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ABSTRACT
Performance testing in highly distributed environments is
very challenging. Specifically, the identification of perfor-
mance issues and the diagnosis of their root causes are time-
consuming and complex tasks which usually require multi-
ple tools and heavily rely on expertise. To simplify these
tasks, hence increasing the productivity and reducing the
dependency on human experts, many researchers have been
developing tools with built-in expertise for non-expert users.
However various limitations exist in these tools, such as
managing huge volumes of generated data, that prevent their
efficient usage in the performance testing of highly distributed
environments. To address these limitations, this paper pre-
sents an adaptive framework to automate the usage of expert
tools in performance testing. In this paper, we use a tool
named Whole-system Analysis of Idle Time to demonstrate
how our research work solves this problem. The validation
involved two experiments which assessed the accuracy of the
proposed adaptive framework and the time savings that it
can bring to the analysis of performance issues. The results
proved the benefits of the framework by achieving a signifi-
cant decrease in the time invested in performance analysis.

Categories and Subject Descriptors
B.8 [Performance and Reliability]: Reliability, Testing,
and Fault-Tolerance; D.2.5 [Testing and Debugging]: Test-
ing tools

General Terms
Algorithms, Measurement, Performance

Keywords
Performance Testing, Automation, Performance Analysis,
Expert Tools, Distributed Systems

1. INTRODUCTION
It is an accepted fact in the industry that performance is a
critical dimension of quality and should be a major concern
of any software project. This is especially true at enterprise-
level, where the system performance plays a central role in
using the software to achieve business goals. However it
is not uncommon that performance issues occur and mate-
rialize into serious problems in a significant percentage of
applications (i.e. outages on production environments or
even cancellation of software projects). For example, a 2007
survey applied to information technology executives [10] re-
ported that 50% of them had faced performance problems
in at least 20% of their deployed applications. Similarly,
many research studies have documented the magnitude of
this problem. For example, in [12] authors found 332 previ-
ously unknown performance problems in the latest versions
of five mature open-source software suites.

This situation is partially explained by the pervasive na-
ture of performance, which makes it hard to assess because
performance is practically influenced by every aspect of the
design, code, and execution environment of an application.
The latest trends in information technology (such as Service
Oriented Architecture1 and Cloud Computing2) have also
augmented the complexity of applications further compli-
cating all activities related to performance.

Under these conditions, it is not surprising that doing per-
formance testing is complex and time-consuming. A special
challenge, documented by multiple authors [30, 23, 4], is that
current performance tools heavily rely on human experts to
be configured properly and to interpret their outputs. Also
multiple sources are commonly required to diagnose perfor-
mance problems, especially in highly distributed environ-
ments. For instance in Java: thread dumps, garbage collec-
tion logs, heap dumps, CPU utilization and memory usage,
are a few examples of the information that a tester could
need to understand the performance of an application. This
problem increases the expertise required to do performance
analysis, which is usually held by only a small number of ex-
perts inside an organization[27]. Therefore this issue could
potentially lead to bottlenecks where certain activities can

1http://msdn.microsoft.com/en-us/library/aa480021.aspx
2http://csrc.nist.gov/publications/nistpubs/800-
145/SP800-145.pdf



only be done by these experts, impacting the productivity
of the testing teams[4].

To simplify the performance analysis and diagnosis, hence
increasing the productivity and reducing the dependency on
human experts, many researchers have been developing tools
with built-in expertise [2, 3, 4]. However, various limita-
tions exist in these tools that prevent their efficient usage in
the performance testing of highly distributed environments.
Firstly, these tools still need to be manually configured, sit-
uation which might impact their accuracy, as their outputs
are commonly sensitive to the used configuration. Therefore,
if an inappropriate configuration is used, the tools might
fail to obtain the desired outputs. Sequentially, the data
collection usually needs to be controlled manually which,
in an environment composed of multiple nodes to monitor
and coordinate simultaneously, is very time-consuming and
error-prone due to the vast amount of data to collect and
consolidate. This challenge is more complex if the data needs
to be processed periodically during a test execution to get
incremental results. A similar problem occurs with the out-
puts, where a tester commonly gets multiple reports, one for
each monitored node per data processing cycle.

