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Aur élien Bellet · Amaury Habrard ·

Emilie Morvant · Marc Sebban

Received: date / Accepted: date

Abstract Weighted majority votes allow one to combine the output of several classifiers or
voters. MinCq is a recent algorithm for optimizing the weightof each voter based on the
minimization of a theoretical bound over the risk of the votewith elegant PAC-Bayesian ge-
neralization guarantees. However, while it has demonstrated good performance when combi-
ning weak classifiers, MinCq cannot make use of the usefula priori knowledge that one may
have when using a mixture of weak and strong voters. In this paper, we propose P-MinCq,
an extension of MinCq that can incorporate such knowledge inthe form of a constraint over
the distribution of the weights, along with general proofs ofconvergence that stand in the
sample compression setting for data-dependent voters. Theapproach is applied to a vote of
k-NN classifiers with a specific modeling of the voters’ performance. P-MinCq significantly
outperforms the classick-NN classifier, a symmetric NN and MinCq using the same voters.
We show that it is also competitive with LMNN, a popular metric learning algorithm, and
that combining both approaches further reduces the error.
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1 Introduction

A weighted majority vote is an ensemble method (Dietterich,2000; Re and Valentini, 2012)
where several classifiers (orvoters) are assigned a specific weight. Such approaches are
motivated by the idea that a careful combination can potentially compensate for the individ-
ual classifiers’ errors and thus achieve better robustness and performance. For this reason,
ensemble learning has been a prominent research area in machine learning and many meth-
ods have been proposed in the literature, among which Bagging (Breiman, 1996), Boosting
(Schapire and Singer, 1999) or Random Forests (Breiman, 2001). The problem has also been
studied from a Bayesian learning perspective, for instancewith Bayesian model averaging
(Haussler et al., 1994; Domingos, 2000). Multimedia analysis is an example of prolific ap-
plication, for instance to combine classifiers learned fromdifferent modalities of the data
(Atrey et al., 2010).

Even though combining weak classifiers such as in Boosting (Freund and Schapire,
1996) is supported by a solid theory, understanding when weighted majority votes perform
better than a classic averaging of the voters is still a difficult question. In this context, PAC-
Bayesian theory (McAllester, 1999) offers an appropriate framework to study majority votes
and learn them in a principled way and with generalization guarantees. In particular, the
recently-proposed MinCq (Laviolette et al., 2011) optimizes the weights of a set of voters
H by minimizing a bound—theC-bound (Lacasse et al., 2007)—involving the first two
statistical moments of the margin achieved on the training data. The authors show that min-
imizing this bound allows one to minimize the true risk of theweighted majority vote and
boils down to a simple quadratic program. MinCq returns aposterior distribution onH that
gives the weight of each voter. It is based on ana priori uniform belief on the relevance of
the voters, which is well-suited when combining weak classifiers. For instance, it has been
successfully applied to weighted majority votes of decisionstumps and RBF kernel func-
tions. However, this uniform prior is not appropriate when one wants to combine efficiently
various classifiers with different levels of performance.

In this paper, we claim that MinCq can be extended to deal withvariable-performing
classifiers when one has ana priori belief on the voters. We generalize MinCq in two res-
pects. First, we propose a new formulation by extending the original notion of aligned dis-
tribution (Germain et al., 2011) toP-aligned distributions.P models a constraint over the
distribution on the weights of the voters, allowing us to incorporate ana priori belief on
each voter, constraining the posterior distribution. Our extension, called P-MinCq, does not
induce any loss of generality and we show that this new problem can still be formulated
in a efficient way as a quadratic program. Second, we extend theproofs of convergence of
Laviolette et al. (2011) to the sample compression setting (Graepel et al., 2005), where the
voters are built from training examples, such as NN classifiers. Our results use similar argu-
ments as those proposed in (Germain et al., 2011; Lavioletteand Marchand, 2007) but our
setting requires a specific proof, since the results of Germain et al. (2011) are only valid for
surrogate losses bounding the0−1 loss.

The second part of the paper makes use of these two general contributions to optimize a
weighted majority vote over a set ofk-NN classifiers (k={1, 2, . . . }) to hightlight the bene-
fit of ana priori on the voters. We propose a suitablea priori constraintP modeling the fact
that we have more confidence in close neighborhoods. The ideais toa priori constrain larger
(resp. smaller) weights on classifiers with small (resp. large) values ofk to reflect the belief
that local neighborhoods convey more relevant informationthan distant ones, which cannot
be modeled by the uniform belief used in MinCq. Using P-MinCqin this context constitutes
an original approach to learning a robust combination of NN classifiers that achieves bet-
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ter accuracy. This is confirmed by experiments conducted on twenty benchmark datasets:
P-MinCq clearly outperformsk-NN, a symmetric version of it (Nock et al., 2003), as well
as MinCq based on the same voters. Moreover, for high-dimensional problems, P-MinCq
turns out to be quite robust to overfitting. We also show that it is competitive with the metric
learning algorithm LMNN (Weinberger and Saul, 2009) and thatplugging the learned dis-
tance into P-MinCq can further improve the results. Finally, we apply our approach to an
object categorization dataset, on which P-MinCq again achieves good performance.

This paper is organized as follows. Section 2 reviews MinCq and its theoretical basis. In
Section 3, we introduce P-MinCq, our extension of MinCq toP-aligned distributions. We
derive generalization bounds for the sample compression case in Section 4. Section 5 shows
that MinCq does not perform well when using NN-based voters and presents aP-aligned
distribution that is suitable to this context. Experimentsare presented in Section 6.

2 Notations and Background

2.1 Preliminaries

Throughout this paper, we consider the framework of the algorithm MinCq (Laviolette et al.,
2011) for learning a weighted majority vote over a set of real-valued voters for binary clas-
sification problems. LetX ∈ R

d be theinput space of dimensiond andY = {−1,+1}
be theoutput space (i.e., the set of possible labels).S denotes the training sample made
of m labeled examples(x, y) drawn i.i.d overX × Y according to a fixed and unknown
distributionD. The distribution ofS of sizem is denoted byDm. MinCq takes its roots
from the PAC-Bayesian theory (first introduced by McAllester(1999)). Given a set of vot-
ersH, this theory is based on aprior distribution P and aposterior distribution Q, both of
supportH. P models thea priori information on the relevance of the voters: those that are
believed to perform best have larger weights inP .1 By taking into account the information
carried byS, the learner aims at adaptingP to get the posterior distributionQ that implies
theQ-weighted majority vote with the best generalization performance.

Definition 1 Let H = {h1, . . . , hn} be a set of voters (or classifiers) fromX to R. Let Q
be a distribution overH. A Q-weighted majority vote classifierfootnoteSometimesBQ is
called the Bayes classifier.BQ is defined:

∀x ∈ X , BQ(x) = sign

[

E
h∼Q

h(x)

]

= sign

[

∑

h∈H
Q(h)h(x)

]

.

Thetrue risk RD(BQ) over the pairs(x, y) i.i.d. according toD is:

RD(BQ) = E
(x,y)∼D

I[BQ(x) 6= y],

whereI[.] is an indicator function.

Laviolette et al. (2011) and Lacasse et al. (2007) make the link between the riskRD(BQ)
and the following notion ofQ-margin which models the confidence ofBQ in its labeling.

1 As we will see, a key limitation of MinCq is that it requires ana priori uniform belief on the weights.
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Definition 2 (Laviolette et al., 2011) TheQ-margin of an example(x, y) overQ is:

MQ(x, y) = y E
h∼Q

h(x).

The first and second moments of theQ-margin are:

MD
Q = E

(x,y)∼D
MQ(x, y) = E

h∼Q
E

(x,y)∼D
yh(x), and

MD
Q2 = E

(x,y)∼D
(MQ(x, y))

2 = E
(h,h′)∼Q2

E
(x,y)∼D

h(x)h′(x).

It is easy to see thatBQ correctly classifies an examplex if theQ-margin is strictly positive.
Thus, under the convention that ifMQ(x, y) = 0, thenBQ errs on(x, y), we get:

RD(BQ) = Pr
(x,y)∼D

(

MQ(x, y) ≤ 0
)

. (1)

Let us finally introduce the following necessary notations:

MD
h = E

(x,y)∼D
yh(x), and MD

h,h′ = E
(x,y)∼D

h(x)h′(x). (2)

If we use the training sampleS ∼Dm instead of the unknown distributionD, we get the
empirical risk RS(BQ), theempirical first and second moments of theQ-margin MS

Q

andMS
Q2 , and the associatedMS

h andMS
h,h′ .

2.2 MinCq and Theoretical Results

We now review three recent results of Laviolette et al. (2011); Lacasse et al. (2007), which
constitute the building blocks of our contributions. The first one takes the form of a bound—
the C-bound (Theorem 1)—overRD(BQ). It shows that the true risk can be minimized
by only considering the first two moments of theQ-margin. Then, following some PAC-
Bayesian generalization bounds, Theorem 2 justifies that theposterior distributionQ can be
learned by minimizing the empiricalC-bound. Finally, the authors show that learning an
optimalQ-weighted majority vote boils down to a simple quadratic program called MinCq.

TheC-bound is obtained by making use of Equation (1) and the Cantelli-Chebychev’s
inequality (Devroye et al., 1996) applied on the random variableMQ(x, y).

