
HAL Id: hal-01009490
https://hal.science/hal-01009490v1

Submitted on 14 Sep 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The role of dissipation in flexural wave turbulence: from
experimental spectrum to Kolmogorov-Zakharov

spectrum
Benjamin Miquel, Alexandros Alexakis, Nicolas Mordant

To cite this version:
Benjamin Miquel, Alexandros Alexakis, Nicolas Mordant. The role of dissipation in flexural wave
turbulence: from experimental spectrum to Kolmogorov-Zakharov spectrum. Physical Review E :
Statistical, Nonlinear, and Soft Matter Physics, 2014, 89, pp.062925. �10.1103/PhysRevE.89.062925�.
�hal-01009490�

https://hal.science/hal-01009490v1
https://hal.archives-ouvertes.fr


ar
X

iv
:1

40
5.

34
06

v1
  [

nl
in

.C
D

] 
 1

4 
M

ay
 2

01
4

The role of dissipation in flexural wave turbulence: from experimental spectrum to

Kolmogorov-Zakharov spectrum.

Benjamin Miquel, Alexandros Alexakis
Laboratoire de Physique Statistique, Ecole Normale Supérieure,
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The Weak Turbulence Theory has been applied to waves in thin elastic plates obeying the Föppl-
Von Kármán dynamical equations. Subsequent experiments have shown a strong discrepancy be-
tween the theoretical predictions and the measurements. Both the dynamical equations and the
Weak Turbulence Theory treatment require some restrictive hypotheses. Here a direct numeri-
cal simulation of the Föppl-Von Kármán equations is performed and reproduces qualitatively and
quantitatively the experimental results when the experimentally measured damping rate of waves
γk = a + bk2 is used. This confirms that the Föppl-Von Kármán equations are a valid theoretical
framework to describe our experiments. When we progressively tune the dissipation so that to lo-
calize it at the smallest scales, we observe a gradual transition between the experimental spectrum
and the Kolmogorov-Zakharov prediction. Thus it is shown dissipation has a major influence on the
scaling properties stationary solutions of weakly non linear wave turbulence.

PACS numbers: 46.40.-f,62.30.+d,05.45.-a

I. INTRODUCTION

A. The spirit of Weak Turbulence Theory

The Weak Turbulence Theory (WTT) is, in its sim-
plest version, a statistical description of the evolution of
large ensembles of weakly non-linear dispersive waves.
The scope of WTT is very large: gravity and capillary
surface waves, sound waves, Alfven waves, plasma waves,
internal waves, nonlinear optics, Bose-Einstein conden-
sates [1–3]. The object of this article is the case of flexural
waves in a thin elastic plate. When energy sources and
sinks are clearly separated in spectral space, the system
is expected to exhibit a Richardson-like energy cascade:
energy is transferred conservatively among scales. This
energy transfer generates a continuous spectrum, often
referred to as the Kolmogorov-Zakharov (KZ) spectrum
and whose analytical expression is derived by using a
multi-scale method [1–3].

Due to the possibility of spatially extended measure-
ments, the case of waves in an elastic plate is a valuable
candidate to test WTT in details. So far, the theoretical
predictions obtained by Düring et al. [4] remained elusive
in experiments [5, 6]. In this article we report the results
of numerical simulations of such wave turbulence in thin
elastic plates. The purpose of this work is twofold. First
we simulate the Foppl-von Kármán dynamical equations
with realistic physical parameters in order to allow for
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a direct comparison with experiments. In this way, we
expect to confirm that the properties of wave turbulence
observed in our experiments is indeed embedded in the
framework of these equations and do not require addi-
tional physics. In a second step we use the versatility of
the numerical simulation to gradually decrease the dis-
sipation in order to localize it at the smallest scales. In
this way we fulfill the requirements of the WTT and thus
expect our results to be in agreement with the theoretical
predictions of Düring et al. [4]. This will point out the
role of dissipation in the observed data.

B. Thin plates dynamical equations

In order to derive a simple equation for flexion waves
in an elastic plate, several hypotheses are typically made.
We consider a thin elastic sheet whose thickness h is small
compared to its size Lx and Ly in the two other direc-
tions x and y. The plate is supposed to be flat at rest
so that a point in the plate is labelled with its 2D carte-
sian coordinates r = (x, y). The motion of the plate
is characterized by the field of normal deformation de-
noted ζ(r, t): in-plane displacements and in-plane inertia
are neglected. The derivation of the dynamical equa-
tion requires the displacement ζ to remain of the order
of magnitude of the thickness of the plate h. Further-
more the slope should remain small: |∇ζ| << 1. The
strain in the plate is supposed to remain small as well
so that the linear bulk elasticity relations between strain
and deformation hold [7–9].

