling the input as a velocity variation or, equivalently,
the variations along the two Cartesian axis, the dynamics of
eachi-th agent, withi ∈NV , along thex axis is given by

{

px
i (k+1) = px

i (k)+ tvx
i (k),

vx
i (k+1) = vx

i (k)+ux
i (k),

(1)

wherepx
i is the position,vx

i the velocity,ux
i the control input

and t the sampling time. So, the overall dynamics of thei-
th agent along thex axis is given by a linear system with
matrices

Ā=

[

1 t
0 1

]

, B̄=

[

0
1

]

where the sampling timet has been chosen equal to 0.05.
The dynamics along they axis are clearly analogous. Then
the full dynamics of thei-th agent is

x+i = Axi +Bui, (2)

with

A=

[

Ā 0
0 Ā

]

, B=

[

B̄ 0
0 B̄

]

,

where the state isxi = [px
i (k), vx

i (k), py
i (k), vy

i (k)]
⊤ and the

input ui = [ux
i , uy

i ]
⊤.

The usual objectives of the control of multi-agent systems
concern the achievement of cooperative tasks by means of
decentralized control laws, acting on every agent. In order
to pursue such collaborative tasks in a decentralized way,
the agents exchange some information. The information
available to every agent is supposed to be partial, as only a
portion of the overall system is assumed accessible to every

agent. We suppose that any agent has access to the state of a
neighbor only if a constraint on the distance between them is
satisfied. As the loss of the communication network connec-
tivity may hamper the system to reach the global objective,
some of such constraints are required to be preserved. Then,
the primary problem underlying any cooperative task in the
multi-agent context is the connection topology preservation.
Theoretical results on this topic, presented in [Fiacchini&
Morărescu(2014)], are recalled hereafter and applied in the
following sections.

III. SET THEORY RESULTS FOR TOPOLOGY

PRESERVATION

In a general framework we can consider the dynamics of
the i-th agent is given by (2) for alli ∈NV , with A∈R

n×n,
B∈R

n×m and wherexi ∈R
n is the state andui ∈ R

m is the
control input of thei-th agent.

Let us suppose that the initial interconnection topology
is given by the graphG = (V ,E ) where the vertex set is
V = NV and the connecting edge setE ⊆ V ×V represents
the set of pairs of agents that satisfy a distance-like condition.
Precisely, given the real scalarr > 0, d ∈ N with d ≤ n and
T ∈ R

d×n such thatTT⊤ is invertible, the initial edge set is
given by

E = {(i, j) ∈ NV ×NV | ‖T(xi(0)− x j(0))‖2 ≤ r}.

The set of edges that must be preserved is denoted byN ⊆
E . We suppose that every agenti knows the state of thej-th
one if and only if(i, j) ∈ N .

Definition 1: For all i ∈ V we define the set of connected
neighbors of thei-th agent as

Ni = { j ∈NV : (i, j) ∈ N }.
Given the set of connectionsN , the objective is to design
a decentralized control law ensuring that none of these
connections are lost. In other words, the aim is to design
the state-dependent control actionsui(k) independently from
u j(k), for all i, j ∈NV andk∈N, such that every connection
in N is maintained.

As usual in multi-agent systems we consider thei-th input
to be the sum of terms proportional to the distances between
agenti and its neighbors. That is, denotingel ,m= xl −xm for
all l ,m∈ NV , we define

ui = ∑
j∈Ni

Ki, j(xi − x j) = ∑
j∈Ni

Ki, jei, j . (3)

The design of eachui is reduced to the design of the
controller gainsKi, j chosen such that the link(i, j) is
preserved where the dynamics of thei j system results in

e+i, j = (A+BKi, j +BKj ,i)ei, j +
k6= j

∑
k∈Ni

BKi,kei,k−
k6=i

∑
k∈N j

BKj ,kej ,k,

(4)
for all i, j ∈NV . It is not difficult to see that, in the centralized
case the dynamics of the error can be imposed by an adequate
choiceui, for all i ∈ NV , provided that the agents dynamics
is stabilizable.
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The dynamics of thei j system is given by the matrixA+
BKi, j +BKj ,i if no perturbations due to the presence of other
agents are present. Such perturbations, which complicate the
decentralized control design, can be bounded within a set
depending on the radiusr and on the information on the
neighbors common to thei-th and j-th agents.