Even though these limitations might be manageable in small
testing environments, they prevent the efficient usage of
these tools in bigger environments. To exemplify this prob-
lem, let’s use the Eclipse Memory Analyzer Tool3 (MAT),
which is a popular open source tool to identify memory con-
sumption issues in Java. If a tester wants to use MAT to
monitor an environment composed of 100 nodes during a
24-hour test run and get incremental results every hour, she
would need to manually coordinate the data gathering of
memory snapshots and the generation of the tool’s reports.
These steps conducted periodically for the 100 nodes every
hour, which yields a total of 2400 iterations. Moreover the
tester would have to review the multiple reports she would
get per hour to evaluate if any memory issues exist. As
an alternative, she may concentrate the analysis on a sin-
gle node, assuming it is representative of the whole system.
However it generates the risk of potentially overlooking is-
sues in the tested application. An additional assumption in
the above scenario is that an appropriate configuration was
used. Otherwise, the tester would have also experienced the
risk of potentially overlooking issues.

In addition to these challenges, the overhead generated by
any technique should be low to minimize the impact it has in
the tested environment (i.e. inaccurate results or abnormal
behavior). Otherwise the technique would not be suitable
for performance testing. For example, instrumentation4 is
currently a common approach used in performance analy-
sis to gather input data [34, 25, 7, 8]. However, it has the
downside of obscuring the performance of the instrumented
applications, hence compromising the results of performance
testing. Similarly, if a tool requires heavy human effort,
this might limit its applicability. On the contrary, automa-
tion could encourage the adoption of a technique. As docu-
mented by the authors in [26, 11], this strategy has proven
successful in performance testing.

3http://www.eclipse.org/mat/
4http://msdn.microsoft.com/en-
us/library/aa983649(VS.71).aspx

Finally, to ensure that our research is helpful to solve real-
life problems in the software industry, we have been working
with our industrial partner, IBM System Verification Test
team (SVT), to understand the challenges in their testing
activities. Their feedback confirms that there is a real need
to automate the usage of expert tools so that testers can do
analysis tasks in less time and get more meaningful results
that can be conveyed with the development teams.

This paper proposes an adaptive automation framework that
addresses the common usage limitations of an expert system
in performance testing. During our research development
work we have successfully applied our approach to the IBM
Whole-system Analysis of Idle Time tool (WAIT)5. This
publicly available tool is a lightweight expert system that
helps to identify the main performance inhibitors in Java
systems. Our work was validated through two experiments.
The first experiment evaluated the accuracy of the proposed
adaptive framework. The results demonstrated that the
adaptive framework is able to configure WAIT, based on a
desired usage scenario, without the need of manually tuning
the tool. The second experiment assessed the productivity
gains that our framework brought to the performance testing
process. The results provided evidence about the benefits of
the framework, as the effort required by a tester to use and
analyze the outputs of the selected expert tool (WAIT) was
reduced in 68%. This usage simplification translated into
a quicker identification of performance issues; which leads
to a reduction in the duration of the performance testing
activities of 27%.

The main contributions of this paper are:

1. A novel adaptive framework to automate the usage of
expert systems in performance testing.

2. Two novel adaptive policies to self-configure an expert
system in performance testing.

3. A practical validation of the approach consisting of the
implementation around the WAIT tool and two exper-
iments. The first experiment demonstrates that the
accuracy of our framework, and the second experiment
demonstrates its productivity benefits.

The rest of this paper is structured as follows: Section 2 dis-
cusses the background and related work. Section 3 explains
the proposed framework, and the prototype. Section 4 de-
scribes the assessment performed to identify suitable adap-
tive policies; while Section 5 presents the proposed adaptive
policies. Section 6 describes the performed experiments. Fi-
nally, Section 7 shows the conclusions and future work.

2. BACKGROUND AND RELATED WORK
Idle-time analysis is a methodology to identify the root
causes of under-utilized resources. This approach, proposed
in [2], is based on the observed behavior that performance
problems in multi-tier applications usually manifest as idle
time of waiting threads. WAIT is an expert system that
implements the idle-time analysis and identifies the main
performance inhibitors that exist on a system. Moreover it
has proven successful in simplifying the detection of perfor-
mance issues and their root causes in Java systems [2, 31].

WAIT is based on non-intrusive sampling mechanisms avail-
able at Operating System level (i.e. “ps” command in a
5http://wait.ibm.com



Unix environment) and the Java Virtual Machine (JVM), in
the form of Javacores 6 (diagnostic feature to get a snap-
shot of the JVM state, offering information such as threads,
locks and memory). The fact that WAIT uses standard data
sources makes it non-disruptive, as no special flags, restart
or instrumentation are required to use it. It also requires
infrequent samples to perform its diagnosis, so it has low
overhead. From an end-user perspective, WAIT is simple:
A user only needs to collect as much data as desired, upload
it to a public web page and get a report with the findings.
This process can be repeated multiple times to monitor a
system through time. Internally, WAIT uses an engine built
on top of a set of expert rules to perform the analysis.