These hypotheses lead to the dynamical Föppl-Von
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Kármán (FVK) equations:

∂ttζ = −
Eh2

12ρ(1− σ2)
∆2ζ +

1

ρ
{ζ, χ} (1)

∆2χ = −
E

2ρ
{ζ, ζ} (2)

where the physical properties of the material are de-
scribed by the following coefficients: Young’s modulus
E, Poisson’s ratio σ, the density ρ. The brackets {·, ·}
denote the bilinear differential operator

{ζ, χ} = ∂xxζ∂yyχ+ ∂yyζ∂xxχ− 2∂xyζ∂xyχ . (3)

The linear part of the wave equation provides the disper-
sion relation for vanishingly small wave amplitudes that

are only due to flexion: ω = ck2 with c =
√

Eh2

12ρ(1−σ2) .

For finite amplitudes, the stretching due to the defor-
mations is no longer negligible: the Gaussian curvature
{ζ, ζ} acts as a source term for the Airy stress function
χ, yielding a cubic nonlinear term {ζ, χ} = O(ζ3). The
Fourier transform of equation (2) yields:

∂ttζ̃k = −ω2
kζ̃k −

∫

d6k123δ123(k)V
0
123 ζ̃k1

ζ̃k2
ζ̃k3

. (4)

In this equation, we use the following conventions for the
direct and inverse Fourier transform ζ̃k =

∫

d2rζ(r)e−jk·r

and ζ(r) = (2π)−2
∫

d2kζ̃k(r)e
jk·r, we use the shorthand

notation δ123(k) = δ(k− k1 − k2 − k3), and the kernel
yields

V 0
123 =

E

2ρ(2π)4
|k× k1|

2 |k2 × k3|
2

|k1 − k|4
. (5)

The different Fourier modes are independent in the lin-
ear approximation but are coupled when the cubic term
comes into play. Despite the apparent complexity of
equation (4) some statistical properties of this deforma-
tion field are obtained analytically by the Wave Turbu-
lence Theory for small amplitudes, as described in the
following section.

C. WTT formalism applied to the FVK equations

Following Düring et al. [4], we present the hypotheses
assumed by WTT to derive the stationary spectrum of
solutions of FVK equations.

1. Hypotheses

Wave Turbulence Theory aims at describing homo-
geneous systems for weak non linearities for which en-
ergy exchanges occur only between resonant sets of wave-
trains. For these resonances conditions to be easily full-
filled, the limit of an infinite system L → ∞ is consid-
ered in the derivation of the WTT equations. Physically,

this hypothesis requires finite-size systems to have a high
modal density: hence, the frequency difference between
adjacent modes is overwhelmed by the nonlinear broad-
ening. Forcing and dissipation are generally considered
for out-of-equilibrium cases. WTT demands that forcing
and dissipation are well separated in Fourier space: in
the canonical configuration, forcing acts at large scales
corresponding to wavevectors below a given limit kF ,
whereas dissipation is effective at small scales above some
kd >> kF cutoff wavenumber. In this manner, a range
of wavenumbers delimited by kF and kd (called the in-
ertial range, or the transparency window) exists where
both forcing and dissipation can be neglected and where
energy is conservatively transferred. Hence, the energy
flux φ through the scales is constant. The limit of small
wave amplitude is required and has the following con-
sequence: energy exchanges are dominated by resonant
waves that involve the smallest number of waves, i.e. 4-
waves resonances in our case. In this way, the modulation
of the wavefield induced by the nonlinear interactions is
slow compared to the period of the waves. This scale
separation allows for a multi scale analysis.

2. Kolmogorov-Zakharov spectrum for plates

The so-called Zakharov solution is the stationary spec-
trum that is built by an energy flux φ (which has the
dimension of mass/time3) that flows through the system
in the out-of-equilibrium case. We denote E(2D)(k) =

1
L2

〈

∣

∣

∣
∂tζ̃k

∣

∣

∣

2
〉

the power spectrum density of the normal

velocity v = ∂tζ statistically averaged over realisations
and time. For this quantity which has the dimension of
length4/time2, the Zakharov solution yields [4]:

E
(2D)
KZ (k) = Cφ1/3 ln1/3 (k∗/k) (6)

where the dimensional factor C is expressed as a func-
tion of the plate properties h, σ, the dispersion relation
coefficient c, and a pure number C0:

C = C0
ch

ρ1/3(1− σ2)2/3
. (7)

Isotropy is assumed in the system, so that integrated over
angles spectrum E1D(k) =

∫

E(2D)(k)kdθ and frequency
spectra E(ω) are considered. These spectra have the di-
mension of length3/time2 and length2/time, respectively,
and read for the Zakharov solution:

E
(1D)
KZ (k) = 2πCφ1/3k ln1/3 (k∗/k) (8)

EKZ(ω) =
πC

c
φ1/3 ln1/3 (ω∗/ω) . (9)

One usually looks for power law solutions for this spec-
trum, thus the presence of the logarithmic term is un-
usual. The following argument accounts for the presence
of this correction: when looking for power law solutions
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E
(2D)
KZ (k) ∝ ka, one finds that the exponent a is degen-

erated between the out-of-equilibrium case and the zero-
flux equilibrium situation, with the common value a = 0.
This degeneracy is raised by introducing a logarithmic
correction [4]. The cutoff wavenumber k∗ and frequency
ω∗ can be related to dissipative phenomenon and plays
the role of an UV cut-off [2].