Consider the sets

Ni, j = Ni ∩N j ,

N̄i, j = Ni \ (Ni, j ∪{ j}),
N̄ j ,i = N j \ (Ni, j ∪{i}),

(5)

then,Ni, j denotes the common neighbors of thei-th and the
j-th agents andN̄i, j the neighbors of thei-th one which are
neither j nor one of its neighbors, analogously for̄N j ,i . We
define the cardinalities

N = 2|Ni, j |+1, N̄ = |N̄i, j |+ |N̄i, j |,

where the indices are avoided here and in the following
definitions to improve the readability.

The problem addressed in this paper can be state as
follows.

Problem 1: Design a procedure to find at each step a
condition on the decentralized control gainsKi, j , with i, j ∈
NV such that the following algebraic relation is satisfied

‖Te+i, j‖2 < r, ∀(i, j) ∈ N , (6)

if the constraints

‖Tei,k‖2 ≤ r, ∀k∈ ¯Ni, j ,

‖Tej ,k‖2 ≤ r, ∀k∈ ¯N j ,i ,
(7)

hold.
In order to ease the presentation, we introduce different

notations for the controller gains.
Definition 2: Denote withEi, j ∈ R

nN the vector obtained
concatenatingei, j with all ei,k andej ,k wherek∈Ni, j . Denote
with Ǩ i, j ∈R

m×n(N−1) the matrix obtained concatenatingKi,k

and−K j ,k wherek∈ Ni, j and with K̂ i, j ∈R
m×nN̄ the vector

obtained concatenating allKi,k where k ∈ ¯Ni, j and −K j ,k

wherek∈ ¯N j ,i . We also define

∆ = T [A+BǨi, j , BǨ i, j ] DN(T)† ∈R
d×dN,

Γ = TBK̂ i, j DN̄(T)
† ∈R

d×dN̄,

Z = DN(T)Ei, j ∈ R
dN,

(8)

whereǨi, j = Ki, j +K j ,i.
We recall here an important contribution presented in [Fi-

acchini & Morărescu(2014)], namely the sufficient condition
for the constraint (6) to hold.

Theorem 1:Problem 1 admits solutions if there existsΛ=
D(λ1Id, ...,λN̄Id) with λk ≥ 0, for all k∈ NN̄ such that







r2− r2 ∑
k∈NN̄

λk 0 Z⊤∆⊤

0 Λ Γ⊤

∆Z Γ Id






> 0. (9)

Furthermore, any solution(∆,Γ) of the previous LMI
defines admissible controller gains for the Problem 1.

The quantityδ = ∑k∈NN̄
λk can be geometrically inter-

preted as a bound on the perturbation generated in the

i j dynamics by the non-common neighbors. Precisely, the
effect of the non-common neighbors can be modelled as
a perturbation on thei j system bounded by an ellipsoid
determined byT⊤T and of radius

√
δr. Therefore the

condition δ < 1, implicitly imposed by (9), is necessary to
ensure the preservation of the connection(i, j).

IV. A PPLICATIONS TO DECENTRALIZED CONTROL OF

MULTI -AGENT SYSTEMS

In this section we illustrate the application of our results,
published in [Fiacchini & Morărescu(2014)] and recalled in
Section III, for controlling the multi-agent system presented
in Section II. Different strategies (based on optimal and
predictive control) to achieve the collaborative objectives are
presented hereafter and numerically implemented.

Denotepx
i, j = px

i − px
j , vx

i, j = vx
i − vx

j , py
i, j = py

i − py
j , vy

i, j =
vx

i − vx
j and

ei, j = [px
i, j , vx

i, j , py
i, j , vy

i, j ]
⊤ = x⊤i − x⊤j , (10)

andui, j = [ux
i −ux

j , uy
i −uy

j ]
⊤. The control inputs are given by

(3) and Definition 2 with feedback gains

Ǩi, j =

[

kpx

i, j kvx

i, j 0 0

0 0 kpy

i, j kvy

i, j

]

, (11)

for all (i, j) ∈ N . Once obtained a value fořKi, j , we define
the nominal selectionKi, j = K j ,i = 0.5Ǩi, j for all (i, j) ∈ N .