Given its strengths, WAIT is a promising candidate to re-
duce the dependence on a human expert and reduce the time
required for performance analysis. However, as with many
expert systems that could be used for testing distributed
software systems, the volume of data generated can be dif-
ficult to manage and efficiently process this data can be
an impediment to their adoption. Similarly, the accuracy
of WAIT depends on its configuration and the preferable
configuration might vary depending on the application and
usage scenario. These characteristics make WAIT a good
candidate to apply our proposed framework.

Automation in Testing. The idea of applying automation
in the performance testing domain is not new. However,
most of the research has focused on automating the genera-
tion of load test suites[1, 20, 16, 18, 9, 28, 33]. For example
[20] proposes an approach to automate the generation of test
cases based on specified levels of load and combinations of
resources. Similarly, [9] presents an automation framework
that separates the application logic from the performance
testing scripts to increase the re-usability of the test scripts.
Meanwhile [33] presents a framework designed to automate
the performance testing of web applications and which in-
ternally utilizes two usage models to simulate the users’ be-
haviors more realistically.

Other research efforts have concentrated on automating spe-
cific analysis techniques. For example, the authors of [35]
present a combination of coverage analysis and debugging
techniques to automatically isolate failure-inducing changes.
Similarly, the authors of [19] developed a technique to re-
duce the number of false memory leak warnings generated
by static analysis techniques by automatically validating and
categorizing those warnings.

Finally, other researchers have proposed frameworks to sup-
port different software engineering processes. For example,
the authors of [14, 5] present frameworks to monitor software
services. Both frameworks monitor the resource utilisation
and the component interactions within a system, but target
different technologies ([14] focuses on Java and [5] on Mi-
crosoft technologies). Unlike these works, which have been
designed to assist on operational support activities, our pro-
posed framework has been designed to address the specific
needs of a tester in the performance testing, isolating her
from the complexities of an expert system.

6http://www-01.ibm.com/support/docview.wss?
uid=swg27017906&aid=1

Performance Analysis. A major research trend has fo-
cused on identifying performance bugs and their root causes.
For example, the work on [32] proposes an approach to pre-
dict the workload-dependent performance bottlenecks (WDPBs)
through complexity models. The work on [36] presents a
technique to detect processes accessing a shared resource
without proper synchronization; while the authors of [6]
analysed the memory heaps of real-world object-oriented
programs to provide insights to improve memory allocation
and program analysis techniques.

A high percentage of the proposed performance analysis
techniques require some type of instrumentation. For ex-
ample, the authors in [34] instrument the source code of the
monitored applications to mine the sequences of call graphs
under normal operation, information which is later used to
infer any relevant error patterns. A similar case occurs with
the works presented in [25, 7] which rely on instrumentation
to dynamically infer invariants within the applications and
detect programming errors; or the approach proposed by [8]
which uses instrumentation to capture execution paths to
determine the distributions of normal paths and look for any
significant deviations in order to detect errors. In all these
cases, the instrumentation would obscure the performance
of an application during performance testing hence discour-
aging their usage. On the contrary, our proposed framework
does not require to instrument the tested applications.

Furthermore, the authors of [17] present a non-intrusive ap-
proach which automatically analyzes the execution logs of
a load test to identify performance problems. As this ap-
proach only relies on load testing results, it can not deter-
mine root causes. A similar approach is presented in [13]
which aims to offer information about the causes behind the
issues. However it can only provide the subsystem respon-
sible of the performance deviation. On the contrary, our
approach allows the applicability of the idle-time analysis in
the performance testing domain through automation, which
allows the identification of the classes and methods respon-
sible for the performance issues.

3. ADAPTIVE AUTOMATED FRAMEWORK
The objective of this work was to automate the manual pro-
cesses involved in the usage of an expert system to improve
a tester productivity by decreasing the effort and expertise
needed to use an expert system.

Figure 1: Proposed framework - Contextual view



This scenario is depicted in Figure 1, where our proposed
framework executes concurrently with a performance test,
shields the tester from the complexities of properly config-
uring and using the expert system, so that she only needs
to interact with the load testing tool.

The following sections describe our proposed framework, its
supporting architecture, and our implemented prototype.

Adaptive Framework. Our proposed adaptive framework
is depicted in Figure 2. As a self-adaptive system is nor-
mally composed of a managed system and an autonomic
manager [21], our framework plays the role of the auto-
nomic manager. Therefore, it controls the feedback loops
which adapts the managed system according to a set of
goals. Meanwhile, the expert system and the application
nodes under test play the role of the managed systems.

