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TEMPLATES OF TWO FOLIATED ATTRACTORS — LORENZ

AND CHEN SYSTEMS

M. Rosalie∗

Abstract. A chaotic attractor solution of the Lorenz system [1]

with foliated structure is topologically characterized. Its template

permits to both summarize the organization of its periodic orbits

and detail the topology of the solution as a branched manifold. A

template of an attractor solution of the Chen system [2] with a sim-

ilar foliated structure is also established.

Keywords. Chaotic attractor, topological characterization, tem-

plate

1 Introduction

The Lorenz system has been introduced with a set of pa-
rameters [1] for which the solution is a chaotic attrac-
tor. The topology of this solution has been established
by Birman & Williams [3] considering the periodic orbits
of the solution as knots evolving in a branched manifold,
currently called template. From experimental or numeri-
cal data, the idea of using periodic orbits to characterize
chaotic attractors comes from Auerbach et al. [4] and
has been developed since [5]. This topological analysis
of a chaotic attractor permits to obtain a template that
synthesises the relative organisation of its periodic orbits.

In 2003, Tsankov & Gilmore [6] introduced the theory
of toroidal boundary of a chaotic attractor as a way to
organize the branched manifold of the attractor as tem-
plate do for periodic orbits. In their second paper [7]
they explained how the Lorenz template can be rewritten
in order to fit its genus-3 toroidal boundary. Recently, the
general method has been extended in order to obtain the
template of chaotic attractors bounded by higher genus
torus [8]. Using this method, the topological character-
ization of two foliated attractors is performed, one is a
solution of the Lorenz system, and the other attractor is
solution of the Chen system [2] with more foliations.

This paper is organized as follows. Firstly, the template
of a foliated attractor solution of the Lorenz system is
obtained. Secondly, the topological analysis is performed
on an attractor solution of the Chen system.
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et INSA de Rouen Campus Universitaire du Madrillet 76800 Saint
Etienne du Rouvray, France. E-mail: martin.rosalie@coria.fr

2 A foliated attractor solution of

the Lorenz system

The procedure of topological characterisation of attrac-
tors is presented for a solution of the Sprott system [9].
Recently [8], it is also presented and applied on an attrac-
tor solution of the Rössler system [10] and of the Lorenz
system [1]. To remind the major steps of this procedure,
firstly we summarize the topological characterization of a
Rössler attractor, already studied by Letellier et al. [11].
Secondly, the topological characterization of a foliated at-
tractor solution of the Lorenz system is detailed.

2.1 Topological characterisation of a

Rössler attractor

First, using the toroidal boundary theory [6], the bound-
ing torus of the solution is established and gives the struc-
ture of the Poincaré section. This attractor is bounded by
a genus-1 torus, thus a one component Poincaré section
is required to analyse the dynamics of the solution by a
discretization of trajectories. Secondly, a unique variable
is build to represent the section from which a first return
map is built and reveals an unimodal shape. Periodic
points of this map are used to identify orbits. Also from
this unimodal map, a symbolic dynamic is constructed in
order to obtain a partition of the map where trajectories
have the same behaviour over a period. Finally, the link-
ing numbers between pair of orbits are computed and a
template is proposed to summarized the relative organi-
zation of these orbits by providing the theoretical linking
number (see [11, 8] for details).

2.2 Topological characterisation of a

Lorenz attractor

Poincaré section and return map For the set of pa-
rameters R = 192, β = 8

3
and σ = 10, the solution of Lorenz

system ⎧⎪⎪⎪⎨⎪⎪⎪⎩
ẋ = σ(y − x)
ẏ = Rx − y − xz
ż = −βz + xy ,

(1)

is a chaotic attractor denoted L (Fig. 1). This system (1)
is symmetric by rotation and has three singular points
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Figure 1: Chaotic attractor L solution of the Lorenz sys-
tem (1) for the parameters R = 192, β = 8

3
and σ = 10.

that structure the phase space: the origin and two sym-
metric singular points S+ and S− that are respectively a
saddle point and two symmetric foci.L is bounded by a genus-3 torus with aligned holes,
as singular points are. The theory of toroidal bound-
ary introduced by Tsankov & Gilmore [6] indicates that
a two components Poincaré section is required to get a
discretization of trajectories. As previously done for this
system [8], a Poincaré section is defined using two sym-
metric components

