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Abstract—Mapping an application on a coarse grained 

reconfigurable architecture (CGRA) is a complex task 

which is still often completely or partially realized 

manually. This paper presents an automated synthesis flow 

based on simultaneous scheduling and binding steps. The 

proposed method uses a backward traversal of the formal 

model obtained after compilation and dynamically 

transforms it when needed. Our approach is compared 

with state of the art techniques and its interest is shown 

through the mapping of several applications from digital 

signal and image processing domain. 
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I. INTRODUCTION 

For the last two decades, Coarse Grained Reconfigurable 
Architectures (CGRAs) have been mainly proposed for 
accelerating multimedia applications. CGRA is usually 
composed of Processing Elements (PE), named tiles, which 
communicate through an interconnection network. CGRA are 
interesting trade-offs between FPGAs and many-core 
architectures [1]. Many works [2, 3, 4, 5, 6] proposed hardware 
architectures that distinguish by different features like 
homogeneous/heterogeneous tiles, absence/presence of 
Register Files (RF), RF sizes, kind of operators (×, +, -…) or 
interconnection networks (mesh, torus…). For example, Fig. 1 
represents a CGRA composed of homogeneous tiles including 
register files, interconnected through a 2D torus mesh network. 

Executing an application on a CGRA requires its operations 
to be scheduled and bound on tiles and its data to be assigned to 
registers. Mapping process, that has to respect control and data  

 
Fig. 1. A  CGRA with a 2-D torus mesh and a RF in each tile. 

dependencies of the application, is a complex task that cannot 
be done by hand anymore: it has to be automated. For that 
purpose, application is generally formally described through a 
Control Data Flow Graph (CDFG) after compilation and 
CGRA is abstracted through a formal model. The target 
architecture strongly constrains the mapping process which 
objective is to maximize timing performances, by minimizing 
latency and/or maximizing throughput. Scheduling and binding 
are known to be NP-complete [7]. Many approaches that can be 
classified into four main categories have been proposed to 
tackle these problems. They differ on the way they treat 
scheduling and binding steps (sequentially or concurrently) and 
methods they use (exact or approximate). The first category 
proposes to solve separately scheduling and binding by using 
heuristics or meta-heuristics as in [7, 8, 9]. The second one also 
proposes to solve scheduling and binding sequentially but by 
combining heuristics and exact methods as in [10, 11] ([11] 
enables to cope with RFs unlike many other methods). These 
two works rely on static transformations of the Data Flow 
Graph (DFG) to help mapping applications. These 
transformations allow for a better exploration of the solution 
space but are done a priori, i.e. before binding, thanks to a cost 
function. The third category tries to solve the whole problem by 
using exact methods [12, 13]. Unfortunately, these methods 
typically do not scale up as shown in [7]. The fourth one targets 
the complete problem by leveraging on meta-heuristics like in 
[14, 15] ([15] supports RFs) where a simulated annealing 
procedure is used. However, simulated annealing usually 
converges very slowly toward potential optimal solution.  

In this paper we present a unified approach that combines a 
heuristic and an exact method. It allows for mapping 
applications to various types of CGRAs by using a backward 
simultaneous scheduling and binding combined with dynamic 
graph transformations. A list-based scheduling algorithm is 
coupled with a binding procedure based on a simplified Levi’s 
algorithm [16]. Solution space is further efficiently explored by 
traversing the graph backward and by transforming it 
dynamically when needed which early prevents searching for 
dead-end solutions. 

The rest of the paper is organized as follows. Section II 
introduces our method. Section III presents the experiments and 
discusses the results. Conclusion is given in section IV. 



II. PROPOSED METHOD 

The proposed design flow is presented in Fig. 2. Input is a 
purely functional specification written in C/C++ and the 
targeted CGRA model. First, the application is compiled to 
obtain a Control and Data Flow Graph (CDFG). Then, CDFG 
and CGRA models are used to generate mappings. Proposed 
algorithm allows the exploration of the solution space thanks to 
the combination of graph transformations, a heuristic-based 
scheduling and a binding leveraging on an exact though 
simplified method with a pruning step. CDFG is dynamically 
transformed to find a solution during scheduling and binding.  
As done in [10], two types of transformations are proposed: 
routing to keep data dependencies and splitting to reduce 
interconnection pressure. Our algorithm “reroutes” a node 
when scheduling fails and choose between routing and splitting 
when binding fails (see section II.B.3). The purpose of the 
synthesis flow is to optimize latency under resources constraint.  

 
Fig. 2. General flow and Algorithm core. 