Figure 2: Adaptive automation framework

As defined by multiple authors [22, 29], self-adaptation en-
dows a system with the capability to adapt itself autonomous-
ly to internal changes and dynamics in the environment to
achieve particular quality goals in the face of uncertainty.
In order to achieve that goal, our framework follows the
well-known MAPE-K adaptive model [15]. This model is
composed of 5 components: A Monitoring component to
obtain information from the managed systems; an Analysis
component to evaluate if any adaptation is required; then
a component to Plan the adaptation, and a component to
Execute it. Finally a Knowledge component supports the
others in their respective tasks.

The key element of our proposed framework is its policy
base, which fulfills the role of the Knowledge component
and defines the pool of available adaptive policies. Each
expert system requires to have at least two policies: A data
gathering policy (to control the collection of samples), and
an upload policy (to control when the samples are processed
by the expert system). Additionally, an expert system might
have other policies available (i.e. to back up the obtained
samples, or correlate the expert system outputs).

From a configuration perspective, the tester needs to provide
the Information Base, which is composed of all the input
parameters required by the chosen policies. For example,
an upload policy might require a Time Threshold to process
the samples periodically, or a data gathering policy could use
a Sampling Interval to coordinate the collection of samples.

From a process perspective, the autonomic manager has a

Figure 3: Automation framework - Core Process



Figure 4: Automated framework - Sequence diagram

core process which coordinates the other MAPE-K compo-
nents. The process is depicted in Figure 3. It is triggered
when the performance test starts. As an initial step, it gets
a new Control Test Id, value which will uniquely identify the
test run and its collected data. This value is propagated to
all the nodes. Next all application nodes start the following
loop (in parallel) until the performance test finishes: A new
set of data samples is collected following a data gathering
policy. After the collection finishes, the process checks if
any upload policy has been fulfilled. If it does, the data is
sent to the expert system (labeling the data with the Con-
trol Test Id so that information from different nodes can be
identified as part of the same test run). Similarly, updated
results are retrieved from the expert system in order to be
consolidated. Additional policies might also be executed
depending on the configuration. For example, as certain
data collections can be costly (i.e. the generation of a mem-
ory dump in Java can take minutes and require hundreds of
megabytes of hard disk), a back-up policy could be used to
enable further off-line analysis of the collected data. This
core process continues iteratively until the performance test
finishes. When that occurs, all applicable policies are eval-
uated one final time before the process ends. Furthermore,
any exceptions are internally handled and then reported.

Architecture. The proposed framework is implemented
with the multi-agent architecture presented in Figure 1. This
is composed of three types of agents: The Control Agent is
responsible of interacting with the load testing tool to know
when the test starts and ends. It is also responsible of eval-
uating the adaptive policies and propagate the decisions to
the other nodes. The second component is the Application
Node Agent which is responsible to perform any required
tasks in each application node. Similarly, the Expert System
Agent is responsible of interfacing with the expert system.

These components communicate through commands, follow-
ing the Command7 Design Pattern: The Control Agent in-
vokes the commands, while the other agents implement the
logic in charge of executing each concrete command. An ex-
ample of these interactions is depicted in Figure 4: Once
a tester has started a performance test (step 1), the Con-
trol Agent propagates this action to all the Application Node
Agents (steps 2 to 4). Then each Application Node Agent
performs its periodic tasks (steps 5 to 9) until any of the
configured upload policies is fulfilled and the data is sent to
the expert system (steps 10 and 11). These steps continue
iteratively until the test ends. At that moment, the Control
Agent propagates the stop action (steps 21,22 and 24). At
any time, the tester might choose to review the intermediate
results of the expert system (steps 12 to 14) until getting the
final results (steps 25 to 27).

Prototype. Based on our proposed framework, a prototype
has been developed in conjunction with our industrial part-
ner IBM. The Control Agent was implemented as a plugin for
the Rational Performance Tester (RPT) 8, which is a com-
mon load testing tool in the industry; the Application Node
Agent was implemented as a Java Web Application; WAIT
was the selected expert system due to its analysis capabil-
ities (discussed in Section 2). Finally, the Expert System
Agent was implemented in PHP in order to extend the web
interface of WAIT (which is developed in that technology).

Additionally, two policies were implemented: One data gath-
ering policy which uses a constant Sample Interval (SI) dur-
ing the complete test execution. Similarly, an upload policy
which uses a constant Upload Time Threshold(UTT).