P ≡ A ∪B ≡ {(yn, zn) ∈ R2 ∣xn = x+, ẋn < 0}
∪{(yn, zn) ∈ R2 ∣xn = x−, ẋn > 0} , (2)

where the x+ and x− are the x coordinate of the singular
points S− and S+. Fig. 2a is a representation of L in the
projection (x, y) with the Poincaré section (2) where the
flow evolves clockwise around the foci. We remain that
the origin is a saddle point, thus it ensures that a genus-
3 torus bound the attractor. This projection emphasises
the rotational symmetry of the system onto the flow and
the Poincaré section. In order to use the rules about par-
titioning a first return map with distinguishing increasing
and decreasing branches [11], we choose to build a unique
variable to represent the Poincaré section with yn as al-
ready done for the other attractor of the Lorenz system
even if it is not in bijection with the flow (Fig. 2b).
The use of a first return map built on a unique variable

from the inside to the outside permits to distinguish parts
of a chaotic attractor where trajectories have the same
behaviour. Thus, ρn is built to represent the nth passage
through the Poincaré section

ρn = 1A ⋅ ρA,n + 1B ⋅ (1 + ρB,n) (3)

where ρA,n and ρB,n are normalised in ]0; 1[ and represent
a component from the inside to the outside of the flow for
each focus [8]; the indicator function of a component is a
value, it is 1 if the trajectory is in the component and 0
else.
Fig. 3a is the return map on ρn to the Poincaré section

(2). A partition of the return map, and also a partition

(a) Attractor L.

(b) Cross section of the flow with the A component.

Figure 2: (a) Attractor L with a two components Poincaré
section (2). (b) Cross section of the flow with the A com-
ponent of the Poincaré section (2) that is symmetric to
the B component.

of the Poincaré section, permits to distinguish periodic
points that represent a portion of trajectories that will
have the same behaviour until the next Poincaré section
component. For a component, there are five points where
the slope of the application changes, three of them are
non differentiable points as displayed Fig. 3b. The two
other points are the extrema of the two unimodal parts
of the application in a component (Fig. 3b). These ten
points, five for each component, are chosen to split the
first return map. Thus, six branches with monotonous
slope are distinguished on each component. We chose to
label them with symbols 0, 2, 3, 4, 5 and 6 for the compo-
nent A and 0, 2, 3, 4, 5 and 6 for the component B. We
intentionally do not make any distinction between the two
increasing parts of the branch 0, or 2 for the A compo-
nent, respectively 0 and 2 of B because the left and right
parts of such branches are increasing and there is a differ-
entiable point that indicates a continuity between these
two parts. These parts are the consequence of the projec-
tion choice that repeats twice the same branch of the first
return map. We consider that two consecutive increasing
branches are in fact only one increasing branch. This is
due to the variable chosen to represent the Poincaré sec-
tion. In the case of unimodal return map, the natural
order [12] permits to organize periodic points. Thus, we
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consider that the two branches are a unique branch for
which the natural order reorganizes its periodic points.

(a) First return map

(b) Detail of the first return map

Figure 3: (a) First return map to ρn that represents the
Poincaré section (2). (b) Details of component A.

From the return map, we can extract a transition ma-
trix T between symbols that details which transitions are
allowed for a given sequence of symbols

T =

0
2
3
4
5
6
0
2
3
4
5
6

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1 1 1 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1 1 0 0
0 0 0 0 0 0 0 1 1 1 1 1
0 0 0 0 0 0 1 0 1 1 1 1
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0 0 1 0 0
0 1 1 1 0 0 0 0 0 0 0 0
0 1 1 1 1 1 0 0 0 0 0 0
1 0 1 1 1 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (4)

For instance, this transition matrix between symbols in-
dicates that a sequence that contains symbol 2 must be
followed by a symbol 4. Due to the non bijection of ρn
with the flow, this transition matrix is exhaustive because
it might allow transitions that do not occur.

Orbits and template To extract periodic orbits, a
Poincaré section and a trajectory from any initial con-
ditions in the basin of attraction of the attractor are suf-
ficient because periodic orbits are dense in the solution.
The method consists in looking for points in the section
that the trajectory will reach after n passages through
the Poincaré section. This method also works in the first
return map and directly permits to give a symbol to each
periodic point of the orbits extracted. Fourteen orbits of
period lower than six have been extracted from L. Orbits
are considered as knots and we compute pair by pair their
linking numbers in order to obtain a numerical invariant
that is an integer (Tab. 1). All orbits extracted are sym-
metric, except (40035) for which it symmetric orbit exists
but was unsuccessfully detected in our numerical data.

