
HAL Id: hal-01009467
https://hal.science/hal-01009467

Submitted on 18 Jun 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An audiovisual attention model for natural conversation
scenes

Antoine Coutrot, Nathalie Guyader

To cite this version:
Antoine Coutrot, Nathalie Guyader. An audiovisual attention model for natural conversation scenes.
ICIP 2014 - 21st IEEE International Conference on Image Processing, Oct 2014, Paris, France. pp.1-5.
�hal-01009467�

https://hal.science/hal-01009467
https://hal.archives-ouvertes.fr


IEEE International Conference on Image Processing (ICIP) 2014 - Oct 27-30, Paris, France

AN AUDIOVISUAL ATTENTION MODEL FOR NATURAL CONVERSATION SCENES

Antoine Coutrot & Nathalie Guyader

Gipsa-lab, CNRS & Grenoble-Alpes University, France
firstname.lastname@gipsa-lab.fr

ABSTRACT

Classical visual attention models neither consider social cues,
such as faces, nor auditory cues, such as speech. However,
faces are known to capture visual attention more than any
other visual features, and recent studies showed that speech
turn-taking affects the gaze of non-involved viewers. In this
paper, we propose an audiovisual saliency model able to pre-
dict the eye movements of observers viewing other people
having a conversation. Thanks to a speaker diarization algo-
rithm, our audiovisual saliency model increases the saliency
of the speakers compared to the addressees. We evaluated our
model with eye-tracking data, and found that it significantly
outperforms visual attention models using an equal and con-
stant saliency value for all faces.

Index Terms— audiovisual saliency model, eye move-
ments, speaker diarization, speech, social gaze

1. INTRODUCTION

Imagine yourself at a poster session in a noisy conference
room, witnessing a discussion between a poster presenter and
a couple of colleagues. You will probably look at the poster
presenter to focus your auditory attention, but also at your
colleagues to check if someone is about to take the floor, and
show that you are listening. This example illustrates that in
complex natural scenes, your attention is driven by many fea-
tures, including dynamic and social ones [1]. Yet, to predict
the most attractive areas in a scene, models of visual attention
mostly rely on low-level visual features like luminance, con-
trast, orientation and motion, and do not take account of these
crucial features (see [2] for a taxonomy of 65 models). There-
fore, they are unlikely to generalize to social contexts [3, 4].
To address this issue and consider faces as particular visual
features, few visual saliency models combining ”faces” with
classical low-level features have been developed. These mod-
els significantly outperform classical visual saliency models
to predict observers’ eye movements [5, 6]. Despite these sig-
nificant efforts in attention modeling, an important factor has
been left aside: auditory information. So far, visual saliency
models do not consider sound, even when dealing with dy-
namic scenes. When running eye tracking experiments with
videos, authors never mention soundtracks or explicitly re-

move them, making participants look at mute movies, which
is of course not a natural situation. Indeed, we live in a multi-
modal world and our attention is constantly guided by the fu-
sion between auditory and visual information. When looking
at natural dynamic scenes, sound has been shown to signifi-
cantly impact on eye movements [7]. In particular, few very
recent papers investigated how speech turn-taking affects the
gaze of non-involved viewer of natural conversations [8, 9].
These eye-tracking studies presented conversations to partic-
ipants with speech soundtracks, or without any sound. They
both showed that sound changes the timing of looks. With
sound, speakers are fixated more often and more quickly after
they start speaking, leading to a greater attentional synchrony.
In a recent study, we quantified the relative contributions of
faces and of other visual features to explain the eye move-
ments recorded when viewing conversations [10]. We found
that non-involved observers looked more at faces than at any
other visual features, and that talking faces were more gazed
at than mute faces (talking and mute faces were manually la-
belled). These experimental results stress the need to take into
account speech turn-taking in saliency models.
In this paper, we present an audiovisual saliency model able
to predict the eye movements of observers viewing natural
conversations. Contrary to previous dynamic saliency models
giving an equal and constant saliency value to every detected
faces [5, 6], we propose to modulate faces’ saliency by in-
creasing the saliency of speakers. To this end, the audiovisual
saliency model we present here includes a quite simple au-
diovisual speaker diarization algorithm, spotting which con-
versation partner is speaking and which is not. To evaluate our
model, we compared the predicted saliency values to the eye
positions of naive observers viewing conversations embedded
in complex natural scenes.