7http://www.oodesign.com/command-pattern.html
8http://www-03.ibm.com/software/products/us/en/performance



4. ASSESSMENTS OF WAIT TRADE-OFFS
To understand which adaptive policies would be more ade-
quate for WAIT, an assessment of its performance trade-offs
were done. It involved two tests. The first one evaluated the
overhead introduced by the data gathering process of WAIT
in the application nodes. The second one measured the re-
source utilisation in the WAIT server during the processing
of those samples.

All tests were done in an environment composed of eight
VMs: Five application nodes, one WAIT server, one load
balancer and one load tester (using RPT 8.5). All VMs had
the following characteristics: 2 virtual CPUs, 3GB of RAM,
and 50GB of HD; running Linux Ubuntu 12.04L 64-bit, and
Oracle Hotspot JVM version 7 with a heap of 2GB. The
application nodes also ran an Apache Tomcat 6.0.35.

The DaCapo9 benchmark 9.12 was chosen because it offers
a wide range of different application behaviours to test. For
each benchmark, its smallest Sample Size was used. In order
to invoke the Dacapo benchmarks from within a RPT HTTP
test script, a wrapper JSP was developed. It allowed the ex-
ecution of any DaCapo benchmark via an input parameter.
Finally, a 24-hour test duration was chosen to reflect more
realistic test conditions.

The next sections describe the results of the performed tests.

Overhead in the Application Nodes. This test involved
the assessment of the throughput (transactions per second)
and the identified bugs during the data gathering process of
WAIT. These metrics were collected through RPT and the
WAIT report, respectively.

As the SI controls the frequency of samples collection from
the monitored application (which is the main potential cause
of overhead introduced by WAIT), a broad range of values
was tested (7, 15, 30, 60, 120, 240, 360, 480, 720 and 960 sec-
onds). Purposely, the smaller value in the range (7 seconds)
was chosen to be smaller than the minimum recommended
value for WAIT (30 seconds). Similarly, the largest value in
the range (960 seconds) was chosen to be larger than 480
seconds (a SI commonly used in the industry). As the UTT
has minimum impact in the performance of the application
nodes (only controlling when the samples are sent to the
WAIT server), a constant value of 30 minutes was used.

The obtained results showed that there is a relationship be-
tween the selection of the SI and the performance cost of
using WAIT. This behaviour is depicted in Figure 5, which
summarizes the results of the tested configurations. It can
be noticed how the throughput decreases when the SI de-
creases. This performance impact is mainly caused by the
Javacore generation process which pauses the JVM during
its execution. Even though its cost was minimum when using
higher SIs, its performance impact gradually became visible
(especially when using SIs below 30 seconds, which is the
minimum recommended SI for WAIT). On the contrary, the
number of identified bug increases when the SI decreases.
This positive impact is a direct consequence of feeding more
samples to the WAIT server, situation which allows WAIT

9http://dacapobench.org/

to do a more detailed analysis of the monitored application.
A second round of analysis concentrated on the most critical
issues identified by the WAIT report (those ranked with a
frequency above 80% and which would be the most relevant
for a tester) to assess if the previously described behaviours
were also observed there. That analysis confirmed the pres-
ence of similar behaviours, as depicted in Figure 6.
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Figure 5: Bug Coverage vs. Throughput

 0

 2

 4

 6

 8

 10

 12

0.125 0.25 0.5 1 2 4 6 8 12 16
 20

 25

 30

 35

 40

B
ug

s 
Fo

un
d 

(#
)

T
hr

ou
gh

pu
t (

tp
s)

Sample Intervals (min)

Bugs Found (#)
Throughput (tps)

Figure 6: Critical Bug Coverage vs. Throughput

Overhead in WAIT Server. This test involved the assess-
ment of the CPU (%) and memory (MB) utilization in the
WAIT Server during the processing of the samples. These
metrics were collected using the “top” command.

As both SI and UTT influence the number of samples that
are sent to the WAIT server to be processed (as the lower
the SI, the more samples to be processed. Similarly, the
higher the UTT, the more samples to be processed), a range
was chosen for each parameter. For the SI, the following 3
values were used: 30, 240 and 480 seconds. For the UTT,
the following 3 values were used: 5, 30 and 60 minutes.

The results showed how the resource utilisation in the WAIT
server is related to the number of samples processed in paral-
lel; which is a function of both the SI and UTT. For example,
the experimental configuration which used a SI of 240 sec-
onds and an UTT of 30 minutes, reported similar resource
utilisations than the configuration which used a SI of 480
seconds and an UTT of 60 minutes, as both combinations
fed the same number of samples (per upload iteration) to
the WAIT server.