A template is validated when the linking numbers theo-
retically computed correspond to those numerically com-
puted [5, 15]. In order to have periodic orbits with sym-
bols 2 and 2, we also compute linking numbers between
higher periodic orbits

lk(45032450334532,3324504533) = 24 , (5)

lk(45032450334532,450453333332) = 30 . (6)

Up to this point, the parity of twists that occur over each
strip of the template is given by the parity of the asso-
ciated symbol. The second point is that there is only
positive linking numbers. In the paper [13], a first return
map of another Lorenz attractor looks like the return map
built on L with only three branches for each component;
the template of this attractor is given. Using the termi-
nology of mixers [8], we can rewrite this template with
two identical mixers defined by the linking matrix

∣ 0 0 0

[0 1 0
0 0 0

MQQQQQO
. (7)

For the attractor L, the first-return map reveals that
there are couples of branches (3,4), (5,6), (3,4) and(5,6) with unimodal shapes that means their associated
strips stretch, fold and squeeze. This first-return map also
reveals three non differentiable points meaning that there
are three tearing mechanisms occurring to separate the
flow after each component. Compared with the template
whose linking matrix is (7), there is after each component
a tearing chart and a stretching and folding mechanism.
We suppose that a tearing mechanism occurs before this
first tearing. Thus, we obtain three tearing mechanisms
and two stretching and folding mechanisms as the return
map shows. It implies that all the mechanisms of (7) are
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Table 1: Linking numbers between pairs of periodic orbits of the attractor L.
(54) (45) (33) (650) (506) (5334) (4533) (60334) (50334) (50454) (46035) (46033) (45033)

(45) 1

(33) 1 1

(650) 1 1 1

(506) 1 1 1 1

(5334) 1 2 2 2 2

(4533) 2 1 2 2 2 4

(60334) 1 2 2 2 2 3 4

(50334) 1 2 2 2 2 3 4 3

(50454) 1 2 2 2 2 3 4 3 3

(46035) 2 1 2 2 2 4 3 4 4 4

(46033) 2 1 2 2 2 4 3 4 4 4 3

(45033) 2 1 2 2 2 4 3 4 4 4 3 3

(45045) 2 1 2 2 2 4 3 4 4 4 3 3 3

repeated twice for the mixer of each component. To ex-
plain the fact that mechanisms are doubled, we suppose
that the squeezing mechanism that unified the strips does
not occur entirely. Consequently, at the end of the mixer,
there are two distinguishable strips that will undergo the
mechanisms of (7). To overcome the fact that strips do
not entirely squeeze and are still one over the other, we
propose to use the convention of standard insertion [5]
that gives that upper strips are located to the leftest side
and lower strips are on the rightest side. As a conse-
quence, at the end of the mixer, the tearing mechanism
separates the flow in order to organize the strips with this
convention.
Finally, Fig. 4 is proposed as the template of L. In this

template, the squeezing mechanism of each mixer consid-
ers that all strips are unified in a branch line, but there-
after the tearing mechanism reorganizes parts of strips
that not squeeze according to the standard convention.
Consequently, the linking matrices of this proposed tem-
plate (Fig. 4) are

MA =
0
2
3
4
5
6

∣ 0 0 0 0 0 0

∣ 0 0 0 0 0 0

[0 0 1 0 1 0
0 0 0 0 1 0

[0 0 1 1 1 0
0 0 0 0 0 0

MQQQQQQQQQQQQO

0
2
3
4
5
6

MB =
0
2
3
4
5
6

∣ 0 0 0 0 0 0

∣ 0 0 0 0 0 0

[0 0 1 0 1 0
0 0 0 0 1 0

[0 0 1 1 1 0
0 0 0 0 0 0

MQQQQQQQQQQQQO

0
2
3
4
5
6

.

(8)

The cross-section Fig. 2b illustrates the end of the
mixer after the squeezing and before the tearing, it corre-

sponds to the structure of the proposed template. With
the method introduced by Le Sceller et al. [14], and ex-
tended in [8], all linking numbers computed theoretically
correspond to those computed numerically. In appendix
A, the theoretical computation of the linking number of
(6) is detailed. These calculations permit to ensure the
validity [15] of the template of L (Fig. 4). The template
proposed permits to compute all linking numbers between
pairs of orbits but it also contains a subtemplate that is
a more precise description of this attractor. Up to this
point we obtain a template of another attractor with a
foliated structure that is a solution of the Lorenz system.