Moreover, the following constraint on the norm ofǨi, j is
imposed

Ǩ⊤
i, j Ǩi, j ≤ In, (12)

to limit the effect of the control of thei j nominal system
on the neighbors. Recall, in fact, that the perturbation on the
neighbors of the agentsi and j depends on their states and
on the gainsKi, j andK j ,i .

Remark 1: It is worth recalling that thei j system, with
(i, j) ∈N , considered and analysed hereafter, is the generic
model of connected agents. The overall system concerns
several analogous models, one for every pair of connected
agents, represented by the elements ofN . Hence, several
distance constraints have to be maintained and several local
optimization problems to be solved.

A. Topology preservation constraint

We suppose that the distance between two agents must be
smaller than or equal tor to allow them to communicate.
Thus the topology preservation problem consists of upper-
bounding byr the euclidean distance between the connected
neighbors. The constraint on the state of thei j system to
preserve is

px
i, j(k)

2+ py
i, j(k)

2 ≤ r2
. (13)

Notice that the effect of the inputsux
i and uy

i at time k
has no influence onpx

i and py
i at timek+1 (see (1)). Thus,

any algebraic condition involving the positionspx
i , py

i of the
systems atk+ 1 would not depend on the control action
ux

i , uy
i at timek. From the computational point of view, every

constraint concerning only the agents positions, would lead
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to LMI conditions independent on the variableǨi, j . Then the
results provided in Theorem 1 are not applicable directly in
this case for the state at timek+1. On the other hand, the
controlsux

i (k),u
y
i (k) affect the position (and the velocity) at

time k+2 and a condition on the feedback gainǨi, j to ensure
the preservation of the(i, j) connection at timek+2 can be
posed. The distance constraint can be imposed on the states
at k+2, as nothing can be done at timek in order to prevent
its violation at timek+1. Then a constraint onei, j(k) can be
determined characterizing the region of the state space such
that px

i, j(k)
2+ py

i, j(k)
2 ≤ r2 andpx

i, j(k+1)2+ py
i, j(k+1)2≤ r2

in terms of matrixT. Since the former constraint does not
involve the input, onlypx

i, j(k+1)2+ py
i, j(k+1)2 ≤ r2 might

be taken into account for the control design.
Proposition 1: The condition (13) holds at timek+2 if

and only if we have that‖Tei, j(k+1)‖2 ≤ r with

T =

[

1 t 0 0
0 0 1 t

]

. (14)

Proof: The region of the space ofei, j(k) such that
the topology constraint (13) is satisfied atk+ 1 is given
by px

i, j(k+ 1)2 + py
i, j(k+ 1)2 ≤ r2, which is equivalent to

‖Tei, j(k)‖2 ≤ r for T as in (14). Hence imposing that the
system error state belongs to such a region atk+1 implies
assuring that the distance between the agentsi-th and j-th is
smaller than or equal tor at k+2, preserving the topology
at k+2. Thenpx

i, j(k+2)2+ py
i, j(k+2)2 ≤ r2 if and only if

‖Tei, j(k+1)‖2 = ‖T(Aei, j(k)+Bui, j(k))‖2 ≤ r,

with T as in (14).
Proposition 1, then, implies that the topology preservation

constraint for timek+2 can be expressed in terms ofei, j(k)
and the inputui, j(k). The results presented in Theorem 1,
with T as in (14), allow to characterize the sets of feedback
gains ensuring the satisfaction of the distance constraintat
k+2, for every pair of connected neighborsi and j. Such set
would depend on the current stateei, j(k) and on the gains
designed to compensate the errors and enforce the topology
preservation.

B. Relevant multi-agents applications

Among the local feedback gains which guarantee the
connection preservation, different selection criteria can be
applied, depending on the collaborative task to be achieved.
Hereafter three popular criteria are illustrated and analysed.