Even though the CPU and memory utilisations showed simi-



lar trends, the WAIT server proved to be more CPU-intensive
(with its CPUAV G and CPUMAX exceeding the 90% utilisa-
tion in most of the tested configurations). On the contrary,
the WAIT server was considerable less memory-intensive
(with its maximum MEMAV G around 23MB, and the max-
imum MEMMAX around 28MB). These results are pre-
sented in Figures 7 (CPU) and 8 (memory).
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Conclusions. The performed tests proved that the se-
lection of SI influences the performance impact that using
WAIT might provoke in the monitored application. Simi-
larly, the selection of UTT influences the resource utilisation
in the WAIT server. These behaviours make the selection of
both settings good candidates to become adaptive policies.

5. ADAPTIVE POLICIES
The following sections describe our proposed policies, which
are based on the outcomes of the previously described as-
sessment.

Accuracy-Target Data Gathering Policy. This adap-
tive policy was designed to balance the performance trade-
offs (between precision and performance) caused by the se-
lection of the SI.

The detailed policy is depicted in Figure 9, where each step
is mapped to the corresponding MAPE-K element. This pol-
icy requires two user inputs: The response time threshold,
which is the maximum acceptable impact to the response
time (express as a percentage); and the warm-up period,
which is the time after which all the types of transactions
have been executed at least one time (hence contributing
at least once to the average response time of the test run).
Two additional parameters are required. As their values are
specific for each expert system, they would be retrieved from
our policy base: The minimum SI that should be used for

Figure 9: Accuracy-Target Data Gathering Policy

collection; and the ∆SI, which indicates how much the SI
should change in case of adjustment.

The process starts by waiting the configured warm-up pe-
riod. Then it retrieves the average response time (RTAV G)
from the load testing tool. This value becomes the response
time baseline (RTBL). After that, the process initialises the
SI of all the application nodes with the minimum SI. This
strategy allows to collect as many samples as possible, un-



less the performance degrades below the desired threshold.
Next, an iteratively monitoring process starts (which lasts
until the performance testing finishes): First, the process
waits the current SI (as no performance impact caused by
the expert system might occur until the data gathering oc-
curs). Then, the new RTAV G is retrieved and compared
against the RTBL to check if the threshold has been ex-
ceeded. If so, it means that the current SI is too small to
keep the overhead below the configured threshold. In this
case, the SI is increased by the value configured as ∆SI. Fi-
nally, the new SI is propagated to all the application nodes,
which start using it since their next data gathering iteration.

Finally, it is worth mentioning that this policy was inspired
on the scenario (commonly experienced in the industry)
where a test team aims to minimise the number of required
performance tests due to budget or schedule constraints.
This might be achieved by allowing certain level of known
overhead in the tested application in order to identify as
many performance bugs as possible, in addition to the nor-
mal results obtained from a performance test.

Efficiency-Target Upload Policy. To minimise the re-
source utilisation caused by the selection of UTT, the fol-
lowing adaptive policy was designed. The detailed policy is
depicted in Figure 10, where each step is mapped to the cor-
responding MAPE-K element. It requires two user inputs:
The initial UTT to be used; and the ∆UTT, which indicates
how much the UTT should change when an adjustment is
required. An additional parameter would be retrieved from
our policy base (as its value is specific to each type of re-
source): The target of maximum utilisation (ToMU). As
documented in [24], the objective of this target is to retains
certain unused capacity to provide a soft assurance for qual-
ity of service. In the case of the CPU, this target is 90%.

The process starts by initialising the UTT of all the applica-
tion nodes with the initial UTT. Then the process awaits un-
til all the application nodes have uploaded their samples one
time. This step is done to make sure that the UTT is only
modified if required. After all the nodes have uploaded their
results, the process retrieves the CPUAV G of the shared ser-
vice during the processing of those samples, as well as the av-
erage duration of the CPU peak usage (CPU−DAV G). Then
the CPUAV G is compared with the ToMU. If the ToMU has
been exceeded, new UTTs are calculated.

As a first strategy, a different UTT is calculated for each
node to prevent that all the nodes upload their results at the
same time. To respect as much as possible the initial UTT,
the calculation of the new UTTs is based on the current
UTT (by iteratively subtracting or adding the CPUAV G−D
from the current UTT until all nodes have a new UTT). For
example, if we have 5 nodes, a current UTT of 30 minutes
and a CPU−DAV G of 1 minute, the new UTTs of the nodes
would be 28,29,30,31 and 32. Finally, the new UTTs are
propagated to all the application nodes, which start using
them since the next upload iteration.

In case a subsequent adjustment is required (meaning that
only splitting the UTT was not enough to bring the CPUAV G

below the ToMU), the current UTT is decreased (by the
value configured as ∆UTT), before the calculation of the

Figure 10: Efficiency-Target Upload Policy

new UTTs is done. This second strategy aims to reduce the
number of samples sent (by each node) per upload iteration.



