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Abstract Weighted majority votes allow one to combine the output o&sal classifiers or
voters. MinCq is a recent algorithm for optimizing the weigliteach voter based on the
minimization of a theoretical bound over the risk of the wetth elegant PAC-Bayesian ge-
neralization guarantees. However, while it has demorgtgdod performance when combi-
ning weak classifiers, MinCq cannot make use of the usgftilori knowledge that one may
have when using a mixture of weak and strong voters. In thigmpage propose P-MinCq,
an extension of MinCq that can incorporate such knowledglearform of a constraint over
the distribution of the weights, along with general proofofivergence that stand in the
sample compression setting for data-dependent votersagjprach is applied to a vote of
k-NN classifiers with a specific modeling of the voters’ penfiance. P-MinCq significantly
outperforms the classicNN classifier, a symmetric NN and MinCq using the same voters
We show that it is also competitive with LMNN, a popular metearning algorithm, and
that combining both approaches further reduces the error.
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1 Introduction

A weighted majority vote is an ensemble method (Dietter2d90; Re and Valentini, 2012)
where several classifiers (ooters) are assigned a specific weight. Such approaches are
motivated by the idea that a careful combination can pa#ynitompensate for the individ-
ual classifiers’ errors and thus achieve better robustnesgearformance. For this reason,
ensemble learning has been a prominent research area ifnmaedrning and many meth-
ods have been proposed in the literature, among which BgdBireiman, 1996), Boosting
(Schapire and Singer, 1999) or Random Forests (Breimarl)20be problem has also been
studied from a Bayesian learning perspective, for instavite Bayesian model averaging
(Haussler et al., 1994; Domingos, 2000). Multimedia arialigsan example of prolific ap-
plication, for instance to combine classifiers learned fdifferent modalities of the data
(Atrey et al., 2010).

Even though combining weak classifiers such as in Boostimgu¢iel and Schapire,
1996) is supported by a solid theory, understanding wheghted majority votes perform
better than a classic averaging of the voters is still a diffiguestion. In this context, PAC-
Bayesian theory (McAllester, 1999) offers an approprieaetiework to study majority votes
and learn them in a principled way and with generalizationrgtzes. In particular, the
recently-proposed MinCq (Laviolette et al., 2011) optieszhe weights of a set of voters
‘H by minimizing a bound—the~-bound (Lacasse et al., 2007)—involving the first two
statistical moments of the margin achieved on the trainirtg.dehe authors show that min-
imizing this bound allows one to minimize the true risk of theighted majority vote and
boils down to a simple quadratic program. MinCq returmesierior distribution on# that
gives the weight of each voter. It is based oragpriori uniform belief on the relevance of
the voters, which is well-suited when combining weak clés. For instance, it has been
successfully applied to weighted majority votes of decisarmps and RBF kernel func-
tions. However, this uniform prior is not appropriate wherw eavants to combine efficiently
various classifiers with different levels of performance.

In this paper, we claim that MinCq can be extended to deal vattiable-performing
classifiers when one has arpriori belief on the voters. We generalize MinCq in two res-
pects. First, we propose a new formulation by extending tiggral notion of aligned dis-
tribution (Germain et al., 2011) tB-aligned distributionsP models a constraint over the
distribution on the weights of the voters, allowing us todrporate ara priori belief on
each voter, constraining the posterior distribution. Odemrsion, called P-MinCq, does not
induce any loss of generality and we show that this new proldan still be formulated
in a efficient way as a quadratic program. Second, we extengrtfads of convergence of
Laviolette et al. (2011) to the sample compression settBrgépel et al., 2005), where the
voters are built from training examples, such as NN classif@ur results use similar argu-
ments as those proposed in (Germain et al., 2011; LavideideMarchand, 2007) but our
setting requires a specific proof, since the results of Geretaal. (2011) are only valid for
surrogate losses bounding the 1 loss.

The second part of the paper makes use of these two genetabations to optimize a
weighted majority vote over a set BfNN classifiersk={1, 2, ... }) to hightlight the bene-
fit of ana priori on the voters. We propose a suitablpriori constrain® modeling the fact
that we have more confidence in close neighborhoods. Thésdiea priori constrain larger
(resp. smaller) weights on classifiers with small (resmdaralues of to reflect the belief
that local neighborhoods convey more relevant informatiiam distant ones, which cannot
be modeled by the uniform belief used in MinCqg. Using P-Mirthis context constitutes
an original approach to learning a robust combination of N&$sifiers that achieves bet-
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ter accuracy. This is confirmed by experiments conductedventy benchmark datasets:
P-MinCq clearly outperform&-NN, a symmetric version of it (Nock et al., 2003), as well
as MinCqg based on the same voters. Moreover, for high-dimeakproblems, P-MinCq
turns out to be quite robust to overfitting. We also show thiastéompetitive with the metric
learning algorithm LMNN (Weinberger and Saul, 2009) and filagging the learned dis-
tance into P-MinCq can further improve the results. Finallg apply our approach to an
object categorization dataset, on which P-MinCq againes&s good performance.

This paper is organized as follows. Section 2 reviews Min@d)its theoretical basis. In
Section 3, we introduce P-MinCq, our extension of MinCPtaligned distributions. We
derive generalization bounds for the sample compressiemiosSection 4. Section 5 shows
that MinCq does not perform well when using NN-based voter$ gresents #-aligned
distribution that is suitable to this context. Experimegnts presented in Section 6.

2 Notations and Background
2.1 Preliminaries

Throughout this paper, we consider the framework of the algorMinCq (Laviolette et al.,
2011) for learning a weighted majority vote over a set of-sediied voters for binary clas-
sification problems. Leit € R? be theinput space of dimensiond and) = {-1,+1}

be theoutput space (i.e, the set of possible labelsy. denotes the training sample made
of m labeled examplegx, y) drawni.i.d over X x Y according to a fixed and unknown
distribution D. The distribution ofS of sizem is denoted byD". MinCq takes its roots
from the PAC-Bayesian theory (first introduced by McAlleqtE999)). Given a set of vot-
ers#, this theory is based onmior distribution P and aposterior distribution @, both of
supportX. P models thea priori information on the relevance of the voters: those that are
believed to perform best have larger weightsPiri By taking into account the information
carried bysS, the learner aims at adaptirigto get the posterior distributio that implies
the Q-weighted majority vote with the best generalization performance.

Definition 1 LetH = {h1,...,hn} be a set of voters (or classifiers) fromto R. Let @
be a distribution ovet{. A Q-weighted majority vote classifierfootnoteSometimes, is
called the Bayes classifieB, is defined:

Vx € X, Bg(x) = sign [h]N*]Q h(x)} = sign {Z Q(h)h(x)] .
heH

Thetrue risk Rp(Bg) over the pairgx, y) i.i.d. according taD is:

Rp(Bg)=  E_ 11Bo(x) #1,

X,y)~
whereI[.] is an indicator function.

Laviolette et al. (2011) and Lacasse et al. (2007) make tikebetween the risik p (Bg)
and the following notion of)-margin which models the confidenceBf in its labeling.

1 As we will see, a key limitation of MinCq is that it requires apriori uniform belief on the weights.
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Definition 2 (Laviolette et al., 2011) Th&-margin of an exampldx, y) overQ is:

Ma(x,) =3, B h(x).