Theorem 1 (TheC-bound (Laviolette et al., 2011))For any distributions Q over a class
H of functions and D over X×Y , if MD

Q > 0 then RD(BQ) ≤ CD
Q where:

CD
Q =

Var(x,y)∼D

(

MQ(x, y)
)

E(x,y)∼D

(

MQ(x, y)
)2

= 1−

(

MD
Q

)2

MD
Q2

.

CS
Q = 1− (MS

Q)
2

MS

Q2

is its empirical counterpart.

Thus, minimizing theC-bound appears to be a nice strategy for learning aQ that implies a
Q-weighted majority voteBQ with low true risk. To justify this strategy, the authors derive a
PAC-Bayesian generalization bound forCD

Q . To do so, they assume aquasi-uniform distri-
bution Q over anauto-complementedset of2n votersH = {h1, . . . , hn, hn+1, . . . , h2n},
where:hk+n=−hk (auto-complementation) andQ(hk)+Q(hk+n)=

1
n (quasi-uniformity)
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for everyk ∈ {1, . . . , n}. Note that, for the sake of simplicity, we will denoteQ(hk) byQk.
They claim that this assumption is not too strong a restriction and characterizes situations
where, in the absence of ground truth, one givesthe samea priori belief on the voters.
Moreover, such distributions have two advantages. On the one hand, they allow us to get
rid of the classic term which captures the complexity ofH.2 This is a clear advantage since
such a term can be a bad regularization (Laviolette et al., 2011). On the other hand, this
assumption plays the role of a regularization by giving the samea priori belief on the voters
and provides a simple way to avoid overfitting.

The generalization bound is then obtained by taking the lower (resp. upper) bound on
MD

Q together with the upper (resp. lower) bound onMD
Q2 from the following theorem.

Theorem 2 (Laviolette et al. (2011))For any distribution D over X ×Y , any m≥ 8, any
auto-complemented family H of B-bounded real-valued voters, for all quasi-uniform distri-
bution Q on H, and for any δ∈(0, 1], we have:

Pr
S∼Dm





∣

∣

∣
MD

Q −MS
Q

∣

∣

∣
≤

2B

√

ln 2
√
m

δ√
2m



 ≥ 1− δ,

and Pr
S∼Dm





∣

∣

∣
MD

Q2 −MS
Q2

∣

∣

∣
≤

2B2
√

ln 2
√
m

δ√
2m



 ≥ 1− δ.

The authors have proved that their setting does not induce any lack of generality. From The-
orems 1 and 2, they suggest the minimization of the empiricalC-bound under the constraint
MS

Q ≥ µ. Due to the quasi-uniformity assumption, they show that this minimization prob-
lem is equivalent to solving a simple quadratic program involving only the firstn voters of
H. Their algorithm MinCq is given in Algorithm 1. It consists in minimizing the denomina-
tor MS

Q2 , i.e., the second moment of theQ-margin (Line 3), under the constraintsMS
Q=µ

(Line 4) andQ is quasi-uniform (Line 5). This leads to minimizing theC-bound and thus
the true risk of the majority vote by only taking into accountthe diversity between the voters
expressed by the empirical second moment.
TheQ-weighted majority vote learned by MinCq is:

BQ(x)=sign

[

n
∑

k=1

(

2Qk−
1

n

)

hk(x)

]

.

3 Generalization of MinCq to P-Aligned Distributions

Rather than constrainingQ to be a quasi-uniform on the auto-complemented set of2n voters
H (∀k∈{1, . . . , n}, Qk+Qk+n= 1

n
) as done in MinCq, we generalize this approach to anyP-

aligned distributionQ: ∀k∈{1, . . . , n}, Qk+Qk+n=Pk, whereP= (P1, . . . , Pn)
⊤ sums

to 1. In this context,P plays the role of ana priori belief on the voters.

2 In the PAC-Bayesian theory, this term is related to the Kullback-Leibler divergence between the posterior
distributionQ and the prior distributionP . See (Laviolette et al., 2011) for more details.
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Algorithm 1 MinCq : a quadratic program for learningQ-weighted majority vote, under
quasi-uniformity constraint
input A sampleS ∼ Dm, the firstn voters of an auto-complemented setH, a desired marginµ > 0
output A posterior vectorQ = (Q1, . . . , Qn)⊤.

Solve argmin
Q

Q⊤MSQ−A⊤
SQ, (3)

s.t. m⊤
SQ =

µ

2
+

1

2n

n
∑

k=1

MS
hk

, (4)

∀k ∈ {1, . . . , n}, 0 ≤ Qk ≤ 1/n, (5)

whereQ = (Q1, . . . , Qn)⊤ is the vector of the firstn weightsQk, MS then × n matrix formed by

MS
hk,hk′

for (k, k′) ∈ {1, . . . , n}2 (as defined in Equation (2)),mS =
(

MS
h1

, . . . ,MS
hn

)⊤, and:

AS =

(

1

nm

n
∑

k=1

MS
h1,hk

, . . . ,
1

nm

n
∑

k=1

MS
hn,hk

)⊤

.

3.1 Expressiveness ofP-aligned distributions

We generalize the setting of Laviolette et al. (2011) for quasi-uniform distributions to any
P-aligned distribution on a set of auto-complemented classifiersH, in fact this constraint
does not restrict the possible outcomes of an algorithm thatwould minimizeCS

Q.

Proposition 1 For all distributions Q on H, there exists a P-aligned distribution Q′ on the
auto-complemented H that provides the same majority vote as Q, and that has the same
empirical and true C-bound values.

Proof It follows from Proposition 4 of (Germain et al., 2011) and isgiven in Appendix A.2.

From this proposition, similarly as for MinCq, it is then justified that under the constraint
MS

Q = µ, theC-bound can be optimized by minimizing the second momentMS
Q2 of theQ-

margin. This is done by solving the quadratic program P-MinCq described in the following.

3.2 The quadratic program P-MinCq

P-MinCq is described in Algorithm 2. Similarly to MinCq, thanks to theP-aligned assump-
tion, we only need to cope with the firstn voters inH. The objective function (Line (6))
minimizes the second moment of theQ-margin while the first constraint (Line (7)) enforces
a margin equal toµ. Note that the left-hand side of this constraint is the weighted average
(with weights of2Qk−Pk) of the individual margins (Mhk

). Finally, Line (8) restrictsQ to
beP-aligned. The proof of derivation of the algorithm can be found in Appendix A.3.
TheQ-weighted majority vote learned by P-MinCq is:

BQ(x)=sign

[

n
∑

k=1

(2Qk−Pk)hk(x)

]

.

The next section addresses the generalization guarantees for P-MinCq.
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Algorithm 2 P-MinCq : quadratic program for learningQ-weighted majority vote, under
P-aligned constraint
input A sampleS ∼ Dm, the firstn voters of an auto-complemented setH, a desired marginµ > 0, a

prior vectorP = (P1, . . . , Pn)⊤, a matrixMS of sizen× n made of elementsMS
hk,hk′

.

output A posterior vectorQ = (Q1, . . . , Qn)⊤.

Solve argmin
Q

(Q−P)⊤MSQ, (6)

s.t. m⊤
S (2Q−P) = µ, (7)

∀k ∈ {1, . . . , n}, 0 ≤ Qk ≤ Pk, (8)

wherem⊤
S = (Mh1

, . . . ,Mhn
)⊤.

4 PAC-Bayesian Generalization Guarantees under Sample Compression

The proof of the generalization bounds of Theorem 2 is still valid forP-aligned distribution
Q over data-independent voters. Indeed, it only makes use of the P-aligned assumption
corresponding toQk +Qk+n = Pk + Pk+n.3 This theorem is nevertheless not valid in the
sample compression setting, where the set of voters is data-dependent (such as the set of
k-NN classifiers). Laviolette et al. (2011) have argued that it can be extended to this setting
by using techniques from (Laviolette and Marchand, 2007). This section is devoted to derive
generalization bounds for P-MinCq in this sample compression setting, allowing us to deal
with data-dependent voters. Our result is rather general (and not restricted tok-NN voters).
It differs from previous PAC-Bayesian results with sample compressed classifiers (Graepel
et al., 2005; Laviolette and Marchand, 2007; Germain et al.,2011) in that it is tailored to the
first two moments of theQ-margin withP-aligned distributions.

4.1 Sample compression setting

In the sample compression framework (Floyd and Warmuth, 1995) the learning algorithm
A has access to a data-dependent set of classifiers. Each classifier is then represented by
two elements: acompression sequencewhich is a sequence of examples, and amessage
representing the additional information needed to obtain the classifier from the compression
sequence. Then, we can define areconstruction function able to output a classifier from
a compression sequence and a message. More formally, a learning algorithmA is called a
compression schemeif it is defined as follows.

Definition 3 Let S ∈ (X ×Y)m = Zm be the learning sample of sizem. We defineJm to
be the set containing all the possible vectors of indices:

Jm =
m
⋃

i=1

{

(j1, . . . , ji) ∈ {1, . . . ,m}i
}

.

Given a family of hypothesisHS from X to Y and an index vectorj ∈ Jm, let Sj be the
subsequence indexed byj, Sj is called thecompression sequence:

Sj = (zj1 , . . . , zji).

3 See (Laviolette et al., 2011) for more details.
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An algorithmA :Z(∞) 7→ HS is acompression schemeif, and only if, there exists a triplet
(C,R, ω) such that for all training sampleS:

A(S) = R
(

SC(S), ω
)

,

whereC : Z(∞) 7→
⋃∞

m=1 Jm is thecompression function, R : Z(∞)×ΩSC(S)
7→ HS the

reconstruction function, andω is amessagechosen from the setΩSC(S)
(a priori defined)

of all messages that can be supplied with the compression sequenceSC(S).