6. EXPERIMENTAL EVALUATION
Two additional experiments were performed to evaluate the
performance of our proposed adaptive framework. The first
experiment evaluated the accuracy of the implemented adap-
tive policies, while the second experiment assessed the pro-
ductivity gains that our framework brought to the perfor-
mance testing process. The next sections describe these ex-
periments, their results, and the main threats of validity.

Assessment of Adaptive Policies. The objective of this
experiment was to evaluate if the adaptive policies fulfilled
their purpose of addressing the identified trade-offs without
the need of manual intervention from the tester’s side. The
experimental set-up was equal to the one used in the assess-
ments of the WAIT trade-offs (Section 4) with except of the
selection of SI and UTT, as the adaptive policies took the
place of the manual configurations of these parameters.

The adaptive policies used the following configurations: For
the accuracy policy, a 20% threshold was defined. This con-
figuration was suggested by IBM SVT to reflect real-world
conditions. Additionally, a warm-up period of 5 minutes was
found to be enough for all the test transactions to be com-
pleted at least one. Finally, the minimum SI and the ∆SI
were set to 30 seconds. Regarding the efficiency policy, the
initial UTT was set to 30 minutes (as it is a time range com-
monly used in the industry to monitor performance tests);
and the ∆UTT was set to 10 minutes. Finally, the CPU
maximum utilisation threshold was set to 90%.

The obtained results were compared against the results from
the previously performed assessment of the WAIT trade-offs
(Section 4). The first part of our analysis focused on evaluat-
ing the accuracy policy. In terms of performance overhead,
the results demonstrated that the accuracy policy worked,
as it was possible to finish the test with the overhead caused
by WAIT within the desired threshold. This was the result
of increasing the SI once the threshold was exceeded (dur-
ing the test execution) to reduce its performance impact. In
our case, this adjustment involved that the SI increased two
times, moving from its initial value of 30 seconds to a final
value of 90 seconds. Regarding bug coverage, the number
of bugs found with the adaptive policy was higher than the
number of bugs found with the corresponding static SI of
90 seconds. This was the result of using other (smaller) SIs
during the test, situation which provoked that the bug cov-
erage was higher (compared to a SI of 90 seconds) during
certain periods of the test. The same analysis was done con-
sidering only the critical bugs, and similar behaviours were
observed. These results are presented in Figures 11 (for the
overall bugs) and 12 (for the critical bugs).

The second part of our analysis concentrated on evaluat-
ing the efficiency policy. The obtained results showed that
the efficiency policy achieved its goal of decreasing the util-
isation in the shared service (the WAIT server in this sce-
nario). In our case, the CPUAV G and CPUMAX of the
first round of uploads (which occurred before any adjust-
ment) were 90.7% and 95.0%, respectively. As these met-
rics exceeded the target of maximum utilisation (ToMU),
the efficiency policy adjusted the UTTs of the nodes after
the first round of uploads. After the UTT adjustment, the
CPUAV G and CPUMAX decreased to 65.7% and 75.0% (re-
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Figure 11: Overall Bug Coverage vs. Throughput
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Figure 12: Critical Bug Coverage vs. Throughput

maining below the ToMU during the rest of the test). This
behaviour is depicted in Figure 13 which visually shows the
CPU utilisation for one of the performed experiment using
our efficiency policy. The first peak is the CPU utilisation
before the UTT adjustment, while the second set of peaks
is the CPU utilisation after the adjustment.
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Figure 13: WAIT Server - CPU utilisation

In conclusion, the results of this experiment demonstrated
that our proposed adaptive policies achieved their respective
goals: The accuracy policy kept the performance trade-offs
within the desired threshold. Meanwhile, the efficiency pol-
icy decreased the resource utilisation of the shared service,
minimising the possibility of its saturation.

Assessment of benefits in testing productivity. Here
the objective was to assess the benefits our framework brings
to a performance tester in terms of reduced effort and time.
The experimental set-up was similar to the one used in the
previous experiment with three exceptions: First, the iBatis



JPetStore 4.0 10 application was selected in order to test our
framework with a different application behaviour. Second,
the number of application nodes was increased (to 10 nodes)
to test our framework in a bigger test environment.This ex-
periment also involved modifying the source code of JPet-
Store to inject five performance issues.

Two types of runs were performed: The first type involved
a tester trying to identify the injected bugs using WAIT
manually (M-WAIT). A second type of run involved using
WAIT through our automation framework (A-WAIT). In
both cases, the tester did not know the number or charac-
teristics of the injected bugs.