A. Application and Architecture Modeling 

CDFG is composed of a Control Flow Graph (CFG) and a 
set of basic blocks represented by DFGs. A DFG is a bipartite 
directed acyclic graph composed of data, represented by a 
rectangle in Fig. 3(c) and Fig. 4, and operation nodes (circles in 
Fig. 3(c) and Fig. 4) and arcs. In addition to computation node 
(×, +, -…), another operation node is defined: memorization. A 
memorization node makes explicit data dependencies along 
cycles – e.g. in the DFG in Fig. 3(c), node 2’ is a memorization 
node that makes explicit the data dependency between nodes 2 
and 4 over one clock cycle.  

CGRA is modeled by a bipartite directed graph with two 
types of nodes: operators and registers. Timing is implicitly 
represented by connections between registers and operators. In 
this model, two subtypes of operator nodes are defined: 
conventional and memorization operators. Conventional 
operator represents any physical implementation of operation 
(×, +, -…). Memorization operator is associated to a register 
and makes explicit the storage of a value. Connection between 
output register nodes and conventional operators depends on 
the interconnect network. An example of this representation is 
given in Fig. 3(a) and (b). This CGRA graph model is very 
versatile and can represent CGRA with: 

• homogeneous or heterogeneous tiles; 
• presence or absence of register file; 
• shared or local register file; 
• homogeneous or heterogeneous operators; 
• regular or specific interconnect network; 
• operators that require one cycle or more. 

 
Fig. 3. (a) a  CGRA with 2 registers in RF, (b) Equivalent graph model 
on three cycles, (c)  DFG model. In (b), a possible mapping of DFG in (c) is 
represented in dark grey. Memorizations are dotted and registers rectangular. 

To use methods from graph theory domain, the following 
equivalences between nodes from DFG and CGRA graph are 
defined: computation node  conventional operator, 
memorization operation  memorization operator and data 
node  register node. Hence, these models are homomorphic 
and binding a CDFG on a CGRA comes down to find each 
DFG in the CGRA graph [10]. A mapping illustration is given 
in Fig. 3(b). 

B. Mapping Algorithm 

Proposed approach merges scheduling and binding to avoid 
the drawbacks of sequential approaches like [7, 8, 9, 10, 11]. 
The main idea is to schedule an operation node and 
immediately check if there is at least one binding solution. In 
this case, the next operation node is scheduled, else the graph is 
transformed. A pruning pass is executed at the end of each 
scheduling cycle to reduce the number of partial bindings. 

1) Scheduling: Proposed approach traverses backward the 
graph and uses a list scheduling algorithm in which the 
schedulable operations are listed by priority order. The priority 
of a node is inversely proportional to its timing mobility. 
Mobility is defined by applying ASAP and ALAP scheduling 
as described in [17]. However, for nodes with an identical 
mobility, the number of successors is considered (more 
successors, higher priority). Indeed, a node with many 
successors is more difficult to map and scheduling it first 
allows for optimizing the final latency (e.g. in Fig. 4(c), node 2 
has a higher priority than node 1). Considering backward 
traversal, a node is schedulable if all its successors are already 
scheduled (e.g. node 2 in Fig. 4(b) is not schedulable because 
node 3 is not yet scheduled).  

 
Fig. 4. Illustrative example of scheduled and transformed DFG on a one tile 
CGRA. Horizontal line shows the limit between scheduled and non scheduled 
nodes. Memorization nodes are dotted circles. (a) Initial DFG, (b) After 
scheduling node 4, (c) After scheduling node 3 and routing node 2, (d) After 
scheduling node 2, (e) Scheduled DFG after routing and scheduling node 1. 



2) Binding: Unlike approaches as [10] which use a regular 
version of Levi’s algorithm, we modify Levi’s algorithm by 
making it incremental. Hence, it uses the partial bindings 
previously found (and kept by the pruning step) to search for 
every possible new binding including the currently scheduled 
node (e.g. from the partial bindings obtained in Fig. 4(c), the 
algorithm finds every possible binding with node 2). The 
resulting partial solutions are used in turn for the next node. 

3) Graph transformations: Transformations occur when a 
node is not schedulable (e.g., in Fig. 4(c), node 2 is not 
schedulable and thus memorization node 2’ has to be added) 
or when the binding algorithm finds no solution for the current 
node. In the proposed approach, as opposed to works like [10] 
which realizes a priori tranformations, the graph is 
transformed dynamically when required. The three following 
graph transformations are available, as illustrated in Fig. 5: 

a) Simple route: used if the node is not schedulable or in 
absence of available operating ressources. A memorization 
node is added to delay node scheduling as in Fig. 5(c). 

b) Node splitting: if an operation node has no binding 
solution because the number of output edges is too high (e.g. 
non reachable successors or number of output edges greater 
than the architecture possibilities), two transformations are 
available to reduce this number by adding another node with 
the same predecessors to the current cycle and distributing 
outputs edges as fairly as possible between the two nodes: 

• operation node splitting, equivalent of “recomputing” 
in [10] and illustrated in Fig. 5(b); 

• memorization node splitting, illustrated in Fig. 5(d). 
Node splitting is privileged if there are enough free resources 
and if the node has more than one successor. Otherwise, 
simple route is used. In case of forward scheduling, the only 
relevant transformation would be simple route. Indeed, in a 
forward scheduling, the identification of the successor nodes 
that would be really scheduled at next cycle is not possible. 
Thus, edge distribution during node splitting would be purely 
arbitrary and would not provide a real gain over simple route. 