Put into words, given a learning sampleS ∼ Dm, a sample compression scheme is a re-
construction functionR mapping a compression sequenceC(S) = Sj to some setHS of
functionshωSj

such thatA(S) = R
(

Sj, ω
)

= hωSj
. For example,k-NN classifiers can be re-

constructed from a compression sequence only, which encodesthe nearest neighbors (Floyd
and Warmuth, 1995; Graepel et al., 2005). Other classifiers,such as the decision list ma-
chines (Marchand and Sokolova, 2005), need both a compression sequence and a message
string. In the next section, we consider the general settingto avoid any loss of generality.

4.2 PAC-Bayesian generalization bounds under sample compression

Let Sj be a sample compression sequence consisting of|j| elements of the learning sample
S. In the PAC-Bayesian sample compression setting, the risksRD andRS can be biased
by these elements: we often prefer to compute the empirical risk RS from S\Sj (Laviolette
and Marchand, 2007). However, in order to derive risk boundsin such a situation, Germain
et al. (2011) have proposed another strategy by directly considering the bias. As mentioned
in the introduction, we cannot apply their result to our setting. Indeed, it is valid for loss
functions defining a surrogate of the0 − 1 loss, which is not suited for the second moment
of the margin we have to consider. Moreover, it depends on thevalue of the surrogate at−1,
which may lead to a degenerate bound (this does not occur in ourbounds).

The derivation of our result is nevertheless based on a similar setting: given a sample
S, we considerHS the set of all possible classifiershωSj

= R(Sj, ω) such thatω ∈ ΩSj
.

We denote byQJm
(j), the probability that a compression sequenceSj is chosen byQ, and

QSj
(ω) the probability of choosing the messageω givenSj. Then, we have:

QJm
(j) =

∫

ω∈ΩSj

Q(hωSj
)dω, and QSj

(ω) = Q(hωSj
|Sj).

In the usual PAC-Bayesian setting, the risk bounds depend onthe prior distributionP over
the setHS . This prior distribution is supposed to be known before observing the learning
sampleS, implying P independent fromS. However, in our setting the classifiers inHS

are data-dependent. To tackle this problem, we propose to follow the principle of Laviolette
and Marchand (2007); Germain et al. (2011) by considering a prior distribution defined
by a pair:

(

PJm
, (PSj

)j∈Jm

)

, wherePJm
is a distribution overJm, and for all possible

compression sequenceSj, PSj
is a distribution overΩSj

. Given a training sampleS, the

data-independent prior distributionP corresponds to the distribution onHS associated with
the prior

(

PJm
, (PSj

)j∈Jm

)

, then we have:P (hωSj
) = PJm

PSj
(ω).

Definition 4 In the sample compression setting, theQ-margin of a point(x, y) overQ is:

MQ(x, y) = y E
hω
Sj

∼Q
hωSj

(x).
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The first two momentsMD
Q andMD

Q2 of theQ-margin are defined similarly as before:

MD
Q = E

(x,y)∼D
MQ(x, y) and MD

Q2 = E
(x,y)∼D

(MQ(x, y))
2.

In our setting, we assumeP-aligned distributions on an auto-complemented setHS . For each
classifierhωS ∈HS , we denote its complement by−hωS . GivenS, the associated message set
is ΩS×{+,−} and∀σ∈ΩS , h

(σ,+)
S =−h

(σ,−)
S . We now give the main result of this section.

Theorem 3 For any distribution D over X × Y , any m ≥ 8, any auto-complemented set
HS of B-bounded real valued voters of sample compression size at most |jmax| < m

2 , for
all P-aligned distribution Q on HS , and for any δ ∈ (0, 1], we have:

Pr
S∼Dm









∣

∣

∣
MD

Q −MS
Q

∣

∣

∣
≤
2B

√

|jmax|
B + ln

(

2
√
m

δ

)

√

2(m− |jmax|)









≥ 1− δ, (9)

Pr
S∼Dm









∣

∣

∣
MD

Q2 −MS
Q2

∣

∣

∣
≤
2B2

√

2|jmax|
B2 + ln

(

2
√
m

δ

)

√

2(m− 2|jmax|)









≥ 1− δ. (10)

Proof Deferred to Appendix A.4.

For data-independent classifiers,i.e. |jmax| = 0, we recover Theorem 2. As expected, the
theorem indicates that when the compression size|jmax| is large, the bound becomes looser,
suggesting that the compression size should not be too largeto preserve consistency. Note
that the boundB over the classifiers’ output can generally be controlled by the use of appro-
priate normalization.

In the next section, we instantiate P-MinCq in the specifick-NN setting by introducing
a rather intuitive but statistically well-foundeda priori constraintP.

5 Instantiation of P-MinCq for Nearest Neighbor Classifiers

5.1 Limitations of MinCq in the context of nearest neighbor classifiers

At first sight, one may think that MinCq is a good way to overcome two limitations ofk-NN
classifiers. First, while the theory tells us that the higherk, the better the convergence to the
optimal bayesian risk, this holds only asymptotically. In practice the choice ofk requires
special care. Therefore, optimizing aQ-weighted majority vote, where the set of votersH
consists of thek-NN classifiers (k = {1, 2, . . . }), would prevent us from tuningk while
offering a principled way to combine these classifiers.4 Second, by making use of the PAC-
Bayesian setting, the minimization of theC-bound provides generalization guarantees that
cannot be obtained with a standardk-NN algorithm in finite-sample situations.

We conduct a preliminary experimental study to compare a standardk-NN classifier
(wherek is tuned by cross-validation) with MinCq (see Section 6 for details on the setup).

4 Note that other strategies may be used to define the voters,e.g., thenth neighbor can be thenth voter.



10 Aurélien Bellet et al.

Fig. 1 Comparison of MinCq VSNN. Each point in the scatter plot shows the test error rate of the algorithms
on a single dataset. A dataset above the bisecting line is in favor of MinCq

Over twenty datasets, MinCq achieves an average classification error of18.18% against
17.88% for k-NN (see Table 1 for more details). It is worth noting that using a Student
paired t-test, we cannot statistically distinguish between the two approaches. This is also
confirmed by a sign test, which gives a record win/loss/tie equal to 7/6/7 leading to a p-
value of about0.5, as illustrated by Figure 1. This serie of experiments clearly shows that
MinCq performs no better than a single well-tunedk-NN classifier.

We claim that these disappointing results can be explained by the fact that the quasi-
uniformity assumption onQ is not appropriate to settings where one has ana priori belief
on the relevance of the voters, which is typically the case inNN classification. Indeed, for
obvious reasons, close neighborhoods are likely to providemore relevant information than
distant ones. We propose to overcome these limitations by using an instantiation of P-MinCq
based on a constraintP suitable for NN classification.

5.2 A statistically well-founded constraintP

In standardk-NN classification, the theory tells us that the higherk, the better the conver-
gence to the optimal bayesian risk. However, this property holds only asymptotically,i.e.,
when the sizem of the training sample goes to infinity. In practice, training data is limited
and one has to setk carefully. On the one hand, we want to use a large value ofk to obtain a
reliable estimate. On the other hand, only points in a very close neighborhood lead to an ac-
curate classification rule. Several theoretical and experimental studies in the literature have
tried to analyze this trade-off between small and large values ofk. As suggested by Duda
et al. (2001), a good solution consists in using a small fraction of the training examples,
equal to about

√

m/|Y| neighbors, where|Y| is the number of classes.
The context is slightly different in P-MinCq, since we aim atlinearly combiningk-NN

classifiers (k = 1, 2, . . .). Rather than settingk, we aim at choosing a suitable constraintP,
which plays the role of ana priori belief on the voters. As suggested by Devroye et al.
(1996), in a weighted nearest neighbor rule, nearer neighbors should provide more informa-
tion than distant ones. Following this, we propose the following constraintP (normalized
so that they sum to1):

∀k ≥ 1, Pk = 1/k. (11)

P concentrates the weights on voters that are based on a small fraction of the training data,
i.e., points in a close neighborhood (as suggested by Duda et al. (2001)), but also takes into
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Fig. 2 Comparison between the median of the harmonic series
∑m

x=1
1
x

and
√

m/2

account (to a smaller extent) the information provided by (potentially) the entire training set.
To justify this choice, we establish in the following a strongrelationship between Equation
(11) and the popular choice

√

m/2 for k in k-NN binary classification. Our analysis is based
on the characterization ofP by its medianM , which corresponds to the number of neighbors
involved in the voters accumulating half of the total weight. While defining the median of
a continuous distribution is rather straightforward, finding it in the discrete case of interest
(i.e., wherex ∈ {1, . . . ,m}) is slightly more tricky and requires an approximation. Letus
defineHM =

∑M
x=1

1
x andHm =

∑m
x=1

1
x . They correspond to the sum of terms of a

harmonic series for which no closed form is available. However, using the partial sums of
the series, for alln we can defineHn such that:Hn =

∑n
x=1

1
x = ln(n) + γ + ǫn, where

γ is the Euler-Mascheroni constant (γ ≃ 0.5772156) andǫn ∼ 1
2n . Therefore, we have:

HM =
1

2
Hm ⇔

M
∑

x=1

1

x
=

1

2

m
∑

x=1

1

x

⇔ ln(M) + γ + ǫM =
1

2
(ln(m) + γ) +

1

2
ǫm

⇔ ln(M) = ln(
√
m)− 1

2
γ +

1

2
ǫm − ǫM

⇒ ln(M) ∼= ln(
√
m)− 1

2
γ +

1

4m
− 1

2M
(usingǫn ∼ 1

2n
)

⇒ ln(M) ≤ ln(
√
m)− 1

2
γ − 1

4m
(since Equation (11)⇒M≤m/2)

⇒M ≤

√

m exp(−γ) exp

(

− 1

4m

)

≃
√

m

2
. (12)

The main information provided by Equation (12) is that the approximation of the median of
P is very close to

√

m/2, the value suggested fork in thek-NN rule for binary classification
problems. Figure 2 shows a graphical illustration of the closeness between the median of the
harmonic series and

√

m/2. We have thus established a strong relationship between a classic
choice fork in standardk-NN classification and ourP constraint in a weighted majority vote
of k-NN voters. The next section will feature a large comparative experimental study that
validates our choice forP.

