
HAL Id: hal-01009486
https://hal.science/hal-01009486

Submitted on 3 May 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Efficient Application Mapping on CGRAs based on
Backward Simultaneous Scheduling/Binding and

Dynamic Graph Transformations
Thomas Peyret, Gwenolé Corre, Mathieu Thevenin, Kevin Martin, Philippe

Coussy

To cite this version:
Thomas Peyret, Gwenolé Corre, Mathieu Thevenin, Kevin Martin, Philippe Coussy. Efficient Appli-
cation Mapping on CGRAs based on Backward Simultaneous Scheduling/Binding and Dynamic Graph
Transformations. IEEE International Conference on Application-specific Systems, Architectures and
Processors (ASAP), Jun 2014, Zurich, Switzerland. pp.6868652, �10.1109/ASAP.2014.6868652�. �hal-
01009486�

https://hal.science/hal-01009486
https://hal.archives-ouvertes.fr

Efficient Application Mapping on CGRAs based on
Backward Simultaneous Scheduling/Binding and

Dynamic Graph Transformations

Thomas Peyret, Gwenolé Corre, Mathieu Thevenin
CEA, LIST, Laboratoire Capteurs et Architectures Électronique

F-91191 Gif-sur-Yvette, France
firstname.lastname@cea.fr

Kevin Martin, Philippe Coussy
Université de Bretagne-Sud, Lab-STICC

Lorient, France
firstname.lastname@univ-ubs.fr

Abstract—Mapping an application on a coarse grained

reconfigurable architecture (CGRA) is a complex task

which is still often completely or partially realized

manually. This paper presents an automated synthesis flow

based on simultaneous scheduling and binding steps. The

proposed method uses a backward traversal of the formal

model obtained after compilation and dynamically

transforms it when needed. Our approach is compared

with state of the art techniques and its interest is shown

through the mapping of several applications from digital

signal and image processing domain.

Keywords—CGRA; Mapping; Scheduling; Binding

I. INTRODUCTION

For the last two decades, Coarse Grained Reconfigurable
Architectures (CGRAs) have been mainly proposed for
accelerating multimedia applications. CGRA is usually
composed of Processing Elements (PE), named tiles, which
communicate through an interconnection network. CGRA are
interesting trade-offs between FPGAs and many-core
architectures [1]. Many works [2, 3, 4, 5, 6] proposed hardware
architectures that distinguish by different features like
homogeneous/heterogeneous tiles, absence/presence of
Register Files (RF), RF sizes, kind of operators (×, +, -…) or
interconnection networks (mesh, torus…). For example, Fig. 1
represents a CGRA composed of homogeneous tiles including
register files, interconnected through a 2D torus mesh network.

Executing an application on a CGRA requires its operations
to be scheduled and bound on tiles and its data to be assigned to
registers. Mapping process, that has to respect control and data

Fig. 1. A CGRA with a 2-D torus mesh and a RF in each tile.

dependencies of the application, is a complex task that cannot
be done by hand anymore: it has to be automated. For that
purpose, application is generally formally described through a
Control Data Flow Graph (CDFG) after compilation and
CGRA is abstracted through a formal model. The target
architecture strongly constrains the mapping process which
objective is to maximize timing performances, by minimizing
latency and/or maximizing throughput. Scheduling and binding
are known to be NP-complete [7]. Many approaches that can be
classified into four main categories have been proposed to
tackle these problems. They differ on the way they treat
scheduling and binding steps (sequentially or concurrently) and
methods they use (exact or approximate). The first category
proposes to solve separately scheduling and binding by using
heuristics or meta-heuristics as in [7, 8, 9]. The second one also
proposes to solve scheduling and binding sequentially but by
combining heuristics and exact methods as in [10, 11] ([11]
enables to cope with RFs unlike many other methods). These
two works rely on static transformations of the Data Flow
Graph (DFG) to help mapping applications. These
transformations allow for a better exploration of the solution
space but are done a priori, i.e. before binding, thanks to a cost
function. The third category tries to solve the whole problem by
using exact methods [12, 13]. Unfortunately, these methods
typically do not scale up as shown in [7]. The fourth one targets
the complete problem by leveraging on meta-heuristics like in
[14, 15] ([15] supports RFs) where a simulated annealing
procedure is used. However, simulated annealing usually
converges very slowly toward potential optimal solution.