The first and second moments of tQemargin are:

./\/lg = E Mgpkxy=E E yh(x), and

(x,y)~D h~Q (x,y)~D

D 2 ,
T = E E h(x)h(x).
Ma =, BpMeboy)) (h.h))~Q? (x,3)~D (o) ()

Itis easy to see thak correctly classifies an examptef the Q-margin is strictly positive.
Thus, under the convention that/fly (x,y) = 0, thenBg errs on(x, y), we get:

Rp(Bg) = ( Pr (Mg(x,9) <0). @

r
x,y)~

Let us finally introduce the following necessary notations:

MP= E hx,andMD/: E  A(x)h' (x). 2
N (%) = B (x)h’(x) )
If we use the training sampl& ~ D™ instead of the unknown distributioh, we get the
empirical risk Rg(Bg), theempirical first and second moments of theR-margin Mg

andMg)., and the associatettt;; andAy ..

2.2 MinCq and Theoretical Results

We now review three recent results of Laviolette et al. (3PLacasse et al. (2007), which
constitute the building blocks of our contributions. Thetfne takes the form of a bound—
the C-bound (Theorem 1)—oveRp(Bg). It shows that the true risk can be minimized
by only considering the first two moments of tlgemargin. Then, following some PAC-
Bayesian generalization bounds, Theorem 2 justifies thaidkterior distributior) can be
learned by minimizing the empirical-bound. Finally, the authors show that learning an
optimal Q-weighted majority vote boils down to a simple quadraticgoean called MinCq.

The C-bound is obtained by making use of Equation (1) and the daftieébychev’s
inequality (Devroye et al., 1996) applied on the randomalaeM ¢ (x, y).

Theorem 1 (TheC-bound (Laviolette et al., 2011))For any distributions Q over a class
# of functionsand D over X' x Y, if M > 0 then Rp(Bg) < C§ where:

Exy)~D (Mo(x,9))* Mgs

2

D

oD — Varey~p Ma(xy) _ (43)
Q — .

2
CH=1- (ﬁé) isits empirical counterpart.
Q2
Thus, minimizing theZ-bound appears to be a nice strategy for learnigythat implies a
Q-weighted majority voteB with low true risk. To justify this strategy, the authorsigdera
PAC-Bayesian generalization bound tcsg To do so, they assumegaiasi-uniform distri-
bution @ over anauto-complementedset of2n voters = {h1,..., hn, hnt1,...,hon},
where:hy, ., = —hy, (auto-complementation) am@(hy,) +Q(hy 1) = £ (quasi-uniformity)
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for everyk € {1,...,n}. Note that, for the sake of simplicity, we will denafg ;) by Q.
They claim that this assumption is not too strong a restriciind characterizes situations
where, in the absence of ground truth, one gitress samea priori belief on the voters.
Moreover, such distributions have two advantages. On tieehamd, they allow us to get
rid of the classic term which captures the complexity-of This is a clear advantage since
such a term can be a bad regularization (Laviolette et al1R00n the other hand, this
assumption plays the role of a regularization by giving tm@ea priori belief on the voters
and provides a simple way to avoid overfitting.

The generalization bound is then obtained by taking the ldvesp. upper) bound on
Mg together with the upper (resp. lower) boundM‘gz from the following theorem.

Theorem 2 (Laviolette et al. (2011))or any distribution D over X x ), any m > 8, any
auto-complemented family # of B-bounded real-valued voters, for all quasi-uniformdistri-
bution @ on #, and for any § € (0, 1], we have:

m@
P | [118 - 03] < W z1-0
D g 2B2\/ln%

The authors have proved that their setting does not inductaak of generality. From The-
orems 1 and 2, they suggest the minimization of the empiéicabund under the constraint
M% > p. Due to the quasi-uniformity assumption, they show that thinimization prob-
lem is equivalent to solving a simple quadratic program living only the firstn voters of
‘H. Their algorithm MinCq is given in Algorithm 1. It consists iminimizing the denomina-
tor M%z, i.e., the second moment of thg-margin (Line 3), under the constrairyta% =pu
(Line 4) andQ is quasi-uniform (Line 5). This leads to minimizing thebound and thus
the true risk of the majority vote by only taking into accothe diversity between the voters
expressed by the empirical second moment.

The Q-weighted majority vote learned by MinCq is:

o(x) =sign [an <2Qk—%> hk(x)} -

3 Generalization of MinCq to P-Aligned Distributions

Rather than constraining to be a quasi-uniform on the auto-complemented s2uafoters
H (Vke{l,...,n}, Qu+Qrsn==) as done in MinCq, we generalize this approach toRny
aligned distribution: Vke {1,...,n}, Qx+Qp+n =Px, WhereP = (P, ..., P,)" sums
to 1. In this contextP plays the role of am priori belief on the voters.

2 Inthe PAC-Bayesian theory, this term is related to the Kulksheibler divergence between the posterior
distribution@ and the prior distributior®. See (Laviolette et al., 2011) for more details.
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Algorithm 1 MinCq : a quadratic program for learning-weighted majority vote, under
quasi-uniformity constraint

input A sampleS ~ D™, the firstn voters of an auto-complemented $¢ta desired margip > 0
output A posterior vectoQ = (Q1,...,Qn)".

Solve argmin Q MsQ — AL Q, (3)
Q n
w1 s
st m{Q=2=+—> M7, 4
msQ= 5t o kZ::l hk @)
Vke{l,...,n}, 0<Qr<1/n, (5)
whereQ = (Q1,...,Qx) " is the vector of the first weightsQy, Mg then x n matrix formed by

Mg, for (k') € {1,...,n}? (as defined in Equation (s = (Mg, M5 )T and:

1 & 1 & T
Ag=|—S" M7, ..., —S M }
o (nm ICX::l ha,hg nm kz::l b

3.1 Expressiveness #f-aligned distributions

We generalize the setting of Laviolette et al. (2011) forspumiform distributions to any
P-aligned distribution on a set of auto-complemented digssi?, in fact this constraint
does not restrict the possible outcomes of an algorithmvibatd minimizecg.

Proposition 1 For all distributions Q on #, there exists a P-aligned distribution Q' on the
auto-complemented # that provides the same majority vote as @, and that has the same
empirical and true C-bound values.

Proof It follows from Proposition 4 of (Germain et al., 2011) andjigen in Appendix A.2.

From this proposition, similarly as for MinCq, it is then {ified that under the constraint
M% = u, theC-bound can be optimized by minimizing the second momelgg of the@-
margin. This is done by solving the quadratic program P-Mjii€scribed in the following.

3.2 The quadratic program P-MinCq

P-MinCq is described in Algorithm 2. Similarly to MinCq, thies to theP-aligned assump-
tion, we only need to cope with the firstvoters in#. The objective function (Line (6))
minimizes the second moment of temargin while the first constraint (Line (7)) enforces
a margin equal tg.. Note that the left-hand side of this constraint is the weidtaverage
(with weights 0f2Qj, — Py,) of the individual marginsA1;, ). Finally, Line (8) restricts) to
beP-aligned. The proof of derivation of the algorithm can berfdun Appendix A.3.