1) Full state consensus:The first criterion is to select the
feedback gain, among those satisfying (9), to achieve the
full state agreement. In other words, the objective in this
case is to both steer all the agents at the same point and
align all the velocities without loosing any connection. One
possibility is to compute at any sampling instant the matrix
Ǩi, j minimizing a sum of nominal values of the position
distance atk+ 2 and of the speed difference atk+ 1. By
nominal values we mean the values of positions and speeds
in absence of the perturbation on thei j system due to the
other agents. Then, given the positive weighting parameters

qp, qv ∈ R, the cost to minimize is

Qc(ei, j(k), Ǩi, j ) = qp(px
i, j(k+2)2+ py

i, j(k+2)2)+

+qv(vx
i, j(k+1)2+ vy

i, j(k+1)2).
(15)

Proposition 2: Any optimal solution of the convex opti-
mization problem

min
∆,Γ,Λ, Ǩi, j ,M

ei, j(k)⊤M⊤Mei, j (k)

s.t. (8),(9),(11),
[

In Ǩ⊤
i, j

Ǩi, j Im

]

≥ 0,

(16)

with

M =









qp qpt 0 0
0 qv 0 0
0 0 qp qpt
0 0 0 qv









(A+BǨi, j), (17)

andT as in (14), minimizes the cost (15) subject to the norm
gain constraint (12) and the distance constraints (13) atk+2.

Proof: From standard algebraic manipulation, it can be
proved thatQc(ei, j(k), Ǩi, j ) = ei, j(k)M⊤Mei, j(k). From (8),
(9), and Proposition 1, any feasible solution of (16) assures
the distance constraints to hold atk+ 2. Finally, (12) is
equivalent to the last LMI constraint in (16).

2) Partial state consensus: flocking:An alternative ob-
jective, often considered in the framework of decentralized
control, is to steer a part of the stateei, j to zero, for all
(i, j) ∈ N . In particular, the problem of flocking consists
in designing a decentralized control such that the difference
between the speeds of every pair of connected agents con-
verges to zero, avoiding violations of the distance constraints.
Then, if the graphG= (V ,N ) is preserved connected and
the speed differences converge to zero, the agents reach and
maintain the flocking. For this purpose, the cost to minimize
is a measure of the difference between neighbors speeds, for
instance

Qf (ei, j (k), Ǩi, j ) = vx
i, j(k+1)2+ vy

i, j(k+1)2. (18)

This is achieved by solving a convex optimization problem
analogous to (16), as stated in the proposition below. The
proof is avoided since similar to the one of Proposition 2.

Proposition 3: Any optimal solution of the convex opti-
mization problem (16) with

M =

[

0 1 0 0
0 0 0 1

]

(A+BǨi, j), (19)

andT as in (14), minimizes the cost (18) subject to the norm
gain constraint (12) and the distance constraints (13) atk+2.

Clearly, changing opportunely the matrixM would permit
to regulate different part of the state of thei j system and
also any linear combination of the state.

3) Predictive control:Finally, we present another interest-
ing optimization criterion. One of the most popular control
technique suitable for dealing with control in presence of
hard constraints is the predictive control. These control
strategies exploit the prediction of the system evolution and
the receding horizon strategy to react in advance in order to
prevent the constraint violations and to avoid the potentially
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dangerous regions of the state space. Moreover, the control
input that would generate the optimal trajectory, among
the admissible ones, is usually computed and applied. In
general, the longer is the prediction horizon, the higher is
the capability of preventing unsafe regions and constraint
violations. Based on this idea, we propose to optimize a
measure of the future state position, in order to react in
advance and prevent the states to approach the limits of the
distance constraints. In particular we minimize a measure
of the nominal distance between the positions of thei-
th and j-th agents at timek+ 3 in function of the input
gain at timek, that is(px

i, j(k+2)+ tvx
i, j(k+1))2+(py

i, j(k+
2)+ tvy

i, j(k+ 1))2. The control horizon can be extended to
values higher than 3, but the predicted stateei, j(k+ N)
would depend on the future inputs and the cost would result
in a non-convex function of̌Ki, j . A simplifying hypothesis
can be posed to obtain a suboptimal control strategy but
with greater prediction capability. Let us denote the horizon
Np ∈ N and suppose that only the nominal control action
ui, j(k) = Ǩi, jei, j(k) is applied, i.e.ui, j(k+ p)= 0 for p∈NNp.
The minimization of the nominal position atk+Np, i.e.

Qp(ei, j(k), Ǩi, j ) = px
i, j(k+Np)

2+ py
i, j(k+Np)

2, (20)

leads to a suboptimal control with high predictive power.
Proposition 4: Any optimal solution of the convex opti-

mization problem (16) with

M = T +(Np−1)t

([

0 1 0 0
0 0 0 1

]

+ Ǩi, j

)

, (21)

andT as in (14), minimizes the cost (20) subject to the norm
gain constraint (12) and the distance constraints (13) atk+2.