D. Article overview

As we recall in section III, the experimental observa-

tions suggest that E
(1D)
exp ∝ φ1/2k−0.2 which is steeper

than the prediction (8). The origin of this discrepancy
remains unclear. In this article, we present some nu-
merical integration of the FVK equations described in
section II together with a description of the experiments.
We present in section III a comparison between our ex-
periments and our numerical simulations performed with
realistic parameters (dissipation, size, etc.). We show in
section IV the spectra obtained by numerical simulation
when dissipation is localized above some cutoff wavenum-
ber, a situation consistent with the hypotheses of the
theory.

II. DESCRIPTION OF EXPERIMENTS

A. Experimental configuration

a. Setup: The experimental setup is similar to the
one used in [10] (fig. 1). A stainless steel plate of dimen-
sions (2m × 1m × 0.4mm) hangs under its own weight.
The upper side is clamped and the three other edges
move freely. An electromagnetic shaker fixed 40 cm above
the bottom of the plate acts as a point source of waves.
The deformation field is measured by using a profilome-
try technique developped by Cobelli et al. [11]: a black
and white sinusoidal grayscale pattern is projected on a
large portion of the plate. The normal deformation of
the plate yields some distortion of the pattern, that we
record using an high-speed camera Photron SA1. The
movie of the pattern distortion is demodulated into the
movie of the displacement field. The frame rate is chosen
between 5000 and 10000 frames per second depending of
the magnitude of the forcing.
b. Modus Operandi: After starting the vibration of

the shaker, the study of the build-up transient regime
reveals that the plate reaches a statistically stationary
state after a delay of a few seconds. The deformation of
the plate is then recorded during the stationary regime
for a couple of seconds and this experiment is repeated
so that ensemble averaging are computed during data
processing. The decaying regime is recorded in a similar
way by stopping the forcing after the stationary regime
has been reached. The influence of forcing amplitude is
investigated by tuning the forcing amplitude so that the

shaker

video
projector

camera

L

D

FIG. 1: Schematics of the experimental setup. A 0.4 mm
thick, 2 m×1 m stainless steel plate is held vertical. Vibra-
tions are excited by an electromagnetic shaker. Measurement
of the deformation of the plate is achieved by projecting a
grayscale pattern which deformation is recorded by a high
speed camera [11].

ratio between strongest and weakest injected power is
equal to 207; the forcing frequency is f0 = 30 Hz.
c. Comparison with thin plates hypothesis: The de-

formation of the plate driven by the shaker is of the same
order of magnitude as its thickness for most of the wave-
lengths. However, some very large wavelength modes
with amplitude greater than the thickness of the plate
are observed. The large wavelength of these modes en-
sures yet that the slope remains small (rms value is of
order of magnitude 0.05).
d. Comparison with WTT hypothesis: Estimates of

the damping time Td [10, 12, 13] in plate reveal that dis-
sipation exists at any scale and is not localized above
some cutoff wavenumber, although there is no agreement
on the analytic form of the damping coefficient. The
experimental damping time for energy Td is measured
in [10] for wavenumbers ranging from 6π m−1 to 60π
m−1. Over this range, Td is well approximated by a
Lorentzian law [10]:

Td(k) = (a+ bk2)−1 (10)

with a = 0.73 s−1 and b = 6.3 × 10−4 m2s−1. Another
difference with the WTT statements lies in the inho-
mogeneity of the force, that causes an inhomogeneity
of the wavefield. The other features of the system are
true to the spirit of wave turbulence. The frequency
quantization due to the finite size of the system dis-
appears as the modes are broadened by the nonlinear-
ities so that the system behaves as an infinite system.
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Boundaries account for dissipationless reflexions. Finally,
the double time-scale separation is preserved in our sys-
tem: waves oscillate rapidly compared to their energy ex-
change, which is itself rapid compared to dissipation [14].