Before that, recall that the generalization bound derived in Section 4 suggests to limit
the prototype set for thek-NN classifiers. A first approach could be to divide the learning
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sample in two sets: one for defining the k-NN classifiers and one for learning the parameters
of the model. However, this strategy does not stand in the sample compression scheme and
has the disadvantage to discard useful information. Anothersolution is to apply—for each
k-NN voter—some prototype selection or reduction techniques(Duda et al., 2001) in order
to remove training examples that do not change the labeling of any test example. This im-
plies that eachk-NN must use its own compressed sample corresponding to a subset of the
training sampleS. However, in addition to its computational cost, this strategy is not always
relevant in the context of NN since it may be difficult to obtain a good (i.e. small) compres-
sion scheme for some distributions. Nevertheless, in the particular setting we consider for
k-NN, we have noticed that using large|jmax| (even equals tom) does not influence the
practical performance of P-MinCq.

6 Experimental Results

In this section, we propose a comparative study of P-MinCq applied to the context of NN
classification (as described in Section 3). We compare it against four different approaches.

– The standard Nearest Neighbor algorithm (NN) which plays the role of the baseline.
– The Symmetric Nearest Neighbor algorithm (Nock et al., 2003) (SNN), a variant of NN

where the class of an instancex is determined by the majority class among the training
points that belong to thek-neighborhood ofx (like in NN) plus those that includex in
their ownk-neighborhood.

– Large Margin Nearest Neighbor (Weinberger and Saul, 2009) (LMNN) which learns
a Mahalanobis distance by optimizing thek-NN training error (with a safety margin).
Then,k-NN is applied using the learned distance. Note that LMNN hasbeen shown to
be competitive with a RBF kernel SVM.

– MinCq (Laviolette et al., 2011) which considers a quasi-uniform distribution.

We evaluate these methods on twenty benchmark datasets and an object categorization task.

6.1 Benchmark datasets

Experimental setup. These twenty binary classification datasets are of varying domain and
difficulty, mostly taken from the UCI Machine Learning Repository.5 We compute neigh-
borhoods using the standard Euclidean distance. We randomly split each dataset into50%
training and50% test data, except for letterAB, letterDO and letterOQ for which we split
20%/80%. We tune the following parameters by 10-fold cross-validation on the training
set: the margin parameterµ for MinCq and P-MinCq (among 14 values between.0001 and
.5) and the parameterk for k-NN and LMNN (among{1, . . . , 10}). The trade-off parameter
of LMNN was set to.5, as done by Weinberger and Saul (2009).

Results. We report the results in Table 1. We make the following remarks. First, P-MinCq
significantly outperforms a standard NN classifier. On average over the datasets, P-MinCq
achieves a classification error of16.89% while NN reaches a level of17.88%. Using a
Student paired t-test, this difference is statistically significant with a p-value of.06. This is
further supported by a sign test, which gives a record win/loss/tie equals to 12/5/3 leading to

5 http://archive.ics.uci.edu/ml/
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Table 1 Error rates of NN, SNN, LMNN, MinCq and P-MinCq on twenty datasets

Dataset NN SNN LMNN MinCq P-MinCq

australian .3121 .3324 .2746 .3064 .2919
blood .2647 .2487 .2674 .2540 .2567
breast .0514 .0200 .0400 .0314 .0257
colon .1613 .1290 .2258 .1613 .1290

german .2940 .3040 .2760 .2780 .2720
glass .0370 .0648 .0648 .0370 .0370

haberman .2597 .2532 .2922 .2597 .2727
heart .3481 .3926 .2148 .3926 .3556

ionosphere .1420 .1591 .1193 .1420 .0795
letter:AB .0176 .0143 .0151 .0176 .0176
letter:DO .0268 .0293 .0126 .0268 .0260
letter:OQ .0961 .0961 .0334 .0995 .0892

liver .3584 .3468 .3584 .3410 .3584
musk1 .1339 .1464 .2092 .1715 .1297

parkinsons .2041 .2143 .1531 .2041 .2347
pima .2526 .2474 .2604 .2422 .2370
sonar .2762 .2952 .0762 .2952 .2000
voting .0596 .0596 .0413 .0688 .0688
wdbc .0596 .0842 .0491 .0561 .0456
wpbc .2200 .2500 .2300 .2500 .2500

Avg. error .1788 .1844 .1607 .1818 .1689
Avg. rank 2.9 3.1 2.65 2.9 2.25

a p-value of.07. P-MinCq also outperforms SNN despite the fact that the latter performs well
on a few datasets (p-value of.01 with a Student test and.24 with a sign test). Furthermore,
P-MinCq performs significantly better than MinCq with a p-value of .02 using a Student
test. With a sign test, the p-value is about.03 with a record win/loss/tie equals to 12/4/4.
This shows the usefulness of our generalization of MinCq toP-aligned distributions, and
thatPi =

1
i is a suitablea priori distribution in the context of NN. Finally, despite the fact

that P-MinCq is not a metric learning algorithm, it is competitive with LMNN ( .1689 versus
.1607 with a p-value of about.10 with a Student test). A sign test leads to a p-value of.5,
indicating that one method is equally likely to perform better than the other.

In fact, we claim that P-MinCq and LMNN are rather complementary. Indeed, on the
one hand, LMNN is a metric learning algorithm that can tweak the neighborhoods of the
points (sometimes with great success,e.g., heart, parkinsons or sonar) but may perform
worse than NN, especially because it often overfits when dimensionality is high (e.g., colon
or musk1). On the other hand, P-MinCq does not change the neighborhoods of the points but
combines several nearest neighbor rules, and as a combination of classifiers, appears to be
quite stable (as shown at the bottom of Table 1, it achieves the best average rank) and robust
to overfitting. To highlight how P-MinCq and LMNN complementeach other, we perform
an additional series of experiments aiming at combining LMNN and P-MinCq when this
seems relevant. To do so, we make use of the validation performance: if LMNN performs
better than P-MinCq, then we plug the distance learned by LMNN in P-MinCq (otherwise
we keep the standard Euclidean distance). We report the results in Table 2. The combination
LMNN+P-MinCq outperforms all other methods, including LMNN alone (p-values of.05
with a Student test and.17 with a sign test). Notice that on some datasets where LMNN was
by far the best performing method in the first series of experiments (e.g., on heart, parkinsons
or voting), LMNN+P-MinCq is able to further improve these results.
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Table 2 Error rates of LMNN and LMNN+P-MinCq on twenty datasets

Dataset LMNN LMNN+P-MinCq

australian .2746 .2832
blood .2674 .2701
breast .0400 .0257
colon .2258 .2258

german .2760 .2820
glass .0648 .0370

haberman .2922 .2727
heart .2148 .1926

ionosphere .1193 .0795
letter:AB .0151 .0151
letter:DO .0126 .0084
letter:OQ .0334 .0386

liver .3584 .3584
musk1 .2092 .1297

parkinsons .1531 .1020
pima .2604 .2370
sonar .0762 .0952
voting .0413 .0367
wdbc .0491 .0456
wpbc .2300 .2800

Avg. error .1607 .1508

Fig. 3 Comparison of P-MinCq versus LMNN (left) and P-MinCq+LMNN versus LMNN (right)

6.2 Object categorization

Experimental setup. We provide additional experiments on Graz-01 (Opelt et al.,2004),
a popular object categorization database that has two object-class (bike and person) and a
background class. It is known to have large intra-class variation and significant background
clutter (see Figure 4). The tasks are bikevs non-bike and personvs non-person and we
follow experimental setup from (Opelt et al., 2004): for eachobject, we randomly sample
100 positive examples and 100 negative examples (of which 50are drawn from the other
object and 50 from the background). Images are represented asfrequency histograms of 200
visual words built from SIFT interest points. We thus compute neighborhoods using two
popular histogram distances: theχ2 and the intersection distances.

Results. We report the results in Table 3, averaged over 10 runs. P-MinCq is again the most
stable method and also the best on average across tasks and distance measures. Indeed, it
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Fig. 4 Some examples of bikes (left column), persons (middle) and background (right) taken from Graz-01.
Only parts of the objects of interest may be visible, and the background class features difficult counter-
examples to the bike class, such as motorbikes

Table 3 Error rates of NN, SNN, MinCq and P-MinCq on the Graz-01 database, averaged over 10 runs.