3 A foliated attractor solution of

the Chen system

Introduced by Chen & Ueta [2] the system

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ẋ = a(y − x)
ẏ = (c − a)x + cy − xz
ż = −bz + xy ,

(9)

of three differential equations can exhibit a chaotic at-
tractor as a solution. This system is a Lorenz-like system
because of its equations; see Tab. II of [13] for relations
between various symmetric systems with same quadratic
terms. For the set of parameters a = 35, b = 3 and
c = 28, this system has an attractor solution denoted C
(Fig. 5). There are three singular points, O the origin,
S+ = (3√7,3√7,21) and S− = (−3√7,−3√7,21); their
respective eigenvalues

ΛO =
RRRRRRRRRRRRRRRR

− 23.8
− 30.8
− 3

,ΛS+ = ΛS− =
RRRRRRRRRRRRRRRR

− 18.43
− 4.21 + 14.88i
− 4.21 − 14.88i

(10)
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Figure 4: Template of the attractor L with the two mixers MA and MB .

give that the origin is a saddle point and that the sym-
metric singular points are foci.

Figure 5: Chaotic attractor C solution of the Chen system
(9) for the parameters a = 35, b = 3 and c = 28.
In the (x, y) plan projection, the flow of C evolves clock-

wise around the foci (Fig. 6a). C is bounded by a genus-3
torus. According to the toroidal boundary theory [6] the
Poincaré section is made of two components

Q ≡ A ∪B ≡ {(yn, zn) ∈ R2 ∣xn = 7, ẋn < 0}
∪{(yn, zn) ∈ R2 ∣xn = −7, ẋn > 0} , (11)

The cross-section of the attractor C is similar to the
cross-section of the attractor L with more foliations; it
seems that there are four strips. ρn is built as previously
to obtain a variable that represents the Poincaré section
(11) from the inside to the outside. A first-return map to
this Poincar section is built (Fig. 7).
Again, the same structure appears with the foliation in

the first-return map. As previously done for the attractor
L, a partition is made and symbols are associated to each

(a) Attractor C.

(b) Cross section of the flow with the A component.

Figure 6: (a) Attractor C with a two components Poincaré
section (11). (b) Cross section of the flow with the A

component of the Poincaré section (11) that is symmetric
to the B component.



M. Rosalie

(a) First return map

(b) Detail of the first return map

Figure 7: (a) First return map to ρn that represents the
Poincaré section (11). (b) Details of component A.

distinguishable branches 0, 2, 4, 5, 6, 7, 8, 9, 10 and 11
for the component A and respectively the same symbols
with an overline for the component B. As previously
done for branch 0 for the return map of L, the branch
5 is a double decreasing branch considered as a unique
decreasing branch, the same applies for branch 6. Thus,
the structure is similar with more foliations.
From this first-return map, several periodic orbits are

extracted and, pair by pair, their linking numbers are
numerically computed (Tab. 2). In order to obtain in-
formations on strips with missing symbols we compute
numerically linking numbers between hight periodic or-
bits, for instance

lk(6668115664,6556672) = 6 , (12)

lk(6556672,6556682) = 6 , (13)

lk(6896676676,6668115664) = 9 . (14)

Table 2: Linking numbers between pairs of periodic orbits
of the attractor C.

(65) (55) (56) (6896) (6756) (6689) (6675) (6555)

(55) 1

(56) 1 1

(6896) 1 1 1

(6756) 1 1 1 2

(6689) 1 1 1 2 2

(6675) 1 1 1 2 2 2

(6555) 1 2 2 2 2 2 2

(5556) 2 2 1 2 2 2 2 4

To propose the template Fig. 8 of C, we use the same
chaotic mechanism of stretching and folding repeated four
times. The foliated structure of these chaotic mechanisms
is translated in the mixer where the structure of (8) is also
repeated to obtain the linking matrices

NA =

0
2
4
5
6
7
8
9
10
11

∣ 0 0 0 0 0 0 0 0 0 0

∣ 0 0 0 0 0 0 0 0 0 0

∣ 0 0 0 0 0 0 0 0 0 0

[0 0 0 1 0 1 0 1 0 1
0 0 0 0 0 1 0 1 0 1

[0 0 0 1 1 1 0 1 0 1
0 0 0 0 0 0 0 1 0 1

[0 0 0 1 1 1 1 1 0 1
0 0 0 0 0 0 0 0 0 1

∣ 0 0 0 1 1 1 1 1 1 1

MQQQQQQQQQQQQQQQQQQQQQQO

0
2
4
5
6
7
8
9
10
11

NB =

0
2
4
5
6
7
8
9
10
11

∣ 0 0 0 0 0 0 0 0 0 0

∣ 0 0 0 0 0 0 0 0 0 0

∣ 0 0 0 0 0 0 0 0 0 0

[0 0 0 1 0 1 0 1 0 1
0 0 0 0 0 1 0 1 0 1

[0 0 0 1 1 1 0 1 0 1
0 0 0 0 0 0 0 1 0 1

[0 0 0 1 1 1 1 1 0 1
0 0 0 0 0 0 0 0 0 1

∣ 0 0 0 1 1 1 1 1 1 1

MQQQQQQQQQQQQQQQQQQQQQQO

0
2
4
5
6
7
8
9
10
11

.