In this paper we present a unified approach that combines a
heuristic and an exact method. It allows for mapping
applications to various types of CGRAs by using a backward
simultaneous scheduling and binding combined with dynamic
graph transformations. A list-based scheduling algorithm is
coupled with a binding procedure based on a simplified Levi’s
algorithm [16]. Solution space is further efficiently explored by
traversing the graph backward and by transforming it
dynamically when needed which early prevents searching for
dead-end solutions.

The rest of the paper is organized as follows. Section II
introduces our method. Section III presents the experiments and
discusses the results. Conclusion is given in section IV.

II. PROPOSED METHOD

The proposed design flow is presented in Fig. 2. Input is a
purely functional specification written in C/C++ and the
targeted CGRA model. First, the application is compiled to
obtain a Control and Data Flow Graph (CDFG). Then, CDFG
and CGRA models are used to generate mappings. Proposed
algorithm allows the exploration of the solution space thanks to
the combination of graph transformations, a heuristic-based
scheduling and a binding leveraging on an exact though
simplified method with a pruning step. CDFG is dynamically
transformed to find a solution during scheduling and binding.
As done in [10], two types of transformations are proposed:
routing to keep data dependencies and splitting to reduce
interconnection pressure. Our algorithm “reroutes” a node
when scheduling fails and choose between routing and splitting
when binding fails (see section II.B.3). The purpose of the
synthesis flow is to optimize latency under resources constraint.

Fig. 2. General flow and Algorithm core.

A. Application and Architecture Modeling

CDFG is composed of a Control Flow Graph (CFG) and a
set of basic blocks represented by DFGs. A DFG is a bipartite
directed acyclic graph composed of data, represented by a
rectangle in Fig. 3(c) and Fig. 4, and operation nodes (circles in
Fig. 3(c) and Fig. 4) and arcs. In addition to computation node
(×, +, -…), another operation node is defined: memorization. A
memorization node makes explicit data dependencies along
cycles – e.g. in the DFG in Fig. 3(c), node 2’ is a memorization
node that makes explicit the data dependency between nodes 2
and 4 over one clock cycle.

CGRA is modeled by a bipartite directed graph with two
types of nodes: operators and registers. Timing is implicitly
represented by connections between registers and operators. In
this model, two subtypes of operator nodes are defined:
conventional and memorization operators. Conventional
operator represents any physical implementation of operation
(×, +, -…). Memorization operator is associated to a register
and makes explicit the storage of a value. Connection between
output register nodes and conventional operators depends on
the interconnect network. An example of this representation is
given in Fig. 3(a) and (b). This CGRA graph model is very
versatile and can represent CGRA with:

• homogeneous or heterogeneous tiles;
• presence or absence of register file;
• shared or local register file;
• homogeneous or heterogeneous operators;
• regular or specific interconnect network;
• operators that require one cycle or more.

Fig. 3. (a) a CGRA with 2 registers in RF, (b) Equivalent graph model
on three cycles, (c) DFG model. In (b), a possible mapping of DFG in (c) is
represented in dark grey. Memorizations are dotted and registers rectangular.

To use methods from graph theory domain, the following
equivalences between nodes from DFG and CGRA graph are
defined: computation node conventional operator,
memorization operation memorization operator and data
node register node. Hence, these models are homomorphic
and binding a CDFG on a CGRA comes down to find each
DFG in the CGRA graph [10]. A mapping illustration is given
in Fig. 3(b).