Distance Task NN SNN MinCq P-MinCq

χ2 bike .2310 .2090 .2160 .2095
χ2 person .2385 .2305 .2730 .2250

Intersection bike .2260 .2185 .2130 .2055
Intersection person .2350 .2370 .3180 .2255

Avg. error .2326 .2238 .2550 .2164

significantly outperforms MinCq (p-value smaller than.01 with a Student test), again illus-
trating the importance of a good priorP for learning the majority vote. Moreover, P-MinCq
performs significantly better than NN (p-value smaller than.01 with a Student test) and to a
smaller extent than SNN (p-value of.13). It is worth noting that SNN performs rather well
on this database: with large intra-class variation, it seems that extending the neighborhood
can pay off. However, while the symmetry heuristic used by SNN is not relevant for all
datasets, P-MinCq provides a principled and robust alternative.

7 Conclusion and Future Research

In this work, we have proposed a novel approach called P-MinCq for learning a weighted
majority vote over variable-performing classifiers in the context of a recent algorithm MinCq
which finds its grounds in the PAC-Bayesian theory. Our methodis based on a generalization
of MinCq to P-aligned distributions allowing us to incorporate ana priori knowledge in
the form of a distribution on the voters. This approach does not restrict the expressiveness
of the majority vote and we have provided generalization guarantees for data-dependent
voters such ask-NN classifiers. Moreover, we have defined a specificP-aligned distribution
adapted to the case ofk-NN and provided experimental evidence of its good behavior.

Many promising perspectives arise from this work. First, the setting proposed in this pa-
per is general enough to be used to combine virtually any set of classifiers (provided that they
are bounded). For instance, our approach allows one to combine strong and weak classifiers
and incorporate somea priori knowledge about their performance. Another interesting ap-
plication is multi-view learning (Xu et al., 2013; Sun, 2013), where P-MinCq could be used
to combine classifiers (such as SVM) trained on multi-modal data coming from different
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sources and/or feature types (Morvant et al., 2014). In thiscase,P could encode the prior
knowledge about the relative relevance of each modality forthe task at hand. In general,
in the absence of background knowledge, we note that defininga relevantP distribution
for a set of learners can be difficult. Developing strategiesto automatically assessP from
(held-out) data could be very helpful in practice (Lever et al., 2013).

It would also be interesting to combine P-MinCq with other metric learning algorithms,
such as the recentχ2 distance learning method for histogram data (Kedem et al., 2012).
Lastly, extending P-MinCq to a multi-class setting is also of high interest. However, this
requires margin and loss definitions tailored to multi-class problem that imply technical
difficulties, with the need of different theoretical tools such as in (Morvant et al., 2012).
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Devroye L, Gÿorfi L, Lugosi G (1996) A Probabilistic Theory of Pattern Recognition.

Springer-Verlag
Dietterich TG (2000) Ensemble methods in machine learning.In: Multiple Classifier Sys-

tems, pp 1–15
Domingos P (2000) Bayesian averaging of classifiers and the overfitting problem. In: Inter-

national Conference on Machine Learning, p 223230
Duda R, Hart P, Stork D (2001) Pattern classification. Pattern Classification and

Scene Analysis: Pattern Classification, Wiley, URLbooks.google.fr/books?id=
YoxQAAAAMAAJ

Floyd S, Warmuth MK (1995) Sample Compression, Learnability, and the Vapnik-
Chervonenkis Dimension. Machine Learning 21(3):269–304

Freund Y, Schapire R (1996) Experiments with a new boosting algorithm. In: International
Conference on Machine Learning, pp 148–156

Germain P, Lacoste A, Laviolette F, Marchand M, Shanian S (2011) A PAC-Bayes Sam-
ple Compression Approach to Kernel Methods. In: International Conference on Machine
Learning

Graepel T, Herbrich R, Shawe-Taylor J (2005) PAC-Bayesian Compression Bounds on
the Prediction Error of Learning Algorithms for Classification. Machine Learning 59(1-
2):55–76

Haussler D, Kearns M, Schapire R (1994) Bounds on the sample complexity of bayesian
learning using information theory and the vc dimension. Machine Learning 14(1):83–113



Learning A Priori Constrained Weighted Majority Votes 17

Kedem D, Tyree S, Weinberger K, Sha F, Lanckriet G (2012) Non-linear Metric Learning.
In: Advances in Neural Information Processing Systems, vol25, pp 2582–2590

Lacasse A, Laviolette F, Marchand M, Germain P, Usunier N (2007) PAC-Bayes Bounds for
the Risk of the Majority Vote and the Variance of the Gibbs Classifier. In: Advances in
Neural Information Processing Systems

Laviolette F, Marchand M (2007) PAC-Bayes Risk Bounds for Stochastic Averages and
Majority Votes of Sample-Compressed Classifiers. Journal of Machine Learning Research
8:1461–1487

Laviolette F, Marchand M, Roy JF (2011) From PAC-Bayes Bounds to Quadratic Programs
for Majority Votes. In: International Conference on MachineLearning

Lever G, Laviolette F, Shawe-Taylor J (2013) Tighter pac-bayes bounds through
distribution-dependent priors. Theoretical Computer Science 473:4–28

Marchand M, Sokolova M (2005) Learning with Decision Lists of Data-Dependent Features.
Journal of Machine Learning Research 6:427–451

Maurer A (2004) A Note on the PAC Bayesian Theorem. CoRR cs.LG/0411099
McAllester DA (1999) PAC-Bayesian model averaging. In: Annual Conference on Learning

Theory, pp 164–170
McAllester DA (2003) Simplified PAC-Bayesian margin bounds. In: Annual Conference on

Learning Theory, pp 203–215
Morvant E, Koço S, Ralaivola L (2012) PAC-Bayesian Generalization Bound on Confusion

Matrix for Multi-Class Classification. In: International Conference on Machine Learning
Morvant E, Habrard A, Ayache S (2014) Majority Vote of Diverse Classifiers for Late Fu-

sion. In: IAPR Joint International Workshops on StatisticalTechniques in Pattern Recog-
nition and Structural and Syntactic Pattern Recognition

Nock R, Sebban M, Bernard D (2003) A Simple Locally Adaptive Nearest Neighbor Rule
With Application To Pollution Forecasting. InternationalJournal of Pattern Recognition
and Artificial Intelligence 17(8):1369–1382

Opelt A, Fussenegger M, Pinz A, Auer P (2004) Weak Hypothesesand Boosting for Generic
Object Detection and Recognition. In: European Conferenceon Computer Vision, pp 71–
84

Re M, Valentini G (2012) Ensemble methods: a review. Advances in machine learning and
data mining for astronomy pp 563–582

Schapire R, Singer Y (1999) Improved boosting using confidence-rated predictions. Ma-
chine Learning 37(3):297336

Sun S (2013) A survey of multi-view machine learning. NeuralComputing and Applications
23(7-8):2031–2038

Weinberger KQ, Saul LK (2009) Distance Metric Learning for Large Margin Nearest Neigh-
bor Classification. Journal of Machine Learning Research 10:207–244

Xu C, Tao D, Xu C (2013) A Survey on Multi-view Learning. Tech.rep., arXiv:1304.5634

A Appendices

A.1 Tools

Theorem 4 (Markov’s inequality) Let Z be a random variable and t ≥ 0, then: P (|Z| ≥ t) ≤ E(|Z|)/t.

Theorem 5 (Jensen’s inequality)Let X be an integrable real-valued random variable and g(·) convex,
then: g(E[Z]) ≤ E[g(Z)].
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Lemma 1 (from inequalities (1) and (2) of Maurer (2004))Let m≥8, and X=(X1, .., Xm) be a vector
of i.i.d. random variables, 0 ≤ Xi ≤ 1. Then:

√
m≤E exp(m kl( 1

m

∑n
i=1 Xi

∥

∥E[Xi]))≤2
√
m, where

kl(a‖b)=a ln a
b
+ (1− a) ln 1−a

1−b
.

A.2 Proof of Proposition 1

We give here another version of the proof of Proposition 4 of Germain et al. (2011).
Let Q be a distribution overH, let M = maxk′∈{1,...,n}

1
Pk′

|Qk′+n − Qk′ |, and letQ′ be defined as

Q′
k

= Pk

2
+

Qk−Qk+n

2M
, where by convention(k + n) + n = k andPk+n = Pk. First, let us show

that Q′ is actuallyP-aligned on the auto-complementedH, that is∀k ∈ {1, . . . , n}, Q′
k

≤ Pk and
Q′

k
+Q′

k+n
= Pk. The following always holds:

Q′
k ≤ Pk ⇐⇒ Pk

2
+

Qk −Qk+n

2M
≤ Pk ⇐⇒ Qk −Qk+n

M
≤ Pk

⇐⇒ 1

Pk

(Qk −Qk+n) ≤ max
k′∈{1,...,n}

1

Pk′
|Qk′+n −Qk′ |,

and : Q′
k +Q′

k+n =
Pk

2
+

Qk −Qk+n

2M
+

Pk+n

2
+

Qk+n −Qk

2M

= Pk +
Qk −Qk+n +Qk+n −Qk

2M
= Pk.

Then, let us show that usingQ′ does not restrict the set of possible majority votes:

E
h∼Q′

h(x) =
2n
∑

k=1

Q′
khk(x) =

n
∑

k=1

(Q′
k−Q′

k+n)hk(x)

=
1

M

n
∑

k=1

(Qk−Qk+n)hk(x) =
1

M

2n
∑

k=1

Qkhk(x) =
1

M
E

h∼Q
h(x).