B. Numerical simulation of the Föppl-Von Karman

equations

1. Equation and algorithm description

A forcing term Fk(t) and a linear dissipative term

−γk∂tζ̃k are added to eq. (4) so that their impact on
the shape of the spectrum are investigated:

∂ttζ̃k = −c2k4ζ̃k − γk∂tζ̃k + Fk(t) +Nk

({

ζ̃
})

, (11)

where Nk denotes the nonlinear term of eq. (4). The
integration of equation (11) is performed in a T2 square
(periodic in both directions) with an second order Runge-
Kutta scheme and a pseudospectral method: the linear
part is analytically propagated in Fourier space as the
nonlinear part is evaluated in real space. The fields ζ, ∂tζ
and χ are dealiased with a 2/3 factor. The resolution is
set between 1922 and 7682. The ratio between the largest
and the smallest scales involved in the dynamics of a real
plate does not exceed 100 for usual forcing amplitude, so
that the dynamics of a real plate is reproduced faithfully
with a resolution of 3842. As in experiments, the velocity
and deformation fields are recorded to allow further data
processing.

2. Numerical parameters

The dispersion relation coefficient c is set for all the
simulations to a common value c = 0.64m.s−1 previously
measured in experiments.
a. Forcing: Each mode labelled by its wavevector k

is forced resonantly at its linear eigenfrequency ωk, with
a phase φk chosen randomly at the initial time and kept
constant at later times. The magnitude of the forcing
follows a Gaussian law peaked around some low but finite
wavenumber kf = 5πm−1 with a width σk = 2πm−1 or
4πm−1. The phase ψk of the mode is chosen randomly
with the constraint ψk = ψ∗

−k. This yields:

Fk(t) = F0e
jψk exp

(

−
(|k| − kf )

2

2σ2
k

)

cos (ωkt+ φk)

(12)
b. Dissipation: The role of dissipation is investi-

gated by incorporating different damping rates γk in
equation (11). A first set of simulations (SEXP ) uses
realistic parameters to mimic the plate. Hence we use
the damping rate measured in [10]:

γEXP
k = a+ bk2 (13)

In the second set of simulations, the dissipation is grad-
ually filtered out using a band-rejecter filter Wα(k):

Γα(k) =Wα(k)γ
EXP
k (14)

The band rejecter Wα is characterized by its low and
high cutoff wavenumbers kl and kh, and the damping
parameter α

Wα(k) = exp

(

−α

[

tanh

(

k − kl
5

)

+ 1

]

×

[

tanh

(

−k + kh
5

)

+ 1

])

(15)

The band-rejecter behaviour of Wα is depicted on fig. 2:
it takes values close to one for wavenumbers outside of the
range delimited by kl and kh whereas inside this range
the function decays smoothly to a plateau given by the re-
jection factor exp (−α). Dissipation can be continuously
removed in the inertial range kl < k < kh by adjusting
α, as illustrated in fig. 2

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

W
α
(k
)

k [m−1]
0 50 100 150 200

0

5

10

15

20

25

k [m−1]

Γ
α
(k
)
[s
−
1
]

FIG. 2: (Color online) Left: Band-rejecter function Wα(k)
with α choosen equal to 0.1, 0.4 and 1.5 for top to bottom solid
lines. Cutoff wavenumbers are kl = 9 m−1 and kh = 150 m−1.
Right: Corresponding tuned dissipation Γα(k) (solid lines)
compared to experimental dissipation γEXP

k (black dashed
line)

III. COMPARISON BETWEEN NUMERICAL

AND EXPERIMENTAL RESULTS

To demonstrate that FVK equations reproduce with a
good agreement the experimental observations published
in [10, 14, 15], we present in this section the results ob-
tained by the set of simulations (SEXP) that uses realistic
damping rate γEXPk .

A. Stationary regime

A typical deformation field obtained by the simulation
is displayed in figure 3 and compared to a measured de-
formation field in a similar regime. Qualitatively, these
two fields are very similar. The corresponding spectra
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−2

0

2

x 10
−3

FIG. 3: (Color online) Color coded snapshot of the deforma-
tion field ζ(r) (in meters). Upper figure: Numerical simula-
tion. The thick black rectangle marks the size of the measure-
ment window in the experimental setup. Bottom figure: the
experimental deformation field (color plot) is embedded into
a rectangle that marks the size of the plate (for the experi-
mental data, the modes corresponding to the smallest k that
are not present in the simulation have been filtered out to ease
the comparison). The forcing intensity is tuned in a manner
that the numerical and the experimental cutoff wavenumber
are comparable.

displayed in figure 4 show also a very good qualitative
and quantitative agreement. They both exhibit a maxi-
mum corresponding to their respective forcing frequency.
For intermediate frequencies, these spectra follow a power
law E(f) ∝ f−0.6 and the spectra end in an exponen-
tially decaying part E(f) ∝ exp (−f). Note that the low-
frequency part of the spectra is wider on the experimental
data due to the possibility of large wavelengths to exist
with the experimental boundary condition, whereas the
fundamental frequency in the spatially periodic numeri-
cal domain is 1.0 Hz. The corresponding spatial spectra
E(1D)(k) are shown in inset of figure 4. They exhibit a
similar behavior: a power law regime E(1D)(k) ∝ k−0.2

10
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.]
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10
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FIG. 4: (Color online) Power spectrum density of the veloc-
ity field E(f) (insert: power spectrum density in k−space

integrated over directions of k: E(1D)(k)). Top line: experi-
mental spectra; bottom line: numerical spectra. Curves are
vertically shifted for clarity.

follows a bump due to forcing and precedes an expo-
nential decay E(1D)(k) ∝ exp (−k2). The influence of
injected power on spectra is studied by varying the am-
plitude of the forcing.