The benefits of the prediction-based strategy will be high-
lighted in the numerical examples section.

V. NUMERICAL EXAMPLES

Two numerical case of studies and different global ob-
jectives are considered in this illustrative section. The sim-
ulations have been performed in MATLAB. At every time
instant, the solution of the convex problem, based on the LMI
conditions for connection preservation, is solved indepen-
dently for each agent. Every connection(i, j) is considered
by the agentsi and j leading to the same LMI-constraint.
The only information employed by any agent is, as assumed
above, the knowledge of the states of the neighbors involved
in the connections to be preserved. Every agent computes and
applies a feedback control according to the LMI conditions,
no information interchange between agents is considered,
although it could and should in future works.

Example 1:Firstly, let us consider the problem of flocking
for a simple system consisting of three interconnected agents.
Suppose that the 2-nd agent is a common neighbor of both
the 1-st and the 3-rd one, which are not neighbors each other.
The distance bound assuring the connections between the
agents isr = 2. The initial states are

x1(0) =
[

2.43 1.215 0 0
]⊤

,

x2(0) =
[

1.215 0 −1.215 −1.8225
]⊤

,

x3(0) =
[

0 −0.486 0.243 0
]⊤

,

and then

e1,2 =
[

1.215 1.215 1.215 1.8125
]⊤

,

e3,2 =
[

−1.215 −0.486 1.458 1.8225
]⊤

.

The distances between the connected agents, the 12 system
and the 23 one, are close to the boundary as seen in Figure
1. The initial speeds are pushing the agents away one of
each others, towards the boundary of the connection region.
Although the 2-nd and the 3-rd agent are very close to the
constraint limit, the control succeeds to reduce their relative
speed and to stop their drift within just few sampling times.
The same happens with the speed difference between the 1-
st and 2-nd agent. Therefore, the connection graph is kept
and one gets a formation that moves with the same speed
with relative position distances close to the connection limit,
see Figure 2. Obviously, increasing the initial distances be-
tween neighbors or the initial velocities the control problem
formulated in Section IV-B.2 may not have solutions and the
graph connectivity is lost.
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Fig. 1. Flocking: errors 12 and 32.

Example 2:Consider now the six interconnected agents
with the initial conditions given in [Martin & Girard(2010)]
and connected by the minimal robust graph computed in the
same work. That is:N = {(1,2), (2,3), (3,4), (4,5), (5,6)},
r = 3.2 and initial conditions:
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Fig. 2. Flocking: trajectories.

x1(0) = [−4 − v0 3 0]⊤ , x6(0) = [4 v0 3 0]⊤ ,

x2(0) = [−2 − v0 2 0]⊤ , x5(0) = [2 v0 2 0]⊤ ,

x3(0) = [−1 − v0 0 0]⊤ , x4(0) = [1 v0 0 0]⊤ ,

wherev0 is used as a parameter to analyze the maximal
initial speed that may be dealt with by different control
strategy. It is noteworthy that, as shown in [Martin &
Girard(2010)], for the classical consensus algorithm the
preservation of the minimal robust graph is guaranteed for a
critical speed valuevc ≃ 0.23. Nevertheless, it is numerically
shown that the sufficient condition is conservative since for
v0 = 1.5vc (generating approximately a 4 times higher global
velocity disagreement) the robust graph is not broken. We
also note that the classical consensus algorithm is not able
to preserve the connectivity when the global disagreement is
5 times superior to the one guaranteeing the consensus (i.e.
v0 > 2.1vc).

In the sequel, we show that our design allows to increase
considerably the initial speed value (and consequently the
initial global disagreement) avoiding the loss of connections.
Let us first give the initial error vectors between the states
of the neighbors:

e1,2(0) = [−2 0 1 0]⊤, e5,6(0) = [−2 0 −1 0]⊤,
e2,3(0) = [−1 0 2 0]⊤, e4,5(0) = [−1 0 −2 0]⊤,

e3,4(0) = [−2 −2v0 0 0]⊤.