The Q-weighted majority vote learned by P-MinCq is:

Bg(x)=sign {Z (2Qr—Py) hy; (X)} .

k=1

The next section addresses the generalization guarawoieRaMinCq.
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Algorithm 2 P-MinCq : quadratic program for learnin@-weighted majority vote, under
P-aligned constraint

input A sampleS ~ D™, the firstn voters of an auto-complemented 3¢t a desired margip > 0, a
prior vectorP = (P, ..., P,L)T, a matrixMg of sizen x n made of elementdA?

hi hyr”
output A posterior vectoQ = (Q1,...,Qn) .
Solve argmin (Q —P) MgQ, ©
Q
st. m§(2Q - P) =y, )
Vk € {l,...,n}, 0< Q< Py, ®)

Wheremg = (Mh,l PR 7Mhn)—r'

4 PAC-Bayesian Generalization Guarantees under Sample Comgpssion

The proof of the generalization bounds of Theorem 2 is sdiiid/for P-aligned distribution

Q over data-independent voters. Indeed, it only makes ushedPtaligned assumption
corresponding t®@y, + Qx4rn, = P + Pk+n.3 This theorem is nevertheless not valid in the
sample compression setting, where the set of voters isdigtandent (such as the set of
k-NN classifiers). Laviolette et al. (2011) have argued thean be extended to this setting
by using techniques from (Laviolette and Marchand, 200fijs $ection is devoted to derive
generalization bounds for P-MinCq in this sample compessetting, allowing us to deal
with data-dependent voters. Our result is rather genenal if@t restricted t@&-NN voters).

It differs from previous PAC-Bayesian results with samplenpoessed classifiers (Graepel
et al., 2005; Laviolette and Marchand, 2007; Germain e@ll1) in that it is tailored to the
first two moments of th€-margin withP-aligned distributions.

4.1 Sample compression setting

In the sample compression framework (Floyd and Warmuth, 1995) the learning algorithm
A has access to a data-dependent set of classifiers. Eaclii@dsshen represented by
two elements: @ompression sequencehich is a sequence of examples, anthessage
representing the additional information needed to obteérctassifier from the compression
sequence. Then, we can definesaonstruction function able to output a classifier from
a compression sequence and a message. More formally, angatgorithm A is called a
compression schemé it is defined as follows.

Definition 3 LetS € (X x Y)™ = Z™ be the learning sample of size. We defineJ,, to
be the set containing all the possible vectors of indices:

m

I = {01 i) € 1 omy' )

i=1

Given a family of hypothesi$/® from X' to ) and an index vectay € J.», let S;j be the
subsequence indexed pysS; is called thecompression sequence

Sj = (Zjl""’zjq',)'

3 See (Laviolette et al., 2011) for more details.
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An algorithmA: 2(>) — 1S is acompression schemé, and only if, there exists a triplet
(C, R,w) such that for all training samplg:

A(S) =R (SC(S),CU) )

whereC : 2(°°) s (J°_| Jp, is thecompression function R : 2(°°) x Qg — HS the
reconstruction function, andw is amessagehosen from the ses, , (a priori defined)
of all messages that can be supplied with the compressiaresegS; ).

Put into words, given a learning sam@le~ D™, a sample compression scheme is a re-
construction functiork mapping a compression sequeritfes) = S; to some sett” of
functionsh such thatd(S) = R (Sj,w) = hg,. For examplek-NN classifiers can be re-
constructed from a compression sequence only, which entoeegarest neighbors (Floyd
and Warmuth, 1995; Graepel et al., 2005). Other classifgersh as the decision list ma-
chines (Marchand and Sokolova, 2005), need both a compressguence and a message
string. In the next section, we consider the general settimyoid any loss of generality.

4.2 PAC-Bayesian generalization bounds under sample @ssion

Let S; be a sample compression sequence consistinj efements of the learning sample
S. In the PAC-Bayesian sample compression setting, the risksRp and Rg can be biased
by these elements: we often prefer to compute the empiiglaRs from S\S; (Laviolette
and Marchand, 2007). However, in order to derive risk boundsich a situation, Germain
et al. (2011) have proposed another strategy by directlyideriag the bias. As mentioned
in the introduction, we cannot apply their result to ourisgttindeed, it is valid for loss
functions defining a surrogate of the- 1 loss, which is not suited for the second moment
of the margin we have to consider. Moreover, it depends omahee of the surrogate atl,
which may lead to a degenerate bound (this does not occur incaunrds).

The derivation of our result is nevertheless based on aairsétting: given a sample
S, we consider® the set of all possible classifiers;, = R(Sj,w) such thatw € £2g;.
We denote byQj,, (j), the probability that a compression sequefigés chosen by, and

m

Qs; (w) the probability of choosing the messageiven S;. Then, we have:

QJm (J) = co Q(hgj)dwv and Qsj (w) = Q(h§J|SJ)

Jw S,

In the usual PAC-Bayesian setting, the risk bounds depertHeoprior distribution” over
the set}”. This prior distribution is supposed to be known before olisg the learning
samples, implying P independent frons. However, in our setting the classifiers #°
are data-dependent. To tackle this problem, we proposeltwftthe principle of Laviolette
and Marchand (2007); Germain et al. (2011) by consideringi@ plistribution defined
by a pair: (PJm, (Ps; )jEJm) , where Py is a distribution oved,,, and for all possible
compression sequencs, Ps; is a distribution over2s;. Given a training samplé, the
data-independent prior distributidhcorresponds to the distribution 61 associated with
the prior (P, , (Ps;)jea,, ), then we haveP (hg,) = Py, Ps;(w).

Definition 4 In the sample compression setting, tranargin of a point(x, y) overQ is:

Moxy) =y, B  hg(x).
s

J

Q



Learning A Priori Constrained Weighted Majority Votes 9

The first two momentsﬁxtg and/\/lg2 of the Q-margin are defined similarly as before:

MB = Mo(x,y) and M5 = B (Mg(x,y))%

E
(x,y)~D (x,y)~D

In our setting, we assuniealigned distributions on an auto-complementedset For each
classifierhy e H*, we denote its complement by:$. Given S, the associated message set
is 2g x{+,—} andVo € 2g, hg‘”*) = —hg"’_). We now give the main result of this section.

Theorem 3 For any distribution D over X x Y, any m > 8, any auto-complemented set
H* of B-bounded real valued voters of sample compression size at most [j™**| < &, for
all P-aligned distribution Q on %, and for any 6 € (0, 1], we have:

| 2/m
’MQ MQ‘ 23\/ +1n( )

S 2 1- 57 (9)
SNDm 2(m _ |Jmax|)
2[jmax 2y/m
232\/—”32 L (247)
M8z — M| < >1-4. (10)
S~Dm 2(m — 2|jmax|)

Proof Deferred to Appendix A.4.

For data-independent classifierg, |j™%*| = 0, we recover Theorem 2. As expected, the
theorem indicates that when the compression|$i2&| is large, the bound becomes looser,
suggesting that the compression size should not be too fangeeserve consistency. Note
that the bounds over the classifiers’ output can generally be controllecheyuse of appro-
priate normalization.

In the next section, we instantiate P-MinCq in the specifdN setting by introducing
a rather intuitive but statistically well-foundedpriori constraintP.

5 Instantiation of P-MinCq for Nearest Neighbor Classifiers
5.1 Limitations of MinCq in the context of nearest neighblassifiers

At first sight, one may think that MinCq is a good way to overedmvo limitations ofk-NN
classifiers. First, while the theory tells us that the highehe better the convergence to the
optimal bayesian risk, this holds only asymptotically. hagtice the choice of requires
special care. Therefore, optimizingaweighted majority vote, where the set of votéts
consists of thes-NN classifiers £ = {1,2,...}), would prevent us from tuning while
offering a principled way to combine these classiffeBecond, by making use of the PAC-
Bayesian setting, the minimization of tiiébound provides generalization guarantees that
cannot be obtained with a standardNN algorithm in finite-sample situations.