The results of these experiments are summarized in Table 1.
After comparing the results of both runs, two time savings
were documented when using the automated WAIT: First,
the effort required to identify bugs was decreased (68% less
than the manual WAIT). This time saving was the result
of simplifying the analysis of the WAIT reports: Instead
of having multiple reports (one per node) that needed to
be analysed and manually correlated, the tester using the
automated WAIT only needed to keep monitoring a sin-
gle report which incrementally evolved. The second sav-
ing involved the time required by the tester to identify all
the injected bugs. By using the automation framework, it
was possible to feed WAIT incrementally during the perfor-
mance test execution (in contrast to manual WAIT, where
the tester needed to wait until the end of the performance
test). This behaviour allowed the tester using the automated
WAIT to easily get intermediate results during the test run.
In our case, all the bugs were identified by the tester us-
ing the automated WAIT after the first hour of test execu-
tion. Therefore, she was able to start the analysis of those
bugs in parallel to the rest of the performance test execution
(which the tester kept monitoring). A direct consequence of
this second time saving was that the overall duration of the
performance testing activity decreased 27%. For the tester
using the automated WAIT, the activity practically lasted
only the planned 24-hour duration of the performance test,
plus some additional time required to review the final con-
solidated WAIT report. It is also worth mentioning that
both testers were able to identify all the injected bugs with
the help of the WAIT reports.

Table 1: M-WAIT and A-WAIT Comparison

Metric
M-WAIT

(hr)
A-WAIT

(hr)

M-WAIT
vs.

A-WAIT
(%)

a.Duration of
Performance testing

activity (b+c)
33.2 24.1 -27%

b.Duration of
Performance Testing

24.0 24.0 0%

c.Effort of Performance
Analysis (d+e)

8.5 4.8 -44%

d.Effort of Bug
Identification

6.5 2.1 -68%

e.Effort of Root
Cause Analysis

2.0 2.0 0%

An additional observation from this experiment is that the
time savings gained by the automated framework are di-
rectly related to the duration of the test and the number

10http://sourceforge.net/projects/ibatisjpetstore/

of application nodes in the environment. This expected be-
haviour is especially valuable in long-term runs, which are
common in performance testing and typically last several
days. The same situation occurs with the performance test-
ing of highly distributed environments, as the obtained time
savings will be higher under those conditions.

To summarize the experimental results, they allowed to mea-
sure the productivity benefits that a tester can gain by using
an expert system through our proposed automation frame-
work. In particular, two time savings were documented: The
effort required to identified bugs was reduced (68% in our
case), as well as the total duration of the activity (27% in our
case). A direct consequence of these time savings is the re-
duction in the dependence on human expert knowledge and
a reduced effort required by a tester to identify performance
issues, hence improving the productivity.

Threats to Validity. Like any empirical work, there are
some threats to the validity of these experiments. First
the possible environmental noise that could affect the test
environments. To mitigate this, all tests were done in an
unloaded environment and multiple runs were executed for
each identified combination. Another threat was the selec-
tion of the tested applications. Their limited number im-
plies that not all types of applications have been tested and
wider experiments might be needed to get more general con-
clusions. However, there is no reason to believe that the
presented framework cannot be applied to other usage sce-
narios. Additionally, a key motivation to select DaCapo was
that it offers a wide range of application behaviours, hence
helping to mitigate this risk.

7. CONCLUSIONS AND FUTURE WORK
The identification of performance problems in highly dis-
tributed environments is complex and time-consuming. Even
though researchers have been developing expert systems to
simplify this task, various limitations exist in those tools
that prevent their effective usage in performance testing. To
address these limitations, this work proposed a novel adap-
tive framework to automate the usage of an expert system
in a distributed testing environment. A prototype was de-
veloped around the WAIT tool and then its benefits were
assessed. The results showed the time savings gained by
applying the proposed framework. In our case, the effort
required to identified bugs was reduced 68%, while the to-
tal duration of the performance testing activity was reduced
27%. The results also demonstrated that the adaptibility
capabilities of our framework fulfilled their purpose of sim-
plifying the configuration of the expert system. This was
done by addressing the identified WAIT trade-offs without
the need of manual intervention from the tester’s side. Thus,
the approach was shown to simplify the usage of an expert
system and to reduce the time required to analyze perfor-
mance issues, thereby reducing the costs associated with per-
formance testing. Future work will focus on investigating
how best to extend the adaptive capabilities of our frame-
work (i.e. adding data analytic policies to post-process the
outputs of the expert systems).
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