2. AUDIOVISUAL SALIENCY MODEL

In this section, we describe the general framework of the pro-
posed audiovisual saliency model (Figure 1).

2.1. Model Layout

Each video frame is first decomposed into three classical
visual maps that have been shown to play a role in eye move-
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ment guidance [10].
- Low-Level Saliency The low-level saliency map of each
video frame was computed using a biologically-inspired
saliency model [11]. This model, based on luminance infor-
mation, decomposes video frames into static and dynamic
features. Static features rely on high spatial frequencies to
emphasize areas with high contrast. Dynamic feature ex-
traction rely first on a camera motion compensation to only
detect motion relative to the background. Second, low spatial
frequencies from two consecutive frames are used to extract
motion, under the assumption of luminance constancy. Fi-
nally, static and dynamic features are merged into a low-level
saliency map ΦLS (see Figure 1).
- Faces The face of each conversation partner was marked
by an oval mask, giving a Face map ΦF . Since faces were
moving, the coordinates of each mask were dynamically de-
fined for each video. We used Sensarea, an in-house author-
ing tool that automatically or semi-automatically performs
spatio-temporal segmentation of video objects [12].
- Center Bias Eye-tracking studies reported that subjects
tend to gaze more at the center of the image. Several hy-
potheses have been proposed to explain this bias. Some are
stimuli-related, like the photographer bias (one often places
regions of interest at the center of the picture), others are
inherent to the oculomotor system (motor bias) or to the ob-
servers’ viewing strategy [13]. The center bias is modeled by
a time-independent bi-dimensional Gaussian function cen-
tered at the screen center, ΦCB .
These maps Φk were computed for each frame f and linearly
combined into a master audiovisual saliency map M :

M(f) =
∑

k∈{LS,F,CB}

αk(f)Φk(x, y, f), with
∑
k

αk(f) = 1.

The weights αk were adjusted with the Expectation - Max-
imization (EM) algorithm, a statistical method using obser-
vations to estimate the relative importance of each feature
in order to maximize the global likelihood of the mixture
model [14]. The observations were eye positions recorded
during an eye-tracking experiment further described in [10].
The EM algorithm returned a value for each feature and each
frame. For each feature map k, we averaged the αk(f) over
all frames of all videos, and used these constants to weight the
feature maps. The results were αCB = 0.05, αLS = 0.2 and
αF =0.75. To separate the contribution of talking and mute
faces, we averaged αF (f) over the manually labelled talking
and mute time periods. We found that αF can be broke into
αMF = 0.25 for mute faces and αTF = 0.50 for talking
faces. This illustrates that, if all faces attract attention, speak-
ers are more looked at than mute conversation partners. Let’s
consider a scene where N persons are present, one talking
and N −1 mute. In the following, we give to the speaker face
a αTF weight and to each mute face a αMF /(N − 1) weight.
If all faces are in the same state (i.e. speaking or mute), we
give to each face the same αF /N weight. The novelty of the
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Fig. 1: Block diagram of the proposed audiovisual saliency model.
The low-level saliency map (ΦLS), the talking face map (ΦTF ), the
mute face map (ΦMF ) and the center bias map (ΦCB) are respec-
tively weighted with αLS , αTF , αMF and αCB (adjusted to fit ex-
perimental data), and merged into the final audiovisual saliency map.

proposed audiovisual saliency model is the use of these coeffi-
cients to differently weight faces across frames, depending on
whether they are currently speaking or not. To automatically
distinguish talking from mute faces, we propose a speaker di-
arization algorithm.