We conduct a preliminary experimental study to compare adstal k-NN classifier
(wherek is tuned by cross-validation) with MinCq (see Section 6 faiade on the setup).

4 Note that other strategies may be used to define the vetgrsthent” neighbor can be thet” voter.
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Fig. 1 Comparison of MinCq VSN. Each point in the scatter plot shows the test error rateesélforithms
on a single dataset. A dataset above the bisecting line &vor bf MinCq

Over twenty datasets, MinCq achieves an average clasgficatror of 18.18% against
17.88% for k-NN (see Table 1 for more details). It is worth noting thatngsa Student
paired t-test, we cannot statistically distinguish betw#ee two approaches. This is also
confirmed by a sign test, which gives a record win/loss/tieaédo 7/6/7 leading to a p-
value of aboub.5, as illustrated by Figure 1. This serie of experiments tjestiows that
MinCq performs no better than a single well-turietliN classifier.

We claim that these disappointing results can be explaiyeithé fact that the quasi-
uniformity assumption oK is not appropriate to settings where one hagsaniori belief
on the relevance of the voters, which is typically the casdNhclassification. Indeed, for
obvious reasons, close neighborhoods are likely to pravidee relevant information than
distant ones. We propose to overcome these limitationsibg as instantiation of P-MinCq
based on a constraiit suitable for NN classification.

5.2 A statistically well-founded constraiit

In standardc-NN classification, the theory tells us that the highethe better the conver-
gence to the optimal bayesian risk. However, this propertgishonly asymptoticallyj.e.,
when the sizen of the training sample goes to infinity. In practice, traghishata is limited
and one has to sétcarefully. On the one hand, we want to use a large valuetofobtain a
reliable estimate. On the other hand, only points in a vesgeheighborhood lead to an ac-
curate classification rule. Several theoretical and erpantal studies in the literature have
tried to analyze this trade-off between small and largeaslhfk. As suggested by Duda
et al. (2001), a good solution consists in using a small ivacdf the training examples,
equal to about/m /|| neighbors, wherg)| is the number of classes.

The context is slightly different in P-MinCq, since we ainliaearly combiningk-NN
classifiers§ = 1,2, ...). Rather than setting, we aim at choosing a suitable constrdiht
which plays the role of am priori belief on the voters. As suggested by Devroye et al.
(1996), in a weighted nearest neighbor rule, nearer neigrdgimuld provide more informa-
tion than distant ones. Following this, we propose the failhg constraintP (normalized
so that they sum ta):

VE>1, P,=1/k (11)

P concentrates the weights on voters that are based on a sawibh of the training data,
i.e,, points in a close neighborhood (as suggested by Duda @0l1}), but also takes into
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Fig. 2 Comparison between the median of the harmonic sgngs % andy/m/2

account (to a smaller extent) the information provided bydptally) the entire training set.
To justify this choice, we establish in the following a straetptionship between Equation
(11) and the popular choicg'm /2 for k in k-NN binary classification. Our analysis is based
on the characterization & by its medianV/, which corresponds to the number of neighbors
involved in the voters accumulating half of the total weighhile defining the median of

a continuous distribution is rather straightforward, firglit in the discrete case of interest
(i.e, wherez € {1,...,m}) is slightly more tricky and requires an approximation. ust
defineHy; = S22 1 andH,, = 2™, 1. They correspond to the sum of terms of a
harmonic series for which no closed form is available. Ha@veusing the partial sums of
the series, for ath we can defingZ,, such thatf, = >_"_, 2 =1In(n) + v + en, Where

~ is the Euler-Mascheroni constant{ 0.5772156) ande,, ~ 2% Therefore, we have:

1 1
S In(M)+~y+epy = i(ln(m) + )+ em

1 1
=4 IH(M) = ln(\/fn) — 5’74— iem — €M

~ NSV SN e !
=In(M) = In(v/m) 57 + pr Vi (usinge, ~ 5-)
=In(M) < In(v/m) — %’y - % (since Equation (113 M <m,/2)
m
1 m
< — —— | 24/ 5-
=M < \/mexp( v) exp < 4m) 3 (12)

The main information provided by Equation (12) is that theragjnation of the median of
P is very close to,/m /2, the value suggested féiin thek-NN rule for binary classification
problems. Figure 2 shows a graphical illustration of theetess between the median of the
harmonic series ang/m /2. We have thus established a strong relationship betweassicl
choice fork in standard:-NN classification and ouP constraint in a weighted majority vote
of k-NN voters. The next section will feature a large compaeatixperimental study that
validates our choice fdP.

Before that, recall that the generalization bound derive8eéction 4 suggests to limit
the prototype set for the-NN classifiers. A first approach could be to divide the legni



12 Aurélien Bellet et al.

sample in two sets: one for defining the k-NN classifiers aredfonlearning the parameters
of the model. However, this strategy does not stand in thgpEaoompression scheme and
has the disadvantage to discard useful information. Anatbkition is to apply—for each
k-NN voter—some prototype selection or reduction technidDesla et al., 2001) in order
to remove training examples that do not change the labefirmgp test example. This im-
plies that eactt-NN must use its own compressed sample corresponding tosgsabthe
training samples. However, in addition to its computational cost, this ®ggtis not always
relevant in the context of NN since it may be difficult to obtaigood i.e. small) compres-
sion scheme for some distributions. Nevertheless, in tinécpéar setting we consider for
k-NN, we have noticed that using largg*®*| (even equals tern) does not influence the
practical performance of P-MinCq.

6 Experimental Results

In this section, we propose a comparative study of P-MinGalieg to the context of NN
classification (as described in Section 3). We compare inagfour different approaches.

— The standard Nearest Neighbor algorithm (NN) which plagsrdie of the baseline.

— The Symmetric Nearest Neighbor algorithm (Nock et al., 3§8BIN), a variant of NN
where the class of an instanges determined by the majority class among the training
points that belong to the-neighborhood of: (like in NN) plus those that include in
their ownk-neighborhood.

— Large Margin Nearest Neighbor (Weinberger and Saul, 2000NN) which learns
a Mahalanobis distance by optimizing theNN training error (with a safety margin).
Then,k-NN is applied using the learned distance. Note that LMNN lteen shown to
be competitive with a RBF kernel SVM.

— MinCq (Laviolette et al., 2011) which considers a quasiferm distribution.

We evaluate these methods on twenty benchmark datasets ahjeat categorization task.

6.1 Benchmark datasets

Experimental setup. These twenty binary classification datasets are of varyargain and
difficulty, mostly taken from the UCI Machine Learning Refios/.> We compute neigh-
borhoods using the standard Euclidean distance. We raydsptit each dataset int&0%
training and50% test data, except for letterAB, letterDO and letterOQ forahhive split
20%/80%. We tune the following parameters by 10-fold cross-valatabn the training
set: the margin parametgrfor MinCq and P-MinCqg (among 14 values betweed01 and
.5) and the parametérfor k&-NN and LMNN (amongd{1, ..., 10}). The trade-off parameter
of LMNN was set to.5, as done by Weinberger and Saul (2009).