10
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10
2

10
−3

10
−2

10
−1

k [m−1]

E
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D
) (

k
)

[m
3
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−
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k−0.2

k0.05

10
1

10
2

10
−3

10
−2

E(1D)
(

φ
φ0

)−0.52

FIG. 5: (Color online) Main figure: numerical spectra

E(1D)(k) obtained with realistic parameters and for differ-
ent forcing amplitudes. Different domain sizes are considered:
6×6m2 (red), 4×4m2 (blue), 2×2m2 (black). Bottom and up-
per dashed line are eyeguides for power laws k−0.2 and k0.05,
respectively. The injected power per unit area is increased
from bottom to top spectrum. Inset: the same spectra are
rescaled with the injected power to the exponent −0.52.
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We display in figure 5 a collection of spectra ob-
tained with various forcing amplitudes and various plate
sizes. As the injected power increases, spectra develop
toward higher wavenumber and the scaling exponent
varies slightly from −0.2 for weakest forcing to 0.05 for
strongest forcing. This slight variation could be due
to the relatively small scale separation between forcing
scales and dissipation scales. It results in a narrow scaling
range whose exponent may be altered by the influence of
forcing and/or dissipation. Nevertheless the various spec-
tra can be convincingly rescaled when dividing by φ0.52.
This observation is at odds with the theoretical predic-
tion of φ1/3. The experimental observations suggest an
even larger exponent φ0.7 [15]. Although not in perfect
quantitative agreement, the numerical simulations and
the experiments both show a similar disagreement with
the WTT predictions.

B. Space-time structure and nonlinear time

In the linear limit, spatial modes of the deformation
ζk are not coupled. Unforced undamped modes oscillate
with a constant amplitude zk(0) at the pulsation obeying
the dispersion relation:

ζk(t) = zk(0) exp (jωkt) (16)

WTT predicts a dual-role played by four-waves reso-
nances: first, the pulsations of the modes ωNLk are shifted
from the dispersion in the linear limit ωLk = ck2 with a
factor δωNLk proportionnal to the energy of the waves:

ωNLk = ωLk + δωNLk . (17)

Secondly, the modes are modulated in time by the slowly
varying envelop zk(t):

ζk(t) = zk(t) exp (jω
NL
k t) (18)

We define TNL as the characteristic time of the slow
modulation zk(t). The timescale separation hypothesis
of WTT states that linear TL and nonlinear timescale
TNL are strongly separated. We describe in the follow-
ing two methods to verify this hypothesis.
First, a qualitative conclusion may be drawn from the

observation of the space-time spectrum E(3D)(k, ω):

E(3D)(k, ω) =
1

T

1

L2

〈∣

∣

∣

∣

∣

∫ L

0

d2r

∫ T

0

dtζ(r, t)ejωtejk·r

∣

∣

∣

∣

∣

2〉

(19)
Our isotropic forcing yields an isotropic spectrum as ex-
pected: E(3D)(k, ω) does not depend on the direction of
the wavevector k but only on the wavenumber |k| and
the frequency ω. Thanks to the isotropy, we can study
the angle-averaged spectrum EAA (shown in fig. 6):

EAA(k, ω) =

∫

kE(3D)(k, ω)dθ . (20)

frequency f [Hz]

w
av

en
u
m

b
er

k
[m

−
1
]

EAA(k, f)(a)

k0
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FIG. 6: (Color online) (a): Angle-averaged time-space spec-
trum of the velocity EAA(k, f) plotted in a log color-chart
as a function of frequency f and wavenumber k. Although
high frequencies are correctly resolved by the simulation, the
field is not recorded at each time step but every δt = 0.15 ms
instead. It results in aliasing of the Fourier spectrum. Nev-
ertheless the spectral information is still present in the pic-
ture. Dashed line: dispersion relation in the linear limit
fL = ωL/2π = ck2/2π (purposely aliased). (b): cut in
EAA(k, f) for wavenumber k0 = 150m−1 (materialized by
the black horizontal line in (a)). This cut exhibits a max-
imum at the frequency f(k0). Figure (c) presents fNL

k =
ωNL
k /(2π), the extracted crestline of EAA(k, f) as a function

of k. The corresponding relative shift from the dispersion
relation δωNL/ωL = (ω(k)− ωL) /ωL is plotted in (d). (e)
displays the width of the spectrum ∆ω/ω around the peak
frequency.