Therefore, we deduce that∀x ∈ X , BQ′ (x) = BQ(x) and since the constant term1
M

is present in both
first and second momentsMD

Q′ andMD
Q′2 , it vanishes in theC-bound. Hence,CD

Q′ = CD
Q regardless of

the distributionD overX × Y .

A.3 Proof of Algorithm 2 : P-MinCq

The Objective Function.We show how to obtain Line (6) from the definition ofMS
Q2 .

MS
Q2 = E

(h,h′)∼Q2
MS

h,h′ =
2n
∑

k=1

2n
∑

k′=1

QkQk′MS
hk,hk′

=

n
∑

k=1

n
∑

k′=1

[

QkQk′ E
(x,y)∼S

hk(x)hk′ (x) +Qk+nQk′ E
(x,y)∼S

hk+n(x)hk′ (x)

+QkQk′+n E
(x,y)∼S

hk(x)hk′+n(x) +Qk+nQk′+n E
(x,y)∼S

hk+n(x)hk′+n(x)
]

=
n
∑

k=1

n
∑

k′=1

QkQk′ E
(x,y)∼S

hk(x)hk′ (x)−Qk+nQk′ E
(x,y)∼S

hk(x)hk′ (x)

−QkQk′+n E
(x,y)∼S

hk(x)hk′ (x) +Qk+nQk′+n E
(x,y)∼S

hk(x)hk′ (x) (becausehk+n = −hk)

=
n
∑

k=1

n
∑

k′=1

MS
hk,hk′

[QkQk′ − (Pk −Qk)Qk′ −Qk(Pk′ −Qk′ ) + (Pk −Qk)(Pk′ −Qk′ )]
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=
n
∑

k=1

n
∑

k′=1

MS
hk,hk′

[4QkQk′ − 2PkQk′ − 2Pk′Qk + PkPk′ ]

= 4
n
∑

k=1

n
∑

k′=1

QkMS
hk,hk′

Qk′ − 4
n
∑

k=1

n
∑

k′=1

PkMS
hk,hk′

Qk′ +
n
∑

k=1

n
∑

k′=1

PkPk′MS
hk,hk′

= 4[(Q−P)TMSQ] + C1,

whereC1 =
∑n

k=1

∑n
k′=1 PkPk′Mhk,hk′ and the multiplicative value4 can be considered as constant

w.r.t. Q. Therefore, we get Line (6) of the optimization problem.
The Margin Constraint. We now show how to obtain Line (7) fromMS

Q. We have:

MS
Q= E

h∼Q
MS

h =
2n
∑

k=1

QkMS
hk

=
n
∑

k=1

(Qk −Qk+n)MS
hk

=
n
∑

k=1

(2Qk − Pk)MS
hk

=mT
S (2Q−P),

wheremT
S

= (Mh1
, . . . ,Mhn

)T . ReplacingMS
Q by µ, we get Line (7) of the optimization problem.

A.4 Proof of Theorem 3

Proof of Equation (9). Let S be any training sequence of sizem. Suppose thatHS is auto-complemented.
Moreover, a distribution onHS is P-aligned if for any(j, σ) ∈ Jm ×ΩSj

we have:

Q
(

h
(σ,+)
S

)

+Q
(

−h
(σ,+)
S

)

=Q
(

h
(σ,+)
S

)

+Q
(

h
(σ,−)
S

)

=P
(

h
(σ,+)
S

)

+P
(

h
(σ,−)
S

)

=P
(

h
(σ,+)
S

)

+P
(

−h
(σ,+)
S

)

.

It implies that:MD

h
(σ,+)
S

= −MD

h
(σ,−)
S

, and:
(

MS

h
(σ,+)
Sj

−MD

h
(σ,+)
Sj

)2

=

(

−MS

h
(σ,−)
Sj

− (−MD

h
(σ,−)
Sj

)

)2

=

(

MS

h
(σ,−)
Sj

−MD

h
(σ,−)
Sj

)2

.

Similarly as in McAllester (2003), we now consider the following Laplace transform:

XP = E
hω
Sj

∼P
exp

(

m− |j|
2B2

(

MS
hω
Sj

−MD
hω
Sj

)2
)

.

Remark thatf(a, b) = 1
2B2 (a − b)2 is convex because its Hessian matrix is positive semi-definite. For

lightening the proof reading, we denotemj =
m− |j|
2B2

. For anyP-aligned distributionQ, we have:

2XP = E
hω
Sj

∼P
exp

(

mj

(

MS
hω
Sj

−MD
hω
Sj

)2
)

=

∫

h
(σ,+)
Sj

∈HS

P (h
(σ,+)
Sj

) exp

(

mj

(

MS

h
(σ,+)
Sj

−MD

h
(σ,+)
Sj

)2

)

dh
(σ,+)
Sj

+

∫

h
(σ,−)
Sj

∈HS

P (h
(σ,−)
Sj

) exp

(

mj

(

MS

h
(σ,−)
Sj

−MD

h
(σ,−)
Sj

)2

)

dh
(σ,−)
Sj

=

∫

h
(σ,+)
Sj

∈HS

(

P (h
(σ,+)
Sj

) + P (−h
(σ,+)
Sj

)
)

exp

(

mj

(

MS

h
(σ,+)
Sj

−MD

h
(σ,+)
Sj

)2

)

dh
(σ,+)
Sj

=

∫

h
(σ,+)
Sj

∈HS

(

Q(h
(σ,+)
Sj

) +Q(−h
(σ,+)
Sj

)
)

exp

(

mj

(

MS

h
(σ,+)
Sj

−MD

h
(σ,+)
Sj

)2

)

dh
(σ,+)
Sj

=

∫

h
(σ,+)
Sj

∈HS

Q(h
(σ,+)
Sj

) exp

(

mj

(

MS

h
(σ,+)
Sj

−MD

h
(σ,+)
Sj

)2

)

dh
(σ,+)
Sj

+

∫

h
(σ,−)
Sj

∈HS

Q(h
(σ,−)
Sj

) exp

(

mj

(

MS

h
(σ,−)
Sj

−MD

h
(σ,−)
Sj

)2

)

dh
(σ,−)
Sj

=2 E
hω
Sj

∼Q
exp

(

mj

(

MS
hω
Sj

−MD
hω
Sj

)2
)

= 2XQ.
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Using Markov’s inequality (Theorem 4) we have:Pr
S∼Dm

(

XP ≤ 1

δ
E

S∼Dm
XP

)

≥ 1− δ.

Taking the logarithm on each side of the innermost inequality, for anyδ ∈ (0, 1], with a probability at least
1− δ over the choice ofS ∼ Dm, for all P-aligned distributionQ onHS , we get:

ln



 E
hω
Sj

∼Q
exp

(

mj

(

MS
hω
Sj

−MD
hω
Sj

)2
)



 ≤ ln

[

1

δ
E

S∼Dm
XP

]

.

We apply Jensen’s inequality (Theorem 5) on the concave function ln(·):

ln



 E
hω
Sj

∼Q
exp

(

mj

(

MS
hω
Sj

−MD
hω
Sj

)2
)



 ≥ E
hω
Sj

∼Q
mj

(

MS
hω
Sj

−MD
hω
Sj

)2
.

Recall that|jmax| is the maximal size of the compression sample. Then by again applying the Jensen’s

inequality on the convex function(m − |jmax|)f(a, b) =
m−|jmax|

2B2 (a − b)2 = mj(a − b)2 for the left
side of the previous inequality, we have:

E
hω
Sj

∼Q
mj

(

MS
hω
Sj

−MD
hω
Sj

)2
=

m

2B2



 E
hω
Sj

∼Q
− |j|

(

MS
hω
Sj

−MD
hω
Sj

)2





≥ m− |jmax|
2B2



 E
hω
Sj

∼Q

(

MS
hω
Sj

−MD
hω
Sj

)2





≥ m− |jmax|
2B2

(

MS
Q −MD

Q

)2
.

Then: Pr
S∼Dm

(

m− |jmax|
2B2

(

MS
Q −MD

Q

)2
≤ ln

[

1

δ
E

S∼Dm
XP

])

≥ 1− δ.

We thus have to bound E
S∼Dm

XP . We considerMS\Sj

hω
Sj

the empirical margin computed on the examples

of the learning sampleS that are not in the compression sequenceSj. WhileMS
hω
Sj

may contain some bias,

MS\Sj

hω
Sj

is an arithmetic mean of trulyi.i.d. (m − |j|) random variables. Note also that these two random

variables have very close values.

We have:0 ≤ mMS
hω
Sj

− (m− |j|)MS\Sj

hω
Sj

≤ B|j|,

then :−B|j| ≤ −|j|MS\Sj

hω
Sj

≤ mMS
hω
Sj

−mMS\Sj

hω
Sj

≤ |j| − |j|MS\Sj

hω
Sj

≤ B|j|,

and thus :

∣

∣

∣

∣

MS
hω
Sj

−MS\Sj

hω
Sj

∣

∣

∣

∣

≤ B|j|
m

.

Given a compression sequenceSj, we denote bȳj the vector of indices that are not inj. Then:

E
S∼Dm

XP = E
S∼Dm

E
hω
Sj

∼P
exp

(

mj

(

MS
hω
Sj

−MD
hω
Sj

)2
)

= E
j∼P

E
Sj∼D|j|

E
ω∼PSj

E
Sj̄∼Dm−|j|

exp

(

mj

(

MS
hω
Sj

−MD
hω
Sj

)2
)

.