Results. We report the results in Table 1. We make the following remafkst, P-MinCq
significantly outperforms a standard NN classifier. On ayeraver the datasets, P-MinCq
achieves a classification error ®6.89% while NN reaches a level of7.88%. Using a
Student paired t-test, this difference is statisticalyngficant with a p-value of06. This is
further supported by a sign test, which gives a record was/tie equals to 12/5/3 leading to

5 http://archive.ics.uci.edu/m/
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Table 1 Error rates of NN, SNN, LMNN, MinCqg and P-MinCq on twenty dsdés

[ Dataset [ NN [ SNN [ LMNN [ MinCq [ P-MinCq |
australian 3121 | .3324 | .2746 .3064 .2919

blood 2647 | .2487 | .2674 .2540 .2567
breast .0514 | .0200 | .0400 .0314 .0257
colon 1613 | .1290 | .2258 1613 .1290
german .2940 | .3040 | .2760 .2780 .2720
glass .0370 | .0648 | .0648 .0370 .0370
haberman || .2597 | .2532 | .2922 .2597 2727
heart .3481 | .3926 | .2148 .3926 .3556

ionosphere|| .1420 | .1591 | .1193 .1420 .0795
letter:AB .0176 | .0143 | .0151 .0176 .0176
letter:DO .0268 | .0293 | .0126 .0268 .0260
letter:0Q .0961 | .0961 | .0334 .0995 .0892

liver .3584 | .3468 | .3584 .3410 .3584
muskl 1339 | .1464 .2092 1715 1297
parkinsons || .2041 | .2143 | .1531 .2041 .2347
pima 2526 | .2474 .2604 2422 .2370
sonar 2762 | .2952 .0762 .2952 .2000
voting .0596 | .0596 | .0413 .0688 .0688
wdbc .0596 | .0842 .0491 .0561 .0456
wpbc .2200 | .2500 | .2300 .2500 .2500
Avg. error 1788 | .1844 | .1607 .1818 .1689
Avg. rank 2.9 3.1 2.65 2.9 2.25

a p-value of07. P-MinCq also outperforms SNN despite the fact that thedgterforms well
on a few datasets (p-value ofl with a Student test an@4 with a sign test). Furthermore,
P-MinCq performs significantly better than MinCq with a gu&of .02 using a Student
test. With a sign test, the p-value is abog with a record win/loss/tie equals to 12/4/4.
This shows the usefulness of our generalization of MinCiptaligned distributions, and
that P, = % is a suitablea priori distribution in the context of NN. Finally, despite the fact
that P-MinCq is not a metric learning algorithm, it is comifeg with LMNN (.1689 versus
.1607 with a p-value of about10 with a Student test). A sign test leads to a p-valuespf
indicating that one method is equally likely to perform bethan the other.

In fact, we claim that P-MinCq and LMNN are rather complenagytindeed, on the
one hand, LMNN is a metric learning algorithm that can tweak neighborhoods of the
points (sometimes with great success}., heart, parkinsons or sonar) but may perform
worse than NN, especially because it often overfits when dsieality is high é.g., colon
or muskl). On the other hand, P-MinCq does not change thélb@igoods of the points but
combines several nearest neighbor rules, and as a conanirtdtclassifiers, appears to be
quite stable (as shown at the bottom of Table 1, it achievebdist average rank) and robust
to overfitting. To highlight how P-MinCq and LMNN complemegdich other, we perform
an additional series of experiments aiming at combining WWahd P-MinCqg when this
seems relevant. To do so, we make use of the validation peafoce: if LMNN performs
better than P-MinCq, then we plug the distance learned by NMINP-MinCq (otherwise
we keep the standard Euclidean distance). We report theésé@sdlable 2. The combination
LMNN+P-MinCq outperforms all other methods, including LNMNalone (p-values o0f05
with a Student test and 7 with a sign test). Notice that on some datasets where LMNN was
by far the best performing method in the first series of expenis €.g., on heart, parkinsons
or voting), LMNN+P-MinCq is able to further improve thesesuds.
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Table 2 Error rates of LMNN and LMNN+P-MinCq on twenty datasets
[ Dataset [[ LMNN [ LMNN+P-MinCq |

australian .2746 .2832
blood .2674 2701
breast .0400 .0257
colon .2258 .2258
german .2760 .2820
glass .0648 .0370
haberman .2922 2727
heart .2148 .1926
ionosphere|| .1193 .0795
letter:AB .0151 .0151
letter:DO .0126 .0084
letter:0Q .0334 .0386
liver .3584 .3584
musk1 .2092 1297
parkinsons || .1531 .1020
pima .2604 .2370
sonar .0762 .0952
voting .0413 .0367
wdbc .0491 .0456
wpbc .2300 .2800
[ Avg.error [ .1607 ] .1508 |
+heart HAiver Aiver
f‘f,.‘;i,i‘f’,’,‘nan +wpbe RO acion
. - bc.pl%od-transfusion g =i pio
o +parkinsons - +pima £ «~Color’
é +sonar : E ':heart
. myekibn 3 ) +muskl
Lparkinsons
*'i:‘;%cgm . ionosphere Sagar + ionospphere
+Wwd| .
el .
%% 0.05 0..1 0.15 Ll\(/’lﬁ\: 0.25 0.3 0.35 0.4 05 0.05 0.1 0.15 thlﬁN 0.25 0.3 0.35 0.4

Fig. 3 Comparison of P-MinCq versus LMNN (left) and P-MinCq+LMNNrsas LMNN (right)

6.2 Object categorization

Experimental setup. We provide additional experiments on Graz-01 (Opelt et2404),

a popular object categorization database that has two tetlggs (bike and person) and a
background class. It is known to have large intra-classatian and significant background
clutter (see Figure 4). The tasks are bikenon-bike and persoms non-person and we

follow experimental setup from (Opelt et al., 2004): for eatdject, we randomly sample

100 positive examples and 100 negative examples (of whicar&@rawn from the other

object and 50 from the background). Images are represenfeshagncy histograms of 200
visual words built from SIFT interest points. We thus congpneighborhoods using two
popular histogram distances: thé and the intersection distances.

Results. We report the results in Table 3, averaged over 10 runs. FEllia again the most
stable method and also the best on average across tasksstantbdimeasures. Indeed, it



Learning A Priori Constrained Weighted Majority Votes 15

Fig. 4 Some examples of bikes (left column), persons (middle) and lbaakd (right) taken from Graz-01.
Only parts of the objects of interest may be visible, and thekdpund class features difficult counter-
examples to the bike class, such as motorbikes

Table 3 Error rates of NN, SNN, MinCq and P-MinCq on the Graz-01 das&h averaged over 10 runs.

| Distance [[ Task [ NN [ SNN | MinCq [P-MinCq]

X2 bike .2310 | .2090 | .2160 .2095
X2 person| .2385 | .2305 | .2730 .2250
Intersection bike .2260 | .2185 | .2130 .2055
Intersection || person| .2350 | .2370 | .3180 .2255

[ Avg. error | 2326 [ .2238 ] .2550 | .2164 ]

significantly outperforms MinCq (p-value smaller than with a Student test), again illus-
trating the importance of a good pribrfor learning the majority vote. Moreover, P-MinCq
performs significantly better than NN (p-value smaller tt@nwith a Student test) and to a
smaller extent than SNN (p-value df3). It is worth noting that SNN performs rather well
on this database: with large intra-class variation, it setmat extending the neighborhood
can pay off. However, while the symmetry heuristic used byNSBI not relevant for all
datasets, P-MinCq provides a principled and robust altema