Figure (6a) reveals that energy is located in the vicinity
of the linear dispersion relation: for a given wavenumber
k (figure (b)), the spectrum EAA(k, ω) exhibits a maxi-
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mum for ω = ωNLk and a finite width ∆ω. The position of
the crestline ωNLk is extracted by approximating EAA by
a Gaussian function in the vicinity of the local maximum
at given k:

EAA(k, ω) ≈ E0(k) exp

[

−

(

ω − ωNLk
)2

2(∆ω)2

]

. (21)

The shifted dispersion relation ωNLk is shown in fig. 6(c)
together with the relative shift δωNLk /ωLk (d). Both the
relative shift δωNLk /ωLk and the relative width ∆ω/ωk
(fig. (6e)) remain small in the cascade, supporting the
validity of the time scale separation and of the weak non
linearity. These observations are similar to experimental
results reported in [15].
An alternative yet equivalent way to define the non-

linear timescale TNL uses the autocorrelation function of
the envelop:

TNL(k) =

∫
∣

∣

∣

∣

〈z̃k(t)z̃∗k(t+ τ)〉

〈z̃k(t)z̃∗k(t)〉

∣

∣

∣

∣

dτ (22)

where the brackets 〈·〉 stand for statistical and time av-
eraging. The absolute value is used to remove the fast
oscillation at the frequency ωNLk . The spectral widening
∆ω and TNL are related by ∆ω ∝ 1/TNL.
In the experiment, the dynamics is slightly different

from the simulation by the fact that reflections occur at
the plates boundary and only a portion of the plate is
measured. Thus an indirect wavelet analysis of the mo-
tion described in [14] had to be used to compute TNL out
of experimental data. Here, TNL is extracted in a more
straightforward way by evaluating the autocorrelation as
described in equation (22). The three characteristic times
of wave turbulence are plotted on figure 7 together with
experimental nonlinear timescales. First it can be seen
that although dissipation occurs at all scales, it is weak
so that a true scale separation occurs between dissipation
timescale and the period of the waves. Second, the non
linear time scale is also strongly separated both from dis-
sipation and wave period. The experimental data points
behave very closely to the numerical data showing again
that the dynamics of experiments and simulation is simi-
lar and providing a validation of the wavelet method used
for the experimental data in [14].
The very good signal over noise ratio in the case of the

numerical simulation makes possible to measure TNL at
small wavelengths in the dissipative region of the spec-
trum (exponentially decaying region). The spectrum of
the corresponding runs is displayed in inset of figure 7.
The fast exponential decay of the spectrum starts at k
close to 200. At this wavenumber the nonlinear time re-
mains clearly separated from the dissipative time. It is
somewhat surprising as this fast decay can very likely be
attributed to dissipation. This early decay of the spec-
trum may also be attributed to an interplay with finite
size effects. Nevertheless we cannot point out a direct
influence of finite size so far.
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FIG. 7: (Color online) Comparison of the three time-scale:
black plain symbols are the nonlinear time TNL obtained with
equation (22) in numerical simulations (circles and triangle
correspond to a strong and a weak forcing, respectively). The
upper dashed line is dissipative timescale Td (see eq.10). The
lower dashed line is the linear period of the waves 1/ωL(k).
Experimental nonlinear times extracted from experimental
data using a wavelet analysis described in [14] are reproduced
for comparison (grey symbols). Top inset: the spectrum

E(1D)(k) is displayed to visualize the range of the various
regimes for strong (blue or dark grey line) and weak (red or
light grey) forcing. Bottom inset: exemple of autocoherence

function of the slow modulation

∣

∣

∣

∣

〈z̃k(t)z̃∗
k
(t+τ)〉

〈z̃k(t)z̃∗
k
(t)〉

∣

∣

∣

∣

for k = 154

m−1.