B. Mapping Algorithm

Proposed approach merges scheduling and binding to avoid
the drawbacks of sequential approaches like [7, 8, 9, 10, 11].
The main idea is to schedule an operation node and
immediately check if there is at least one binding solution. In
this case, the next operation node is scheduled, else the graph is
transformed. A pruning pass is executed at the end of each
scheduling cycle to reduce the number of partial bindings.

1) Scheduling: Proposed approach traverses backward the
graph and uses a list scheduling algorithm in which the
schedulable operations are listed by priority order. The priority
of a node is inversely proportional to its timing mobility.
Mobility is defined by applying ASAP and ALAP scheduling
as described in [17]. However, for nodes with an identical
mobility, the number of successors is considered (more
successors, higher priority). Indeed, a node with many
successors is more difficult to map and scheduling it first
allows for optimizing the final latency (e.g. in Fig. 4(c), node 2
has a higher priority than node 1). Considering backward
traversal, a node is schedulable if all its successors are already
scheduled (e.g. node 2 in Fig. 4(b) is not schedulable because
node 3 is not yet scheduled).

Fig. 4. Illustrative example of scheduled and transformed DFG on a one tile
CGRA. Horizontal line shows the limit between scheduled and non scheduled
nodes. Memorization nodes are dotted circles. (a) Initial DFG, (b) After
scheduling node 4, (c) After scheduling node 3 and routing node 2, (d) After
scheduling node 2, (e) Scheduled DFG after routing and scheduling node 1.

2) Binding: Unlike approaches as [10] which use a regular
version of Levi’s algorithm, we modify Levi’s algorithm by
making it incremental. Hence, it uses the partial bindings
previously found (and kept by the pruning step) to search for
every possible new binding including the currently scheduled
node (e.g. from the partial bindings obtained in Fig. 4(c), the
algorithm finds every possible binding with node 2). The
resulting partial solutions are used in turn for the next node.

3) Graph transformations: Transformations occur when a
node is not schedulable (e.g., in Fig. 4(c), node 2 is not
schedulable and thus memorization node 2’ has to be added)
or when the binding algorithm finds no solution for the current
node. In the proposed approach, as opposed to works like [10]
which realizes a priori tranformations, the graph is
transformed dynamically when required. The three following
graph transformations are available, as illustrated in Fig. 5:

a) Simple route: used if the node is not schedulable or in
absence of available operating ressources. A memorization
node is added to delay node scheduling as in Fig. 5(c).

b) Node splitting: if an operation node has no binding
solution because the number of output edges is too high (e.g.
non reachable successors or number of output edges greater
than the architecture possibilities), two transformations are
available to reduce this number by adding another node with
the same predecessors to the current cycle and distributing
outputs edges as fairly as possible between the two nodes:

• operation node splitting, equivalent of “recomputing”
in [10] and illustrated in Fig. 5(b);

• memorization node splitting, illustrated in Fig. 5(d).
Node splitting is privileged if there are enough free resources
and if the node has more than one successor. Otherwise,
simple route is used. In case of forward scheduling, the only
relevant transformation would be simple route. Indeed, in a
forward scheduling, the identification of the successor nodes
that would be really scheduled at next cycle is not possible.
Thus, edge distribution during node splitting would be purely
arbitrary and would not provide a real gain over simple route.

4) Pruning: The prunning step is introduced because
Levi’s algorithm is exhaustive and the partial mappings
number can thus be very high depending on data dependencies
and CGRA constraints. It removes redundant partial mappings
as soon as no more node can be scheduled in the current clock
cycle. A partial mapping is redundant if it uses exactly the
same operators to make the same operations than another
partial mapping at the current cycle.

Fig. 5. (a) Initial DFG, (b) operation node splitting on node 1 from (a),
(c) simple route on node 1 from (a), (d) memorization node splitting on node
1_1 from (c).