A. Flocking

The control problem formulated in Section IV-B.2 has ad-
missible solutions forv0 = 19vc and the connection between
the third and the fourth agent is lost forv0 =20vc as shown in
Figure 4. It is worth noting that the control acts like springs
between agents’ velocities (compare the bottom of Figures
3, 4 and 5). First, the control cancels the speed difference
between neighbors with opposite velocities creating a speed
disagreement in both symmetric branches of the graph. Next,
it cancel the disagreement between 2-nd and the 3-rd agent
and between the 4-th and 5-th one, mimicking a gossiping
procedure where the choice of active communication link
is given by the error between neighbors speeds. Doing so,
either the flocking is reached before the connectivity is lost,
or the graph splits into two groups that will independently
agree to two different velocity values.
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Fig. 3. Flocking: trajectories and errors of the 12 system.
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Fig. 4. Flocking: errors of the 23 and the 34 systems.
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Fig. 5. Flocking: errors of the 45 and the 56 systems.

The performances can be improved by heuristics. For
instance, requiring to maintain an euclidean distance inferior
to 3.1 even though the connection bound is 3.2. The flocking
is reached forv0 = 20vc, see Figure 6. It is interesting to note
that the control action is not able to maintain the error 34
inferior to 3.1 but once the constraint is violated (since the
agents are still connectedr = 3.2) the priority is to minimize
the euclidean distance in order to respect the constraint.
Notice how the regularity of the behaviour is lost after the
constraint violation, at time 0.55.

B. Full state consensus

The control problem formulated in Section IV-B.1 with
qx = 10, qv = 1 has admissible solutions forv0 = 23vc as
shown in Figure 7.

C. Predictive control strategies

The control problem formulated in Section IV-B.3 with
Np = 3 works forv0 = 21vc but the trajectories are far from
ideal. The behaviour is largely improved withNp = 21, see
Figure 8 representing the trajectories and the time evolution
of the 34 dynamics forv0 = 28vc. Notice how the position
error of the critical system, the 34, approaches the bound
avoiding the constraint violation, also for an initial speed
much higher than those used for the other approaches,
i.e. v0 = 28vc. Furthermore, the evolutions and trajectories
present a much smoother and regular behaviour. All these
desirable properties are due to the predictive capability of
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Fig. 6. Flocking: trajectories and errors of the 34 system.
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Fig. 7. Consensus: trajectories and errors of the 34 system.
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the approach which permits the control to react to possible
violations and to prevent undesired situations in advance.
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Fig. 8. Predictive control: trajectories and errors of the 34 system.

VI. CONCLUSION AND FURTHER WORKS

In this paper we presented the results obtained by applying
LMI-based conditions for topology preservation to a multi-
agent system. In particular, a common multi-agent frame-
work has been considered, namely a system composed by
several moving agents with limited communication capabil-
ity. The LMI-conditions demonstrated to allow the connec-
tivity preservation, crucial issue in cooperative control. At
the same time, different convex optimization problems have
been posed in order to pursue several classical objectives
in the multi-agent context, as consensus, flocking and pre-
dictive control. The results obtained are proved to improve
consistently those achieved with analogous techniques.

Note that the main applications provided in the paper
concern fleets of autonomous vehicles. Thus, the size of this
associated network does not represent and obstacle for the
numerical treatments by LMIs. Moreover, we can choose the
network to be preserved as a very sparse one. Consequently,
the number of low order LMIs to be solved is of the same
order as the network size.

As possible further developments we are considering the
design of other control strategies based on the topology
preservation conditions, in particular the closed-loop predic-
tive control, and their application to real-time multi-agent
systems. Also the extension of the results to the case of
nonlinear systems deserves to be considered.
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[Morărescu et al(2012)] I.-C. Morărescu, S.-I. Niculescu, and A. Girard.
Consensus with constrained convergence rate and time-delays., vol-
ume 423 ofLecture Notes in Control and Information Sciences, pages
417–428. Springer Berlin Heidelberg, 2012.

[Shakkottai & Srikant(2007)] S. Shakkottai and R. Srikant.Network Opti-
mization and Control. Foundations and Trends in Networking. NoW
Publishers, 2007.

[Ren & Beard(2005)] W. Ren and R. W. Beard. Consensus seekingin
multiagent systems under dynamically changing interaction topologies.
IEEE Trans. on Automatic Control, 50(5):655–661, 2005.
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