C. Decaying regime

We study the decreasing stage of wave turbulence by
considering a developed stationary spectrum as initial
condition and by stopping the forcing. On a theoreti-
cal ground, a self-similarity argument exposed by Kol-
makov in [16] and applied to metallic plates in [10] yields
an analytical expression for the dissipative region of the
spectrum. In the absence of forcing, the variations in
time of the spectrum are due to energy transfer among
resonant waves and to dissipation. One looks for a self-
similar solution E(1D)(k) = Akαb (t)g(k/kb(t)) where kb is
a time dependent cutoff wavenumber, A a constant that
depends on the initial condition and g a function of the
dimensionless quantity k/kb. The power α must be 3 in
order to match the homogeneity degrees in k of the colli-
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sion and dissipative terms. Dissipation dominates at the
high wavenumber part of the spectrum and eventually
yields g(ξ) = exp(−ξ2). The time dependent spectrum
is then expected to follow [10]:

E(1D)(k, t) = Ak3 exp(−k2/k2b (t)) (23)

where an affine behaviour in time is predicted for 1/k2b (t):

kb(t)
−2 = Bt+ C . (24)
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FIG. 8: (Color online) Blue plain lines : Integrated over an-

gle power density spectra of velocity E(1D)(k) during decline
stage. Upper curve: extinction of excitation t = 0; curves
are separated by ∆t = 0.3 s (time flowing downward). Red
dashed line: fit for the dissipative part at t = 0.6 s. Only the
decaying part of the dashed line is expected to fit the data.
Inset: dissipative cutoff k−2

b (blue dots) as a function of time
compared to an affine law (dashed eyeguide)

Time-averaging is not possible to study this non-
stationary regime. Instead, statistical averaging is per-
formed as follow: a common forcing amplitude F0 is cho-
sen for the forcing of the form given in equation (12).
Different phases φk and ψk are chosen for each realiza-
tion and the decaying stage is recorded. We display in
fig. 8 the averaged spectra for different delays after stop-
ping the forcing. The dissipative parts of the spectra
are fitted with equation (23) and the extracted cutoff

wavenumber obeys equation (24) as depicted in the inset
of figure 8. The behavior of the numerical simulation is
again very similar to that of the experiment [10].

D. Discussion

We have presented above various statistical properties
of wave turbulence simulated from the FVK equations us-
ing realistic parameters. We observe that all quantities
are in very good quantitative agreement with the exper-
imental observations. Hence we conclude that the FVK
equations capture all the physics necessary to reproduce
quantitatively the experiments. There is thus no need to
invoke additional elements such as plate imperfections:
for instance large-scale curvature due to a not perfectly
flat plate (although commercial plates are indeed not per-
fectly flat) or residual anisotropic internal stress due to
industrial fabrication (which is most likely present as no
annealing of the plates has been performed). Such ele-
ments although present in real plates are not necessary
to explain the discrepancy between observations (numer-
ical or experimental) and theory. Two phenomena are
likely candidates: dissipation and finite size. Simulations
of plates with size 2, 4 or 6 m did not show any difference
so that finite size effects can most likely be discarded in
this precise case. To check the influence of dissipation
we use in the following the versatility of the numerical
simulations to decrease the dissipation rate in the iner-
tial range so that to localize it at the smallest scales as
is required for a strict application of the WTT.

IV. FROM EXPERIMENTAL TO KZ SPECTRA

A. Energy Flux

Equation 2 formally conserves the mean energy per
unit surface:

E =
h

S

∫

S

d2S

[

1

2
ρc2(∆ζ)2 +

1

2
ρv2 +

1

2E
(∆χ)2

]

. (25)

This expression contain only quadratic terms in ζ and χ
so that the total energy E is expressed as the sum of the
energy Ek of the wavevectors k:

E =
∑

k

Ek (26)

=
∑

k

1

2
ρc2k4

∣

∣

∣
ζ̃k

∣

∣

∣

2

+
1

2
ρ |ṽk|

2
+

1

2E
k4 |χ̃k|

2
. (27)

By restraining the summation to wavenumbers smaller a
given k, we define the cumulative energy Ek =

∑

|q|<k Eq

contained in the sphere of diameter k. The energy bud-
get relates the variation of the energy contained in the
sphere of radius k, the cumulative injected power Ik, the
cumulative dissipated power Dk and the outgoing energy
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flux Φk. The injected and dissipated powers are explicitly
computed using:

Ik =

〈

∑

|q|<k

F∗
q(t)ṽq(t)

〉

(28)

Dk =

〈

∑

|q|<k

γq |ṽq|
2

〉

, (29)

where the brackets 〈·〉 denote time averaging. In the
stationnary regime, the outgoing flux of energy balances
the injected and dissipated energy:

Φk = Ik −Dk . (30)
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FIG. 9: (Color online) Inset: Injected (top red line) and dis-
sipated (bottom blue line) power in the sphere of radius k are
plotted as functions of k. Main figure: energy flux φk as a
function of k (black plain line). Vertical dashed line indicates
k∗ the cutoff wavenumber of the spectrum.

This flux plays a central role in wave turbulence but
it is extremely difficult to measure experimentally. Fig-
ure 9 displays an example of an energy budget for a
run taken from set (SEXP ) (with realistic physical pa-
rameters). The forcing is effective at low wave numbers
only so that the cumulative injected power is constant
with the radius of the sphere q. By contrast, dissipa-
tion plays a significant role even for wavenumbers in the
cascade, below the cutoff wavenumber k∗ that separates
the power-law and the exponentially decaying regions of
the spectrum. The flux Φk has decreased by a factor 2
when the cutoff is reached, violating the hypothesis of a
constant flux through the cascade. This explains the ob-
served disagreement of the measurements and simulation
compared to the KZ spectrum.