2.2. Speaker Diarization Algorithm

Speaker diarization has emerged as an increasingly important
field of speech recognition and relates to the problem of de-
termining who spoke when [15]. In this paper, we propose a
simple algorithm that does not require training. Our algorithm
is based on two assumptions: each speech turn-taking is sep-
arated by a silence, and speakers move more than other con-
versation partners [16, 17]. The speaker diarization algorithm
relies on different stages described below: voice activity de-
tection (VAD), audio speaker clustering (BIC framework) and
motion detection to attribute each audio cluster to the right
speaker.
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Fig. 2: Energy of a soundtrack (top) and its corresponding ∆BIC
(bottom). The ∆BIC maximum matches with the turn-taking.

2.2.1. VAD & Speaker Clustering

We first extracted and appended the speech segments from the
soundtrack, discarding silence or noise. To do so, we used
a energy-based algorithm available online [18]. To decide
whether two successive speech segments are delivered by the
same speaker or if a turn-taking occurred, we used audio and
visual features.
Audio - To describe the speech segments, we extracted the
first 26 Mel Frequency Cepstral Coefficients (MFCCs) on 10
ms intervals. Denote z = {zi ∈ Rd, i = 1, ..., N} as the
sequence of MFCCs describing an audio segment of length
N (duration N×10 ms) . Then, we used a method based on
the Bayesian Information Criterion (BIC), that has proven ef-
fective for audio classification [19, 20]. On each sample s
of the speech signal was centered a symmetrical and fixed-
size analysis window (L = 200 ms). We tested the hypoth-
esis that a change occurred at sample s. We compared a
model assuming that the samples contained in the window
w = {zi ∈ Rd, i = s − L

2 , ..., s + L
2 } were drawn from an

independent multivariate Gaussian process: w ∼ N(µw,Σw)
with µw and Σw the mean and standard deviation of w; ver-
sus a model with two Gaussians: one for the first half of the
window x = {zs−L/2, ..., zs} ∼ N(µx,Σx), and one for the
other half y = {zs, ..., zs+L/2} ∼ N(µy,Σy). To decide
which model is the best fit, we used the Bayesian Information
Criterion (BIC), a likelihood criterion penalized by the model
complexity. The analysis window was slid through the suc-
cessive speech segments (orange rectangle at the top of Fig-
ure 1), and the difference between the two BIC was computed
at each sample:

∆BIC(x, y) = L log|Σw| −
L

2
log|Σx| −

L

2
log|Σy| − λP

with the penalty P = 1
2 (d+ 1

2d(d+ 1)) logL, the dimension
of the space d (here d=26) and the penalty weight λ = 1. A
∆BIC value was computed for each sample, and a local max-
imum was extracted from each speech segment. The higher it
was, the more likely a speaker transition occurred (Figure 2).
Visual - We used the hypothesis that speakers move more than
other conversation partners. For each frame, we took the dy-
namic feature map defined in [11] (see Figure 1). For each

Table 1: Length, speech time proportion, number of turn switches
and number of faces for the 14 videos used to evaluate the audiovi-
sual saliency model.

Length (s) Speech (%) Switches Faces
vid1 11.4 92 3 2
vid2 19.3 96 2 2
vid3 24.2 87 0 2
vid4 20.5 47 2 2
vid5 11.6 72 0 2
vid6 19.3 38 7 2
vid7 22.8 42 2 2
vid8 20.8 89 6 2
vid9 29.3 72 6 2
vid10 15.1 74 0 2
vid11 12.3 95 0 2
vid12 22.9 69 7 4
vid13 18.8 95 2 3
vid14 13.4 65 2 2

speaker, we summed the pixels of the dynamic map contained
in their corresponding face masks. Thus, we had the frame-
by-frame evolution of the ”activity” of each conversation part-
ner. Then, we standardized these values and compared their
mean over each speech sequence. For each conversation part-
ner, the higher the modulus of the difference between two
successive speech segments was , the more likely this person
began or stopped moving.
Finally, we standardized and added the audio and visual ”tran-
sition probabilities” for each speech segment. If this combi-
nation was higher than an empirical threshold T (we took T =
1), the speech segments were said to be delivered by different
speakers. Else, the speech segments were merged.