4) Pruning: The prunning step is introduced because 
Levi’s algorithm is exhaustive and the partial mappings 
number can thus be very high depending on data dependencies 
and CGRA constraints. It removes redundant partial mappings 
as soon as no more node can be scheduled in the current clock 
cycle. A partial mapping is redundant if it uses exactly the 
same operators to make the same operations than another 
partial mapping at the current cycle.  

 
Fig. 5.  (a) Initial DFG, (b) operation node splitting on node 1 from (a), 
(c) simple route on node 1 from (a), (d) memorization node splitting on node 
1_1 from (c). 

III. EXPERIMENTS AND RESULTS 

A. Experimental setup 

The method presented in this paper has been fully 
automated and implemented using Java and Eclipse Modeling 
Framework. Compilation step uses GCC-4.7.2 to generate the 
CDFGs of applications that are used as input. Nine algorithms 
from signal processing applications and High Level Synthesis 
(HLS) benchmarks were used for experiments. They are: 
Discrete Cosine Transform (DCT-2D), matrix product, Fast 
Fourier Transform (FFT), Manhattan Distance, Exponential 
Moving Average Filter (EMA), Moving Window De-
convolution (MWD), unsharp mask, elliptic filter and a low-
pass filter (DC Filter). A workstation integrating an Intel Xeon 
and 8 GB of RAM was used to run the program.  

The proposed approach is compared to two approaches 
from the state-of-the-art. “Method 1” is a method that solves 
scheduling and binding separately as in the initial step of [7]. It 
uses a forward list scheduling algorithm. For fair comparisons, 
binding is made by using Levi’s algorithm. “Method 2” applies 
a priori graph transformations and tries to find a mapping with 
Levi’s algorithm as proposed in [10, 11]. Since [10] and [11] 
have been shown to provide better results than [14] and [15], 
we do not compare with these approaches in this paper. 

To obtain a large spectrum of results, several parameters 
have been varied: CGRA size, RF size and the number of tiles 
the final mapping is allowed to use – i.e. 16 sets of constraints 
per C code per method. Four metrics are considered to assess 
the quality of the different methods: 

• Success rate: defined as the percentage of time that a 
method finds a solution when at least one of the three 
methods succeeds. 

• Latency: the best latency provided by the methods. 
• Diversity: defined as the number of different 

mappings that has been found i.e. the ability of a 
method to widely explore the solution space. Two 
mappings are said different when they use different 
tiles or the interconnection network in a different way. 

• Efficiency: defined by the ratio between the number of 
different mappings and the computation time. 

B. Results 

Fig. 6 to Fig. 9 present results for each considered 
application. As shown in Fig. 6, Method 1, which solves 
scheduling totally independently from binding, leads to the 
lower success rate (~37%). Method 2, which applies a priori 
transformations, gives better results (~62%). Our approach 
gives the best success rate (~99%). Since the proposed method 
relies on a heuristic-based scheduling algorithm, the best 
latency cannot always been found. However, as shown in Fig. 7 
it provides the best latencies more than twice as much as the 
other methods (~90%). When the best latency is not found, it is 
increased by 1.5 cycles in average, i.e. a mean increase of 15% 
of these latencies. Fig. 8 shows that proposed approach allows 
finding more different mappings than Method 1 and Method 2 
(respectively 3.7 and 2.4 times more) and thus having higher 
exploration quality. Fig. 9 illustrates that exploration is more 
efficient because the time spend by mapping is lower than for 
the other methods – respectively 2.6 and 2.2 times more.  



 
Fig. 6. Success rate.  

 
Fig. 7. Best latency rate. 

All these experiments show the interest of the proposed 
approach which provides better results in terms of quality, 
diversity and efficiency.  

IV. CONCLUSION 

A method to map C code on a generic CGRA architecture is 
presented in this paper. This approach, which relies on a GCC 
front-end and a CGRA model, explores the solution space by 
solving simultaneously the scheduling and binding problem 
through a backward traversal of the application graph, allowing 
transforming the application graph only when needed. 
Experimental results shown that our method has the highest 
success rate, finds most of the time the best latencies and better 
explores the solution space than the state of the art methods. 
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