III. EXPERIMENTS AND RESULTS

A. Experimental setup

The method presented in this paper has been fully
automated and implemented using Java and Eclipse Modeling
Framework. Compilation step uses GCC-4.7.2 to generate the
CDFGs of applications that are used as input. Nine algorithms
from signal processing applications and High Level Synthesis
(HLS) benchmarks were used for experiments. They are:
Discrete Cosine Transform (DCT-2D), matrix product, Fast
Fourier Transform (FFT), Manhattan Distance, Exponential
Moving Average Filter (EMA), Moving Window De-
convolution (MWD), unsharp mask, elliptic filter and a low-
pass filter (DC Filter). A workstation integrating an Intel Xeon
and 8 GB of RAM was used to run the program.

The proposed approach is compared to two approaches
from the state-of-the-art. “Method 1” is a method that solves
scheduling and binding separately as in the initial step of [7]. It
uses a forward list scheduling algorithm. For fair comparisons,
binding is made by using Levi’s algorithm. “Method 2” applies
a priori graph transformations and tries to find a mapping with
Levi’s algorithm as proposed in [10, 11]. Since [10] and [11]
have been shown to provide better results than [14] and [15],
we do not compare with these approaches in this paper.

To obtain a large spectrum of results, several parameters
have been varied: CGRA size, RF size and the number of tiles
the final mapping is allowed to use – i.e. 16 sets of constraints
per C code per method. Four metrics are considered to assess
the quality of the different methods:

• Success rate: defined as the percentage of time that a
method finds a solution when at least one of the three
methods succeeds.

• Latency: the best latency provided by the methods.
• Diversity: defined as the number of different

mappings that has been found i.e. the ability of a
method to widely explore the solution space. Two
mappings are said different when they use different
tiles or the interconnection network in a different way.

• Efficiency: defined by the ratio between the number of
different mappings and the computation time.

B. Results

Fig. 6 to Fig. 9 present results for each considered
application. As shown in Fig. 6, Method 1, which solves
scheduling totally independently from binding, leads to the
lower success rate (~37%). Method 2, which applies a priori
transformations, gives better results (~62%). Our approach
gives the best success rate (~99%). Since the proposed method
relies on a heuristic-based scheduling algorithm, the best
latency cannot always been found. However, as shown in Fig. 7
it provides the best latencies more than twice as much as the
other methods (~90%). When the best latency is not found, it is
increased by 1.5 cycles in average, i.e. a mean increase of 15%
of these latencies. Fig. 8 shows that proposed approach allows
finding more different mappings than Method 1 and Method 2
(respectively 3.7 and 2.4 times more) and thus having higher
exploration quality. Fig. 9 illustrates that exploration is more
efficient because the time spend by mapping is lower than for
the other methods – respectively 2.6 and 2.2 times more.

Fig. 6. Success rate.

Fig. 7. Best latency rate.

All these experiments show the interest of the proposed
approach which provides better results in terms of quality,
diversity and efficiency.

IV. CONCLUSION

A method to map C code on a generic CGRA architecture is
presented in this paper. This approach, which relies on a GCC
front-end and a CGRA model, explores the solution space by
solving simultaneously the scheduling and binding problem
through a backward traversal of the application graph, allowing
transforming the application graph only when needed.
Experimental results shown that our method has the highest
success rate, finds most of the time the best latencies and better
explores the solution space than the state of the art methods.

REFERENCES
[1] M. B. Taylor, “Is dark silicon useful?: harnessing the four horsemen of

the coming dark silicon apocalypse,” in Proc. DAC, 2012.

[2] R. David, D. Chillet, S. Pillement, and O. Sentieys, “DART: a
dynamically reconfigurable architecture dealing with future mobile
telecommunications constraints,” in Proc. Parallel and Distributed
Processing Symposium, 2002.

[3] M. Lanuzza, S. Perri, P. Corsonello, and M. Margala, “A new
reconfigurable coarse-grain architecture for multimedia applications,” in
Proc. Adaptive Hardware and Systems, Second NASA/ESA Conference
on, 2007.