(15)

that algebraically describe the proposed template of the
attractor C. To validate this template, we also com-
pute theoretically linking numbers using the procedure
detailed in appendix A for the attractor L. All the theo-
retical linking numbers computed correspond with those
numerically computed, thus the template (Fig. 8) is vali-
dated.

4 Conclusion

This paper is the topological characterization of two fo-
liated attractors solution of two systems of differential
equations of different kind. Their templates give the
relative organization of their periodic orbits, more pre-
cisely, from their linking matrices that algebraically de-
scribe these templates, it is possible to obtain the linking
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Figure 8: Template of the attractor C.

number between two orbits of these solutions. These at-
tractors are symmetric, then their linking matrices are
identical for each symmetric part. These attractors have
a foliated structure that is visible in their linking matrix
with the repetition of a pattern. This pattern reminds the
work on the Rössler system when a parameter is varied.
In fact, this variation adds strips rolled up in the chaotic
mechanism with a spiraling process; the explicit linking
matrix with a pattern is given Eq. (12) of [11]. Here we
face a similar structure between these two systems that
have a solution with foliations. The attractor of the Chen
system is more foliated and consequently it exhibits more
complicated dynamics. On the other hand, the attrac-
tor of the Lorenz system contains only two foliations that
enable us to establish these templates.

A Example of theoretical compu-

tation of a linking number

The method used consists in numerically computing link-
ing numbers and finding a template that can predict the-
oretically these linking numbers. Numerically, the linking
number between two orbits of L is computed (Fig. 10)

lk(45032450334532,450453333332) = 30 . (16)

In this section, we present the details of the theoretical
computation of this linking number.

The first step is to distinguish periodic points that rep-
resent trajectory in mixer MA from mixer MB . Only the
first three symbols of a periodic point are used to label
it. The second step is to organize periodic points in strips

using the unimodal order, or natural order [12].

MA MB

033 032 ⊲ 045
245 245 ⊲ 245

345 ⊲ 332 ⊲ 333 ⊲ 333 ⊲ 324 333 ⊲ 333 ⊲ 334 ⊲ 324 ⊲ 324
453 ⊲ 450 ⊲ 450 453 ⊲ 450

532 ⊲ 503 533 ⊲ 504 ⊲ 503
(17)

Then, we use formula given by Le Sceller et al. [14] for
two orbits O and O′, respectively of period p and p′, with
σi is the ith symbol

lk(O,O′) = 1

2

⎛
⎝

p

∑
i=1

p′

∑
j=1

L(σi, σj) +Njoining(O,O′)⎞⎠ . (18)

L are the crossings due to mixers (except from the in-
sertion mechanism) and Njoining are the crossings due to
the insertion mechanism. There are two joining charts,
one for each mixer. The initial procedure introduce by Le
Sceller does not consider that periodic points can come
from various Poincaré section components; we adapt the
procedure with the following rules. First, the periodic
points are ordered with the strip order at the beginning of
the mixer. Then, torsions and permutations are applied.
Finally, the shift is operated. Positive crossings occur if
there are permutations between the two final ordered set
of periodic points. These crossings are underlined with
the circles of Fig. 9 (Njoining); crossings between the two
orbits and not self crossing.
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(a) Njoining(MA) = 7

(b) Njoining(MB) = 18
Figure 9: Joining charts indicating the number of positive crossing that occur at the end of mixers MA and MB .

Thus, we can theoretically compute the linking number

lk(45032450334532,450453333332)= 1
2
(3MA(0,3) + 2MA(0,4) + 3MA(2,3) + 2MA(2,4)+8MA(3,3) + 5MA(3,4) + 6MA(3,5) + 2MA(4,4)+4MA(4,5) +MB(0,0) + 2MB(0,2) + 5MB(0,3)+2MB(0,4) + 3MB(0,5) +MB(2,2) + 5MB(2,3)+2MB(2,4) + 3MB(2,5) + 6MB(3,3) + 6MB(3,4)+7M(3,5) + 4MB(4,5) + 2MB(5,5)+ Njoining(MA) +Njoining(MB))= 1

2
(35 + 7 + 18) = 30 ,

(19)
that corresponds to the numerical linking number.

Figure 10: (Color online) Numerical oriented crossings
computed in the plane (x, y) giving the linking number
lk(45032450334532,450453333332) = 1

2
(68 − 8) = 30.
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