B. Transparency window

The filtered dissipation Γα(k) defined in equation 14
is used so that dissipation is gradually suppressed in the
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FIG. 10: (Color online) (a): Dissipated power Dk (see equa-
tion (29)) as a function of the wavenumber k using damping
rate Γα(k) with α = 0.1 (top line), 0.4 (middle line) and
1.5 (bottom line). The dash-dotted vertical line indicates (as
well as on the two following panels) the common high cutoff
wavenumber parameter k∗

h used in equation (15) to define the
filtered damping Γα(k). (b) corresponding Flux Φk over scale
k (see equation (30)) from bottom to top α = 0.1, 0.4, 1.5. (c)

power spectrum density E(1D)(k). The black thick dashed

line indicates the Zakharov scaling k log(kh/k)
1/3

inertial range. Figure 10 illustrates the runs obtained
with α = 0.1, 0.4 and 1.5. As the damping rate (depicted
in fig. 2) is decreased in the inertial range, dissipation
becomes localized at high wavenumbers. Consequently
the flux is seen to become constant through the cascade
(fig. 10a). The spectrum changes its shape so that to
eventually resemble the Zakharov shape (fig. 10b) (when
setting k∗ = kh in eq. (8)). The correct wavenumber
dependence of the spectrum E(1D)(k) is recovered when a
genuine transparency window is created. This transition
supports the intuitive idea that “leaking” cascades lead
to a spectrum steeper than the theoretical predictions of
the conservative case [13, 17].

In fig. 11, the dissipation is set to a transparent-like
damping rate with α = 1.5 and the amplitude of the
forcing is varied. We investigate the scaling of the spec-
trum with the injected power. The various computed
spectra collapse on a master curve when compensated by
Φ0.35 which is very close to the Zakharov scaling Φ1/3.
This is in strong contrast with the experimental dissipa-
tion for which a Φ1/2 is observed in numerics and Φ0.7

in experiments. It is remarkable that both the shape
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FIG. 11: (Color online) Inset: spectra E(1D)(k) obtained for
five different forcing amplitude and a transparent-like dissi-
pation Γ1.5(k) are displayed by color plain lines. Main figure:
the same spectra are rescaled with a power law of the flux
Φ0.35 (color plain lines). Black dashed line indicates the Za-

kharov scaling k log(kh/k)
1/3

of the wave spectrum as a function of k and the scaling
with φ are restored when using a transparent dissipation.
The scaling of the dissipation is seen to have a major im-
pact on the wave spectrum. Not only the spectrum is
steeper than the theory as a function of wavenumber but
the scaling with the injected power is strongly altered as
well, consistently with observations in gravity-capillary
wave systems [17].

V. CONCLUSION

The results of the numerical simulation with phys-
ical parameters relevant of real plates shows an ex-
tremely good agreement with the experimental observa-
tions. This supports the fact that the Föppl-von Kármán
equations are an adequate theoretical framework to study
the issue of wave turbulence in vibrated thin elastic
plates. When the experimental dissipation is artificially
tuned so that to tend to the theoretical configuration, one
recovers the theoretical predictions both in the shape of
the spectrum and the scaling with the injected power.
Although the spectral variations of dissipation are seen
to have a major impact on the wave spectrum in various
systems [13, 17], this influence is not taken into account
so far in the Weak Turbulence Theory. Introducing real-
istic dissipation in the weak turbulence formalism is not
straightforward as it has a direct influence on the mathe-
matical handling of the resonances. Nevertheless empiri-
cal forms of the kinetic equations are used in operational
tools of sea wave predictions incorporating various source
and dissipation terms [18]. It suggests that despite the
mathematical difficulty, introducing the empirical terms
in the kinetic equation may be physically sound. The
influence of such empirical terms on theoretical solutions
is still a matter of investigations and it is seen here to
have a strong influence both in terms of spectral shape
and scaling with injected power.

Acknowledgments

This work was funded by the French Agence Nationale
de la Recherche under grant TURBULON 12-BS04-0005.
We thank Emmanuel Dormy for discussions about the
numerical code.

[1] A. C. Newell and B. Rumpf, Ann. Rev. Fluid Mech. 43
(2011).

[2] S. Nazarenko, Wave Turbulence (Springer, Berlin, 2011).
[3] V. E. Zakharov, V. S. Lvov, and G. Falkovich, Kol-

mogorov Spectra of Turbulence (Springer, Berlin, 1992).
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