For all j ∈ Jm, Sj ∈ Z|j|, ω ∈ Ω′
Sj

× {+,−}, we have :

E
S∼Dm

XP = E
Sj̄∼Dm−|j|

exp

(

mj

(

MS
hω
Sj

−MD
hω
Sj

)2
)

= E
Sj̄∼Dm−|j|

exp

(

mj

(

MS
hω
Sj

−MSj̄

hω
Sj

+MSj̄

hω
Sj

−MD
hω
Sj

)2
)

≤ E
Sj̄∼Dm−|j|

exp

[

mj

(

[

MS
hω
Sj

−MSj̄

hω
Sj

]2
+2
∣

∣MS
hω
Sj

−MSj̄

hω
Sj

∣

∣

∣

∣MSj̄

hω
Sj

−MD
hω
Sj

∣

∣+
[

MSj̄

hω
Sj

−MD
hω
Sj

]2
)]

.
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From Equation (A.4) and sinceexp(.) is increasing, we obtain:

E
S∼Dm

XP ≤ E
Sj̄∼Dm−|j|

exp

[

mj

(

[

B|j|
m

]2

+ 2
B|j|
m

+
[

MSj̄

hω
Sj

−MD
hω
Sj

]2

)]

.

Since we suppose that for allj: |j| ≤ |jmax| ≤ m, then:

m− |j|
2B

(

[ |j|
m

]2

+ 2
|j|
m

)

≤ |jmax|
(

m− |j|
2B

[ |j|
m2

+
2

m

])

≤ |jmax|
B

.

Then: E
S∼Dm

XP ≤ E
Sj̄∼Dm−|j|

exp

( |jmax|
B

+mj

(

MSj̄

hω
Sj

−MD
hω
Sj

)2
)

≤ exp

( |jmax|
B

)

× E
Sj̄∼Dm−|j|

exp

(

mj

[

MSj̄

hω
Sj

−MD
hω
Sj

]2
)

≤ exp

( |jmax|
B

)

× E
Sj̄∼Dm−|j|

exp









2(m− |j|)
[

(1

2
−

MSj̄

hω
Sj

2B

)

−
(1

2
−

MD
hω
Sj

2B

)

]2









.

By definition2(a− b)2 ≤ kl(a‖b) = a ln a
b
+(1− a) ln 1−a

1−b
is valid for anya, b ∈ [0, 1] provided that if

a = 0 then so isb and ifa = 1 then so isb. Since the elements ofHS areB-bounded andSj̄ is drawni.i.d.

fromD, we have:MD
hω
Sj

= −B ⇒ MSj̄

hω
Sj

= −B, and MD
hω
Sj

= B ⇒ MSj̄

hω
Sj

= B.

Then:
1

2
−

MD
hω
Sj

2B
= 0 ⇒ 1

2
−

MSj̄

hω
Sj

2B
= 0, and

1

2
−

MD
hω
Sj

2B
= 1 ⇒ 1

2
−

MSj̄

hω
Sj

2B
= 1.

Moreover since:0 ≤ 1

2
−

MSj̄

hω
Sj

2B
≤ 1, and 0 ≤ 1

2
−

MD
hω
Sj

2B
≤ 1, we have:

E
S∼Dm

XP ≤ exp

( |jmax|
B

)

× E
Sj̄∼Dm−|j|

exp









(m− |j|) kl
(

1

2
−

MSj̄

hω
Sj

2B

∥

∥

∥

∥

∥

1

2
−

MD
hω
Sj

2B

)









.

We apply Maurer’s Lemma (Lemma 1):

E
S∼Dm

XP ≤ exp

( |jmax|
B

)

× E
Sj̄∼Dm−|j|

2
√

(m− |j|)

≤ exp

( |jmax|
B

)

× 2
√

(m− |j|) ≤ exp

( |jmax|
B

)

× 2
√
m.

Finally: Pr
S∼Dm











for all P-aligned distributionQ onHS ,

|MD
Q −MS

Q| ≤
2B

√

|jmax|
B

+ ln

(

2
√
m

δ

)

√

2(m− |jmax|)











≥ 1− δ

Proof of Equation (10). Using similar arguments as the beginning of the proof Equation(9), we have:

(

MS

h
(σ,+)
Sj

,h
(σ,+)
S
j′

−MD

h
(σ,+)
Sj

,h
(σ,+)
S
j′

)2
=
(

MS

h
(σ,−)
Sj

,h
(σ,+)
S
j′

−MD

h
(σ,−)
Sj

,h
(σ,+)
S
j′

)2

=
(

MS

h
(σ,+)
Sj

,h
(σ,−)
S
j′

−MD

h
(σ,+)
Sj

,h
(σ,−)
S
j′

)2

=
(

MS

h
(σ,−)
S
j′

,h
(σ,−)
Sj

−MD

h
(σ,−)
S
j′

,h
(σ,−)
Sj

)2
.
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Similarly as in McAllester (2003), we now consider the following Laplace transform:

XP = E
hω
Sj

,hω

S′
j

∼P2
exp

(

m− |j ∪ j′|
2B4

(

MS

hω
Sj

,hω′
S
j′

−MD

hω
Sj

,hω′
S
j′

)2

)

.

For lightening the proof reading, we denotemj∪j′ =
m− |j ∪ j′|

2B4
. Remark thatf(a, b) = 1

2B4 (a− b)2 is

convex. For anyP-aligned distributionQ, we have:

4XP = E
hω
Sj

,hω
S′
j

∼P2
exp

(

mj∪j′
(

MS

hω
Sj

,hω′
S
j′

−MD

hω
Sj

,hω′
S
j′

)2
)

=

∫

h
(σ,+)
Sj

,h
(σ,+)

S′
j

∈(HS)2
P (h

(σ,+)
Sj

)P (h
(σ,+)
S
j′

) exp
(

mj∪j′
(

MS

h
(σ,+)
Sj

,h
(σ,+)
S
j′

−MD

h
(σ,+)
Sj

,h
(σ,+)
S
j′

)2
)

dh
(σ,+)
Sj

h
(σ,+)
S
j′

+

∫

h
(σ,−)
Sj

,h
(σ,−)

S′
j

∈(HS)2
P (h

(σ,−)
Sj

)P (h
(σ,−)
S
j′

) exp
(

mj∪j′
(

MS

h
(σ,−)
Sj

,h
(σ,−)
S
j′

−MD

h
(σ,−)
Sj

,h
(σ,−)
S
j′

)2
)

dh
(σ,−)
Sj

h
(σ,−)
S
j′

+

∫

h
(σ,−)
Sj

,h
(σ,+)

S′
j

∈(HS)2
P (h

(σ,−)
Sj

)P (h
(σ,+)
S
j′

) exp
(

mj∪j′
(

MS

h
(σ,−)
Sj

,h
(σ,+)
S
j′

−MD

h
(σ,−)
Sj

,h
(σ,+)
S
j′

)2
)

dh
(σ,−)
Sj

h
(σ,+)
S
j′

+

∫

h
(σ,+)
Sj

,h
(σ,−)

S′
j

∈(HS)2
P (h

(σ,+)
Sj

)P (h
(σ,−)
S
j′

) exp
(

mj∪j′
(

MS

h
(σ,+)
Sj

,h
(σ,−)
S
j′

−MD

h
(σ,+)
Sj

,h
(σ,−)
S
j′

)2
)

dh
(σ,+)
Sj

h
(σ,−)
S
j′

=

∫

h
(σ,+)
Sj

,h
(σ,+)

S′
j

∈(HS)2

(

P (h
(σ,+)
Sj

)+P (−h
(σ,+)
Sj

)
)(

P (h
(σ,+)
S
j′

)+P (−h
(σ,+)
S
j′

)
)

exp
(

mj∪j′
(

MS

h
(σ,+)
Sj

,h
(σ,+)
S
j′

−MD

h
(σ,+)
Sj

,h
(σ,+)
S
j′

)2
)

dh
(σ,+)
Sj

h
(σ,+)
S
j′

=

∫

h
(σ,+)
Sj

,h
(σ,+)

S′
j

∈(HS)2

(

Q(h
(σ,+)
Sj

)+Q(−h
(σ,+)
Sj

)
)(

Q(h
(σ,+)
S
j′

)+Q(−h
(σ,+)
S
j′

)
)

exp
(

mj∪j′
(

MS

h
(σ,+)
Sj

,h
(σ,+)
S
j′

−MD

h
(σ,+)
Sj

,h
(σ,+)
S
j′

)2
)

dh
(σ,+)
Sj

h
(σ,+)
S
j′

= · · · · · · · · ·

=4 E
hω
Sj

,hω
S′
j

∼Q2
exp

(

mj∪j′
(

MS

hω
Sj

,hω′
S
j′

− MD

hω
Sj

,hω′
S
j′

)2
)

= 4XQ.

Now, by Markov’s inequality (Theorem 4) we have:Pr
S∼Dm

(

XP ≤ 1

δ
E

S∼Dm
XP

)

≥ 1− δ.

By taking the logarithm on each side of the innermost inequality, for anyδ ∈ (0, 1], with a probability at
least1− δ over the choice ofS ∼ Dm, for all P-aligned distributionQ onHS we have:

ln






E

hω
Sj

,hω′
S
j′

∼Q2
exp

(

mj∪j′
(

MS

hω
Sj

,hω′
S
j′

−MD

hω
Sj

,hω′
S
j′

)2
)






≤ ln

[

1

δ
E

S∼Dm
XP

]

.