[4] H. Singh, M.-H. Lee, G. Lu, F. J. Kurdahi, N. Bagherzadeh, and
E. M. C. Filho, “MorphoSys: an integrated reconfigurable system for
data-parallel and computation-intensive applications,” Computers, IEEE
Transactions on, vol. 49, no. 5, pp. 465–481, 2000.

[5] F. Campi, A. Deledda, C. Mucci, A. Lodi, M. Pizzotti, L. Cirrarelli,
P. Rolandi, A. Vitkovski, and L. Vanzolini, “A dynamically adaptive
DSP for heterogeneous reconfigurable platforms,” in Proc. DATE, 2007

[6] S. Shukla, N. W. Bergmann, and J. Becker, “QUKU: A fast run time
reconfigurable platform for image edge detection,” Reconfigurable
Computing: Architectures and Applications, vol. 3985, pp. 93–98, 2006.

Fig. 8. Average number of different mappings.

Fig. 9. Average number of different mappings generated per second.

[7] G. Lee, K. Choi, and N. D. Dutt, “Mapping multi-domain applications
onto coarse-grained reconfigurable architectures,” Computer-Aided

Design of Intergrated Circuits and Systems, IEEE Transactions on,
vol. 30, no. 5, pp. 637–650, 2011.

[8] H. Park, K. Fan, S. A. Mahlke, T. Oh, H. Kim, and H.-S. Kim, “Edge-
centric modulo scheduling for coarse-grained reconfigurable
architectures,” in Proc. Parallel architectures and compilation
techniques, 17th international conference on, 2008.

[9] S. Friedman, A. Carroll, B. Van Essen, C. Ebeling, S. Hauck, and
B. Ylvisaker, “SPR: an architecture-adaptive CGRA mapping tool,” in
Proc. Field programmable gate arrays, ACM/SIGDA international
symposium on, 2009.

[10] M. Hamzeh, A. Shrivastava, and S. Vrudhula, “EPIMap: using
epimorphism to map applications on CGRAs,” in Proc. DAC, 2012.

[11] M. Hamzeh, A. Shrivastava, and S. Vrudhula, “REGIMap: register-
aware application mapping on coarse-grained reconfigurable
architectures (CGRAs),” in Proc. DAC, 2013.

[12] J. A. Brenner, J. C. van der Veen, S. P. Fekete, J. Oliveira Filho, and
W. Rosenstiel, “Optimal Simultaneous Scheduling, Binding and Routing
for Processor-like Reconfigurable Architectures,” in Proc. Field

Programmable Logic and Applications, International Conference on,
2006.

[13] E. Raffin, C. Wolinski, F. Charot, K. Kuchcinski, S. Guyetant,
S. Chevobbe, and E. Casseau, “Scheduling, binding and routing system
for a run-time reconfigurable operator based multimedia architecture,” in
Proc. Conference on Design and Architectures for Signal and Image
Processing (DASIP), 2010.

[14] B. Mei, S. Vernalde, D. Verkest, H. De Man, and R. Lauwereins,
“DRESC: A retargetable compiler for coarse-grained reconfigurable
architectures,” in Proc. Field-Programmable Technology, IEEE
International Conference on, 2002.

[15] B. De Sutter, P. Coene, T. Vander Aa, and B. Mei, “Placement-and-
routing-based register allocation for coarse-grained reconfigurable
arrays,” ACM SIGPLAN Notices, vol. 43, no. 7, p. 151, Jun. 2008.

[16] G. Levi, “A note on the derivation of maximal common subgraphs of
two directed or undirected graphs,” Calcolo, vol. 9, no. 4, pp. 341–352,
Dec. 1973.

[17] D. D. Gajski and L. Ramachandran, “Introduction to high-level
synthesis,” IEEE Design & Test of Computers, vol. 11, no. 4, pp. 44–54,
Jan. 1994.