7 Conclusion and Future Research

In this work, we have proposed a novel approach called P-Kift€ learning a weighted
majority vote over variable-performing classifiers in tioatext of a recent algorithm MinCqg
which finds its grounds in the PAC-Bayesian theory. Our metbbdsed on a generalization
of MinCq to P-aligned distributions allowing us to incorporate amriori knowledge in
the form of a distribution on the voters. This approach dasgestrict the expressiveness
of the majority vote and we have provided generalizationrgnizes for data-dependent
voters such as-NN classifiers. Moreover, we have defined a spettfialigned distribution
adapted to the case NN and provided experimental evidence of its good behavior
Many promising perspectives arise from this work. First, ¢ktting proposed in this pa-
per is general enough to be used to combine virtually anyfstdssifiers (provided that they
are bounded). For instance, our approach allows one to canstriong and weak classifiers
and incorporate somepriori knowledge about their performance. Another interesting ap
plication is multi-view learning (Xu et al., 2013; Sun, 20,1®here P-MinCq could be used
to combine classifiers (such as SVM) trained on multi-mod#&h daming from different
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sources and/or feature types (Morvant et al., 2014). Indgase P could encode the prior
knowledge about the relative relevance of each modalityttfertask at hand. In general,
in the absence of background knowledge, we note that defairglevantP distribution
for a set of learners can be difficult. Developing strategegutomatically assed3 from
(held-out) data could be very helpful in practice (Leverlet2013).

It would also be interesting to combine P-MinCq with other miedearning algorithms,
such as the recent? distance learning method for histogram data (Kedem et @L2p
Lastly, extending P-MinCq to a multi-class setting is al$digh interest. However, this
requires margin and loss definitions tailored to multi-slasoblem that imply technical
difficulties, with the need of different theoretical toolsch as in (Morvant et al., 2012).
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A Appendices

A.1 Tools

Theorem 4 (Markov's inequality) Let Z bearandomvariableandt > 0, then: P(|Z| > ¢) < E(|Z])/t.

Theorem 5 (Jensen’s inequality)Let X be an integrable real-valued random variable and g(-) convex,
then: g(E[Z]) < Elg(2)].
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Lemmal (from inequalities (1) and (2) of Maurer (2004))Let m >8, and X = (X1, .., X ) be a vector
of i.i.d. randomvariables, 0 < X; < 1. Then: ﬁgEexp(mkl(% P XG||E[XG])) <2¢/m, where

kl(alb)=aln ¢ + (1 —a)In i:’;.

A.2 Proof of Proposition 1

We give here another version of the proof of Proposition 4 efrfiin et al. (2011).

Let @ be a distribution ove#{, let M = maxy/c(1,... n} P%/|Qk/+n — @y, and letQ’ be defined as
= P’v + # where by conventiotik + n) + n = k and Py4,, = Pj. First, let us show

that Q' |s actually P-aligned on the auto-complementéd, that isVk € {1,...,n}, Q;@ < P and

Q% + Qjy,, = Px. The following always holds:

Q<P — %+%§Pm=» %s&
— (Qk*QIHn) k’e{l ,n}P — Q4 — Qi
and: Qf+Qhy, = 7’“ + % ;]3’“*" - P’“;" + Q’“*;j\; Cr
_ " _
- pog Qk+n2MQk+n Q _ p

Then, let us show that usin@’ does not restrict the set of possible majority votes:

h(z)

2n n
) > Qkhr(x) = 3 (Qh—Qhyn)hi(x)
k=1

k=1

1 & 1 2n 1
M};(Qk_Qk-Fn)hk(x) = M}; Qkhk(x) = MhEQ h(x)_

Therefore, we deduce thek € X, BQI(x) = Bg(x) and since the constant tenj%} is present in both
first and second momerLYS/lD/ and MP _ | it vanishes in the>-bound. HenceCQD, = Cg regardless of
the distributionD over X' x y.

Q/Z'

A.3 Proof of Algorithm 2 : P-MinCq

The Objective Function. We show how to obtain Line (6) from the definition MQQ.

2n  2n
S S S
M= B M= DD QQuMs,
(h.R)~Q k=1k'=1

=3 > [@kQu B ha()hi (%) + QuynQur B hpyn ()hp (x)
Pl (xy)~S (xy)~S

+ Q@ in B k(i () + QuinQurin B hiyn(x)hirin(x)]
(x,9)~S (x,y)~S

—Z Z QuQu B he()h () = QunQu B h(o)he (x)

k=1k/=1 Gey)~S x,y)~S
- Qka’+n(x F)JNS hi (x)hyr (%) + Qk+an’+n(x £~S hi(x)hyr (x) (becauséryy, = —hy)

=> Z th hy [QrQur — (Pr — Qr)Qpr — Qr(Prr — Qi) + (P — Qi) (Pry — Q)]
k=1 k=1
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n
D MG, AQrQyr — 2PiQpr — 2Py Q + Py Py]
k/=1

= 4[(Q - P)TMSQ] +C,

whereC1 = 370, >0 ) Py Py My, 5., and the multiplicative value can be considered as constant
wr.t. Q. Therefore, we get Line (6) of the optimization problem.
The Margin Constraint. We now show how to obtain Line (7) fromftg. We have:
2n n
ME= E M= Z QuM;, Z(Qk = Qran) M3, =D (2Qk — POM;, =mg (2Q - P),
k=1
wheremS = (/\/lh1 oo, Mp, )T, Replacmg/vls by 1, we get Line (7) of the optimization problem.

I
NE

™
Il
—

Qthk hyr Q! *42 Z PaM;, hy @ + Z Z Py P M;, hr

k=1k'=1 k=1k/=1

||P13

A.4 Proof of Theorem 3

Proof of Equation (9). Let S be any training sequence of size Suppose tha#® is auto-complemented.
Moreover, a distribution of{ is P-aligned if for any(j, o) € J,, x 2g; we have:

Ry ) +(-ry ) =@y ) +@(ry ) =P (S T) + P(hy ) =P (RS P) + P (=nE ).
Itimplies that:/\/lhD(sm+> = fo(;ﬁ), and:
2 2 2
(Mfgw) MhD<Sa,+>) = (Mig,) - (Mfgm)) = <Mi<sg,> Mf(;m) :

J J 3 J J J
Similarly as in McAllester (2003), we now consider the foliogy Laplace transform:

_ m — ‘Jl S D 2
Xp= thNP eXp( 2B2 (Mhust _Mh‘éj) :
J
Remark thatf (a,b) = #(a — b)2 is convex because its Hessian matrix is positive semi-defiRie
\J\

lightening the proof reading, we denoig = . For anyP-aligned distributior®, we have:

_ (MS. D)2
2Xp —hlgj*]NP exp (mJ (thj Mh°§j) )
_ (o,4) Ve (o4)
7/(0 +)€HS(h ;) exp (m.] (thc;-,ﬂ Mh(‘: ) > dhg,
o,— S 2 o,—
+/ P(h ™)) exp <mj (Mo Mo ) > dh™)
; ;

(o,-) s
hg) e

_ plont) (U»Jr) . s _ D 2 (o5+)
_/h(S“‘Jr)EH(f( s )+ P(=hg ™)) exp <m.l (th,ﬂ th’ﬁ)) > dhg,
J J J

o+ o+ 2 o+
:/(U,Jr) (SQ(hES‘J )) + Q(*hgj >)) €Xp <mj (Mi(0,+) *Mfmﬂ) ) dhfgj )
th €EH S5 S;
_ (o54) D 2 (o,+)
_Aga,+)€H%(hSJ ) exp <mJ (Mm? W th"_’*)) > dhsg,
J J