We apply Jensen’s inequality (Theorem 5) onln(.):

ln






E

hω
Sj

,hω′
S
j′

∼Q2
exp

(

mj∪j′
(

MS

hω
Sj

,hω′
S
j′

−MD

hω
Sj

,hω′
S
j′

)2

)






≥ E
hω
Sj

,hω′
S
j′

∼Q2
mj∪j′

(

MS

hω
Sj

,hω′
S
j′

−MD

hω
Sj

,hω′
S
j′

)2
.

Recall that|jmax| < m
2

the maximal size of the compression sample. Then by again applying the Jensen’s

inequality on the convex function(m−|jmax|)f(a, b) = m−|jmax|

2B4 (a− b)2 = mj∪j′ (a− b)2 for the left
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side of the previous inequality, we have:

E
hω
Sj

,hω′
S
j′

∼Q2
mj∪j′

(

MS

hω
Sj

,hω′
S
j′

−MD

hω
Sj

,hω′
S
j′

)2
=

m

2B4






E

hω
Sj

,hω′
S
j′

∼Q2
(−|j ∪ j′|)

(

MS

hω
Sj

,hω′
S
j′

−MD

hω
Sj

,hω′
S
j′

)2







≥ m − 2|jmax|
2B4






E

hω
Sj

,hω′
S
j′

∼Q2

(

MS

hω
Sj

,hω′
S
j′

−MD

hω
Sj

,hω′
S
j′

)2







≥ m− 2|jmax|
2B4

(

MS
Q2−MD

Q2

)2
.

Then: Pr
S∼Dm

(

m− 2|jmax|
2B4

(

MS
Q2 −MD

Q2

)2 ≤ ln

[

1

δ
E

S∼Dm
XP

])

≥ 1− δ.

We thus have to bound E
S∼Dm

XP . We considerMS\(Sj∪Sj′ )

hω
Sj

,hω′
S
j′

the empirical second moment of the margin

computed on the examples of the learning sampleS that are not in the compression sequenceSj. While

MS

hω
Sj

,hω′
S
j′

may contain some bias,MS\(Sj∪Sj′ )

hω
Sj

,hω′
S
j′

is an arithmetic mean of trulyi.i.d. (m − |j ∪ j′|)

random variables. We can also note that these two random variables have very close values. We have:

0 ≤ mMS

hω
Sj

,hω′
S
j′

− (m− |j ∪ j′|)MS\(Sj∪Sj′ )

hω
Sj

,hω′
S
j′

≤ B2|j ∪ j′|,
then:

−B
2|j∪j

′|≤−|j∪j
′|M

S\(Sj∪S
j′

)

hω
Sj

,hω′
S
j′

≤mMS

hω
Sj

,hω′
S
j′

−mM
S\(Sj∪S

j′
)

hω
Sj

,hω′
S
j′

≤|j∪j
′|−|j∪j

′|M
S\(Sj∪S

j′
)

hω
Sj

,hω′
S
j′

≤B
2|j∪j

′|,

thus:

∣

∣

∣

∣

∣

MS

hω
Sj

,hω′
S
j′

−MS\(Sj∪Sj′ )

hω
Sj

,hω′
S
j′

∣

∣

∣

∣

∣

≤ B2|j ∪ j′|
m

. (13)

Given two compression sequencesSj andSj′ , Let j̄ be the vector of indices that are not inj ∪ j′. Then:

E
S∼Dm

XP = E
S∼Dm

E
hω
Sj

,hω′
S
j′

∼P2
exp

(

mj∪j′
(

MS

hω
Sj

,hω′
S
j′

−MD

hω
Sj

,hω′
S
j′

)2
)

= E
j,j′∼P2

E
Sj,Sj′∼D|j|×D|j′|

E
ω,ω′∼PSj

×PS
j′

E
Sj̄∼Dm−|j∪j′|

exp
(

mj∪j′
(

MS

hω
Sj

,hω′
S
j′

−MD

hω
Sj

,hω′
S
j′

)2
)

.

For all j, j′ ∈ (Jm)2, Sj, Sj′ ∈ Z|j| ×Z|j′|, ω, ω′ ∈ (Ω′
Sj

× {+,−})× (Ω′
Sj′

× {+,−}), we have:

E
Sj̄∼Dm−|j∪j′|

exp
(

mj∪j′
(

MS

hω
Sj

,hω′
S
j′

−MD

hω
Sj

,hω′
S
j′

)2
)

= E
Sj̄∼Dm−|j∪j′|

exp
(

mj∪j′
(

MS

hω
Sj

,hω′
S
j′

−MSj̄

hω
Sj

,hω′
S
j′

+MSj̄

hω
Sj

,hω′
S
j′

−MD

hω
Sj

,hω′
S
j′

)2
)

≤ E
Sj̄∼Dm−|j∪j′|

exp

[

mj∪j′

(

[

MS

hω
Sj

,hω′
S
j′

−MSj̄

hω
Sj

,hω′
S
j′

]2

+ 2
∣

∣MS

hω
Sj

,hω′
S
j′

−MSj̄

hω
Sj

,hω′
S
j′

∣

∣

∣

∣MSj̄

hω
Sj

,hω′
S
j′

−MD

hω
Sj

,hω′
S
j′

∣

∣+
[

MSj̄

hω
Sj

,hω′
S
j′

−MD

hω
Sj

,hω′
S
j′

]2
)

]

.

From Equation (13), sinceexp(.) is increasing we obtain:

E
S∼Dm

XP ≤ E
Sj̄∼Dm−|j∪j′|

exp

[

mj∪j′

(

[

B2|j ∪ j′|
m

]2

+ 2
B2|j ∪ j′|

m
+
[

MSj̄

hω
Sj

,hω′
S
j′

−MD

hω
Sj

,hω′
S
j′

]2

)]

.
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Since we suppose that for allj we have|j| ≤ |jmax| ≤ m
2

, we can easily compute:

mj∪j′

(

[

|j∪j′|
m

]2
+ 2

|j∪j′|
m

)

≤ 2|jmax|
[

mj∪j′

(

|j∪j′|

m2 + 2
m

)]

≤ 2|jmax|

B2 .

Then:

E
S∼Dm

XP ≤ E
Sj̄∼Dm−|j∪j′|

exp

[

2|jmax|
B2

+mj∪j′
[

MSj̄

hω
Sj

,hω′
S
j′

−MD

hω
Sj

,hω′
S
j′

]2
]

≤ exp

[

2|jmax|
B2

]

E
Sj̄∼Dm−|j∪j′|

exp

[

mj∪j′
[

MSj̄

hω
Sj

,hω′
S
j′

−MD

hω
Sj

,hω′
S
j′

]2
]

≤ exp

[

2|jmax|
B2

]

E
Sj̄∼Dm−|j∪j′|

exp











2(m− |j ∪ j′|)











(1

2
−

MSj̄

hω
Sj

,hω′
S
j′

2B

)

−
(1

2
−

MD

hω
Sj

,hω′
S
j′

2B

)











2









.

We know2(a− b)2 ≤ kl(a‖b) is valid for anya, b ∈ [0, 1] provided that ifa = 0 then so isb and ifa = 1
then so isb. Since the elements ofHS areB-bounded andSj̄ is i.i.d. fromD, we have:

MD

hω
Sj

,hω′
S
j′

= −B2 ⇒ MSj̄

hω
Sj

,hω′
S
j′

= −B2, and MD

hω
Sj

,hω′
S
j′

= B2 ⇒ MSj̄

hω
Sj

,hω′
S
j′

= B2.

Then:
1

2
−

MD

hω
Sj

,hω′
S
j′

2B2
=0 ⇒ 1

2
−

MSj̄

hω
Sj

,hω′
S
j′

2B2
=0, and

1

2
−

MD

hω
Sj

,hω′
S
j′

2B2
=1 ⇒ 1

2
−

MSj̄

hω
Sj

,hω′
S
j′

2B2
=1.

Since:0 ≤ 1

2
−

MSj̄

hω
Sj

,hω′
S
j′

2B2
≤ 1, and 0 ≤ 1

2
−

MD

hω
Sj

,hω′
S
j′

2B2
≤ 1, we have:

E
S∼Dm

XP ≤ exp

[

2|jmax|
B2

]

E
Sj̄∼Dm−|j∪j′|

exp









(m− |j ∪ j′|) kl
(

1
2
−

M
S
j̄

hω
Sj

,hω′
S
j′

2B2

∥

∥

∥

∥

∥

1
2
−

MD

hω
Sj

,hω′
S
j′

2B2

)









.

By applying Maurer’s Lemma (Lemma 1), we obtain:

E
S∼Dm

XP ≤ exp

(

2|jmax|
B2

)

E
Sj̄∼Dm−|j∪j′|

2
√

(m− |j ∪ j′|) ≤ exp

(

2|jmax|
B2

)

2
√

(m− |j ∪ j′|)

≤ exp

(

2|jmax|
B2

)

2
√
m.

Finally: Pr
S∼Dm











for all P-aligned distributionQ onHS ,

|MD
Q2 −MS

Q2 | ≤
2B2

√

2|jmax|
B2

+ ln

(

2
√
m

δ

)

√

2(m− 2|jmax|)











≥ 1− δ