2.2.2. Cluster Labelling

To attribute each speech cluster to the right speaker, we
used the same dynamic low-level saliency maps as described
above. We summed the pixel values contained in each mask
to get the activity of the corresponding conversation partner.
We then averaged these activities over each speech cluster.
The corresponding speech sequence was attributed to the
most ”active” conversation partner.

3. RESULTS

3.1. Eye-Tracking Experiment

Comparing the predicted saliency values to the eye positions
of naive participants is a classical way to evaluate visual
attention model. 18 participants took part in the experi-
ment (all French native speakers). The stimuli consisted
of 14 one-shot conversation scenes extracted from French
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Fig. 3: Diarization error rate for the 14 videos used to evaluate the
audiovisual saliency model. The black horizontal line corresponds
to the mean (33.2%).

”Hollywood-like” movies, with monophonic soundtracks.
The experiment is further described in [10, 21]. The stimuli
and the eye-tracking data are available at http://www.gipsa-
lab.fr/∼antoine.coutrot/DataSet.html.

3.2. Evaluation of the Speaker Diarization Algorithm

We evaluated the proposed speaker diarization algorithm on
the 14 videos from the experiment (7300 frames), see Table
1 for details. The Voice Activity Detection stage gave 500
misclassified frames (silence instead of speech or speech in-
stead of silence), i.e. 6.9% of the total amount. The diariza-
tion performance was measured on the speech segments us-
ing the diarization error rate (DER). To compute the DER, we
performed a frame-by-frame comparison between the ground
truth and the predicted speech clusters (model). We obtained
an average DER of 33.2%, see Figure 3 for details. This result
is comparable to other state-of-the-art algorithms [17, 22].

3.3. Evaluation of the Attention Models

To evaluate our model, we used the Normalized Scanpath
Saliency (NSS) [23]. It acts like a z-score computed by com-
paring a saliency map Mm from an attention model to the eye
position density maps Mp of participants. An eye position
density map was computed for each frame, by adding a 15
pixels wide patch to each of the 18 eye positions.

NSS =
Mm.Mp −mean(Mm)

std(Mm)

The higher the values of NSS are the more the salient re-
gions are attended. We compared the NSS of our model to
(1) the NSS of the same model, but with a ground truth man-
ual speaker diarization and (2) the NSS of the same model,
but without differentiating talking and mute faces, i.e. giving
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Fig. 4: Normalized Scanpath Saliency values for (1 & 2) the audiovi-
sual saliency model presented in this paper (in green, the distinction
Talking Face / Mute Face is made on the ground truth basis, in blue
according to the speaker diarization algorithm presented above); (3)
the same model, without differentiating talking and mute faces.

the same weight αF /N to all faces (see Figure 4). The NSS of
the models making the distinction between talking and mute
faces are significantly higher than the NSS of the model giv-
ing the same and constant weight to all faces (paired t-test,
p < 0.001).

4. CONCLUSIONS

Previous visual attention models neither consider social cues,
such as faces, nor auditory cues, such as speech. Thus, they
dramatically fail in many experimental contexts. The few ex-
isting saliency models featuring face detectors do not use the
auditory information, which has yet proven to significantly
influence gaze. In particular, when viewing natural conversa-
tion scenes, it has been shown that observers look more at the
speakers than at the addressees. In this paper, we presented
an audiovisual saliency model featuring a speaker diarization
algorithm able to temporally distinguish talking conversation
partners from silent ones. We proposed a very simple algo-
rithm that did not require training. We obtained an average
DER of 33.2%. A direct comparison of our results with pre-
vious ones is hazardous given the high sensitivity of the DER
to video features [22]. However, this performance is suffi-
cient to significantly improve our saliency model, compared
to a model giving equal and constant weights to all faces. In
future work, we hope to evaluate our model with standard au-
diovisual corpora (e.g. The AMI Meeting Corpus), so it could
be compared with other algorithms in an unbiased way.
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