+/( 5 Q(h(sa.’_))eXP mj(/\/ls(a,f)*/\/lD(a,f))2 dhg’_)
S hs; hs; J
J

=2 E  exp(mi(MS, —MP, 2):2){ :
hngQ p( J( hsj hsj) Q



20 Aurélien Bellet et al.

1
Using Markov’s inequality (Theorem 4) we havSePL-%-m (Xp < 3s EDm Xp) >1-0.

Taking the logarithm on each side of the innermost inequdbtyanyd € (0, 1], with a probability at least
1 — & over the choice of ~ D™, for all P-aligned distributiorQ on#5, we get:

s D \2 1
i w w < = .
In h;:wQ exp <mJ (Mhsj Mhsj) ) <In [553%7” Xp}
J

We apply Jensen’s inequality (Theorem 5) on the concaveifimin(-):
In E exp|m;(M3. — ME, 2) > E my(MS, — MP, )
B o (MM — MR )| 2 B maay )

Recall that|j™?*| is the maximal size of the compression sample. Then by again iagpliye Jensen’s
inequality on the convex functiofm — |j™2|) f(a,b) = ™=H_"l(a — b)2 = mj(a — b)? for the left

2B2
side of the previous inequality, we have:
E mMS, —MP2)=" [ E —jjM —MDE,)?
hg~Q i R, hsj) 287 | ng,~Q ( 8 hsj)
> E (Mjpju, —Mjpw
- 2B? hg~Q ( hs; hsj)
m — |jmax‘ S D 9
> g Mg —Mg)~.

m — |jmax| g D 2 1
: _ — < — >1-9.
Then: Pr ( i (MQ MQ) <n|S B Xpl)>1-4

We thus have to boung Efj Xp. We consider/\/lib\dsj the empirical margin computed on the examples
~Dm Sj
of the learning sampl§' that are not in the compression sequefgeWhile Mfg may contain some bias,
j

S\ S;
My

J
variables have very close values.
. S\ Sj .
We have) < mM§, — (m — [j)Mp2™ < By,
j S5

is an arithmetic mean of trulyi.d. (m — |j|) random variables. Note also that these two random

R . S\S; S\S; _ . .. S\S; .
then :—B|j| < —[jM, 3 <mMye —mM; .7 <|j| - [jiM.70 < Bljl,
5 55 5; 55
S\ S5 Blj
and thus § M, —th i| < B
3 5

m
Given a compression sequengg we denote by the vector of indices that are notjnThen:

S~Dm™ S~D™ hg ~P 3
2
= E E E E exp | m; (Mfw — Mfw ) .
j~P SjND\J’I wNng SENDW*U\ Sj S

Forallj € J,, S5 € 2lil,w e 2, x {+,—} we have :

2
E Xp= E  exp(mj(Mp, — ME,
s~om Si~Dm =Nl p( it h3; hsj)
53 H 9
= B exp(my(Miy — ML + ML - MP, )
Sz~Dm=ll ( ‘]( hs_i h‘g’j hgj hsj)

NV VL IRE: S a5 S5 _ aqD S5 a 4D 12
%}N£’L7‘jFXp[mJQMh§j thj]+2|M 3 thjHth Mh“§_|+[thj thj])}

i 3



Learning A Priori Constrained Weighted Majority Votes 21

From Equation (A.4) and sineep(.) is increasing, we obtain:
B|J|} B|J| S5 D 12
E Xp< E il | — | +2— + M,s, — M. .
sepm TP = S;~Dm =il P {mJ ([ m m +1 ks, hsj]
Since we suppose that for §ll|j| < |j™**| < m, then:

m — |j| Ul]2 |3l imax (m* lil [ il |, 2 D 3mex]
DoOE ] 4280 < moHH e 2 < .
2B ({m * m | 3 | 2B m?2 + m|) ~ B

Then: E
S~

Dm

max
B e (U5 v ad - b )?)
J J

Xp
S*ND"'
< exp ( ) E exp (mj [Mif:, —Mfu ]2>
S5~Dm=lil 5j 5j
St

D

del 1 thg 1 th 2

E 2(m— i) | (= - =) - (- >

( ) ~Dm—il exp (m IJl) <2 2B ) (2 2B )

By definition2(a — )2 < kl(a[lb) = aln & + (1 —a)In

< exp

, 1] provided that if
a = 0thensoig andifa = 1then soish. Slnce the elements 6{° are B-bounded andj is drawni.i.d.

S S5

from D, we haveMPE, = —B= M}, =—-B, and MPE, =B= M}, =B.
hsj h%, hsj h
J

Sj
Ss Ss
D J D J
1 Mh“s”j 1 hs; 1 Mh“sj. 1 hg;
Theni- - —~ =0=- - ——= =0, and — =1= - - =
2 2B 2 2B 2 2B 2 2B
i D
. 1 hg; 1 Mh“J
Moreover sinced) < — — <1, and 0< — < 1, we have:
2 2B 2 2B }
M D,
bmax‘ . 1 hSJ 1 MhSJ
E Xp<exp X E exp | (m—|jhkl | = — —2|= —
S~Dm B stDm—lj\ 2 2B || 2 2B

We apply Maurer's Lemma (Lemma 1):

lime]
E Xp<ex X E 2/ (m —|j
B, Xp <o (1) O]

Sexp(L)X2m<exp( = |)x2\/ﬁ.

for all P-aligned distributior on H5,

jmax 2
Finally: Pr op, |1 +1n (ﬂ> >1-6
S~Dm D s B 1)
IME — M| <

2(m — [jmex])

Proof of Equation (10). Using similar arguments as the beginning of the proof Equd8pnwve have:

S D 2 _ S D 2
Mot o = Moy, on)” =Mooy 0y = Miloo) o)
Sj ’ Sj/ Sj ’ Sj/ Sj ’ Sj/ S ’

—(MS D 2
=Mt oo “ Mo @)
Sj ’ Sj/ Sj ’ Sj/

— S D 2
=M e ~ Mo )
Sj/ ’ Sj Sj/ ’ Sj
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Similarly as in McAllester (2003), we now consider the foliagy Laplace transform:

= U] s D 2
Xp = E exp | ————— (M , =M .
i Ry by~ P ’ ( | "5y h8;hEy
. . . —juy .
For lightening the proof reading, we denotg_;; = % Remark thaff (a, b) = (a —b)2is
convex. For any-aligned distributior, we have:
— S 4D 2
4Xp = - hE,NPpr(mJUJ’(MwS{,;L“S)f, M;ﬁg_,hgf/) )
iS5 J J J J

= /(o Pl es)? 55

(o,+) ((7 +) S D 2 (o,4) (o,+)
D(hsy ) P(hs, ) exp (Mo (M o1)  06) = MLiort) o)) ) RS TRE
sy sy S5 sy J
J

(0,-) (a (M P 2\ g3, (0= (5, =)
+/hg“’ ) h (U ) e(1SH)2 Bhs 5j )P(hs; )exP(mJUJ'(Mh(S‘;'_),h(S"_;_) th‘;'_),h(s"_;_)) )dhsj hsj’
J J

J
+/ P(h("f))P(h(“**))exp(m. (M5, ~MP 2)dh“ﬁ**)h“"*)
h(sjf),hfga{#)g(%s)z 5j Sy jui'( }L<S‘J’_’ ),h(s‘;;*) }L(S‘J’_’ ),h(s‘;;*)) S5 Sy
J

PR pple) (MS _MP 2\ ghlo ) o)
*/hgf*+>,h<v»—>ems)z<sj IP() exp (myy( W) hé‘;***hé‘;;*))) s sy

_ (o,+) (o,+) (o,+) (o, +)

= P(h P(—h P(h P(—h

/h(LT,JF)’h(o/,Jr)E(HS)g ( 5j )+ P( 55 ) (P( 5y )+ P( Sy )

j (o,4), (o54)
dn IR,

Sy

S D 2
exp (mjuj’(Mh((r‘+)’h(a,+) “M o) o) )
Sj S./ Sj 5

Z/h<o,+> B e a8) (QUEGIH+QEIT ) QUK ) +QEHS )
s;

D 2\ 11 (@A) (o)
exp(mjuy(Mh(Sa.ﬂ,hga,Jr) *M,L(Sa,ﬂh(;,ﬂ) )dhsj hsy
5 5 3 5

S D 2
=1 B exp (my (M ;- M 1)) =4Xq.
R ,}L;,~Q2 JuUj h‘éﬂj ,h‘é’j/ hg h‘g, .,
i

1
Now, by Markov’s inequality (Theorem 4) we havSePDrm (Xp < 555 E Xp) >1-4.
By taking the logarithm on each side of the innermost inegydtr anyé € (0, 1], with a probability at
leastl — & over the choice of ~ D™, for all P-aligned distributionQ on#° we have:

D 2 1
n| B 2exp( Uy’ (th g, —th g )) <In {ESN%mXP}‘
hsj,hsj/NQ

We apply Jensen’s inequality (Theorem 5)laq.):

2 2
In }E, eXp(ijj/(Miw he! _Mfw h“’ )> Z E Mo’ (Miw h“’ _Mfw h“’ ) .

hﬁgj,hg_INQz i7"y hugj’hw ~Q2 5500
J

Recall thatj™**| < % the maximal size of the compression sample. Then by again apglyinJensen’s
inequality on the convex functiofm — |j™2%|) f(a, b) = T‘(a —b)% = m;_y (a — b)? for the left
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side of the previous inequality, we have:

s D 2 m P s D 2
By My s =M e ) o B SV M =ML
th’th, ~Q Sy Sy Sy Sy }sz’hsj,NQ S50 Sy Sy Sy
jmax
m — 2J | S D 2
>—— 0 1 E M r—M )
2B4 hw p’ 2 hg kg hg, hg
15y s 9 iy i

m — 2]jmex

>
- 2B4

(M2~ MBy)?.
) m = 20| g D \2 1

Then.sf’gm (T(MQQ - MQz) <lIn gs~%m Xp|)>1-6.

S\(S;US;/)

hghg,,

computed on the examples of the learning sanfplinat are not in the compression sequesgeWhile

) . S\(S;USy/) . . . . .
5 , Mmay contain some bias\t )~ is an arithmetic mean of trulyi.d. (m — |j U j'|)
hg s, b,

J j J j

random variables. We can also note that these two randowriVesi have very close values. We have:

We thus have to boung ]%m X p. We considerM the empirical second moment of the margin

S\(S;US;/)
S . e .
0< thw ! (m — JUJ/|)th :LW,J < B%juyjl,
then: 5T Sy S0 Sy

2. . .. S\(S;US.,) s S\(S;US.,) L .. S\(S;US./,) 2. .
=BIU | <=l IM T S mMe om0 T SO UM T < B

55078y S Sy 'S5 Sy 'Sy Sy
2. .

thus: MS, 0G| BT

: , .

hg,hg, nghg, | T m 13)

Given two compression sequencgsand.S;, Letj be the vector of indices that are notjit j’. Then:

2
E Xp= E E  exp (m i (M3 —MP ) )
. ALSA} w w’ w w’
S~Dm S~Dm I p2 h% ,h hg ,h
hgj,h“s"j/ P Sj Sj/ Sj Sj/
D 2
- E E E E exp(myy (M, o —MD, )7
j,j’'~P2 sj,sj,NDIj\XD\j’l w,w’isjXst, sJTNDm—\jUJ"I 5585 ElY

Forallj,j’ € (Jm)2, S, 8y € 28l x 20, w,u € (225, x {+,=}) x (2, x {+,—}), we have:
J

S D 2
oy P <mJ'Uj'(th we! " Mg ) )
Sij Sj Sj’ Sj Sj/
St St
_ . S _ J J _ D 2
- B ew (myoy (ME, L =M+ M =MD L))
Sy~D S50 Sy e S5"s5 S35
S+
S _ J 2
- E,qu/‘ €xp |:mJUJI([th 7hw' th ,h,W, }
Sy~D S50 Sy R
S5 S+ Ss 2
2| MS _ 3 3 _ mpD 3 _ aD > )
+ |Mh§”ht§, M ||Mh§ wy ~Mus ny |+[/vtth e th.,hg’]
ivy AR 5y PR AT iRy

From Equation (13), sincexp(.) is increasing we obtain:

B2jui|l? . Bjui 5
E Xp< B exp|myyy { J Jq P A TV R VL LA 1
S~Dm SENDm—Lin/I m m hsj,hsj, hsj,hsj/
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Since we suppose that for glive havelj| < |j™2*| < Z, we can easily compute:

a2 - .- max
3Ui’ | 13Ui’| smax [3Ui” | 2 2[§™MaX)
mjuj/ ( [ m + 2 m S 2"] | mjuj, m2 + m S B2 :

Then:
2‘jmax| S+ D 9

Xp < E exp|: + mus (M) ;=ML
S~Dm S5~ D= VI B2 o [ h§j7h§j/ th'h ! }

2|jma"\} { 55 D 2}
<exp|———— exp |m; s [M , —M
- p|: B2 SjNDm—UU.i'\ P 2 [ hgj’hgj/ hw hw ]

S5 D , 2

9|jmax 1 h‘gﬂ ,hs 1 hg',h;

O ) PRIV R T T BTSN 2
S,NDrnf\‘]UJ | 2 2B 2 2B

We know2(a — b)2 < kl(al|b) is valid for anya, b € [0, 1] provided that ifa = 0 then so i and ifa = 1
then so ish. Since the elements 6{° are B-bounded andj isi.i.d. from D, we have:

D _R2 53 _ _R2 D 2 S5 _ n2
thvh‘é,_ B :>th,th’ =-B%, and th hw =B :th’hg, = B~
J, 5/
Ss
MDw w’ M ‘4]» MDw w’ M ‘4]4)
- 1 hsj,hsj/ o 1 hY hs/ 0. d hsj,hsj/ . 1 hs ,hsl .
en—— ——————= :>7—77 an 5T T ogr = S
2 2B2 s 2 2B2 2B2 2 2B2
i D
_ 1 hs;ohs,, 1 ks, hs, _
Since:0 < 5 252 <1, and 0< 5 T < 1, we have:
S+
J D
|Jmax| , 1 h“é’j,h“g’f/ ) thJ }L ,
— |3 H = — J . J
JBoxe<ew | BE B e |- oy (3o gt f - )
i~

By applying Maurer’s Lemma (Lemma 1), we obtain:

umax' - -
2y/(m—]juy|) <exp 3 )2 (m—1jujl)

271)
B2 SENDM—UUJ |

bmlx‘
< exp ( 5 ) 2y/m.

for all P-aligned distributiorg on %5,

2'max 2
Finally: Pr 232\/ 3 . ‘+1n< Vm) >1-4§
S~Dm \MD —M52| B é

2(m — 2|jmax])

E Xp<
Sobm p_exp(




