
HAL Id: hal-01009432
https://hal.science/hal-01009432

Submitted on 2 Apr 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Automated WAIT for Cloud-based Application Testing
Omar Portillo-Dominguez, Miao Wang, John Murphy, Damien Magoni

To cite this version:
Omar Portillo-Dominguez, Miao Wang, John Murphy, Damien Magoni. Automated WAIT for Cloud-
based Application Testing. 2nd International Workshop on Testing The Cloud, Mar 2014, Cleveland,
United States. pp.370 - 375, �10.1109/ICSTW.2014.46�. �hal-01009432�

https://hal.science/hal-01009432
https://hal.archives-ouvertes.fr


Automated WAIT for Cloud-based Application Testing

A. Omar Portillo-Dominguez, Miao
Wang, John Murphy

Lero, University College Dublin, Ireland
andres.portillo-

dominguez@ucdconnect.ie;
{miao.wang,j.murphy}@ucd.ie

Damien Magoni
LaBRI-CNRS, University of Bordeaux, France

magoni@labri.fr

ABSTRACT
Cloud computing is causing a paradigm shift in the provision
and use of software. This has changed the way of obtaining,
managing and delivering computing services and solutions.
Similarly, it has brought new challenges to software testing.
A particular area of concern is the performance of cloud-
based applications. This is because the increased complex-
ity of the applications has exposed new areas of potential
failure points, complicating all performance-related activi-
ties. This situation makes the performance testing of cloud
applications very challenging. Similarly, the identification
of performance issues and the diagnosis of their root causes
are time-consuming and complex, usually require multiple
tools and heavily rely on expertise. To simplify these tasks,
hence increasing the productivity and reducing the depen-
dency on human experts, this paper presents a lightweight
approach to automate the usage of expert tools in the per-
formance testing of cloud-based applications. In this paper,
we use a tool named Whole-system Analysis of Idle Time
to demonstrate how our research work solves this problem.
The validation involved two experiments, which assessed the
overhead of the approach and the time savings that it can
bring to the analysis of performance issues. The results
proved the benefits of the approach by achieving a signif-
icant decrease in the time invested in performance analysis
while introducing a low overhead in the tested system.

Categories and Subject Descriptors
B.8 [Performance and Reliability]: Reliability, Testing,
and Fault-Tolerance; D.2.5 [Testing and Debugging]: Test-
ing tools

General Terms
Algorithms, Measurement, Performance

Keywords
Cloud Computing, Performance Testing, Automation, Per-
formance Analysis, Expert Tools

1. INTRODUCTION
As documented by multiple authors [9, 17], Cloud comput-
ing has proven to be a cost-effective and flexible paradigm
by which scalable computing power and software services
(e.g., computing infrastructures or software resources) can
be delivered. This situation has brought many new busi-
ness opportunities in the enterprise world. For example, the
revenue estimations of Gartner1 indicate that the worldwide
Software as a Service (SaaS) revenue (one of the three most
well accepted cloud delivery models [10]) is expected to reach
US$ 22.1 billion by 2015.

It is also well documented that the Cloud has brought major
challenges to the software testing landscape [19, 20]. A par-
ticular area of concern is the performance of SaaS applica-
tions. This is because Cloud vendors and clients commonly
have very demanding quality of service requirements [7].
However, the innate characteristics of a Cloud environment
(such as elasticity, scalability and multi-tenancy) have aug-
mented the complexity of the applications, complicating all
performance-related activities [10, 25].

Under these conditions, doing performance testing is com-
plex and time-consuming. A special challenge, documented
by multiple authors [3, 18], is that current performance tools
heavily rely on human experts to understand their output.
Also multiple sources are commonly required to diagnose
performance problems, especially in highly distributed envi-
ronments, such as the Cloud. This increases the expertise
required to do performance analysis, which is usually held by
only a small number of experts inside an organization [23].
Therefore it could potentially lead to bottlenecks where cer-
tain activities can only be done by these experts, impacting
the productivity of the testing teams [3]. This risk is higher
in Cloud environments, as vendors commonly promise up to
24x7 availability of their services. While Cloud computing
provides the means to deliver these services, human effort
is still required to complete certain key tasks, such as the
performance testing of those environments [20].

To simplify the performance analysis and diagnosis, hence
increasing the productivity and reducing the dependency on
human experts, many researchers have been developing tools
with built-in expertise [2, 3]. However, various limitations
exist in these tools that prevent their efficient usage in the
performance testing of Cloud environments. The data col-
lection usually needs to be controlled manually which, in an

1http://www.gartner.com/newsroom/id/1963815



environment composed of multiple nodes to monitor and co-
ordinate simultaneously, is very time-consuming and error-
prone due to the vast amount of data to collect and con-
solidate. This challenge is more complex because the data
needs to be processed periodically during the test execution
to get incremental results. A similar problem occurs with
the outputs, where a tester commonly gets multiple reports,
one for each monitored node per data processing cycle. Even
though these limitations might be manageable in small test-
ing environments, they prevent the efficient usage of these
tools in bigger environments (probably of hundreds of nodes
or more), which commonly exist in the Cloud [9]. Similarly,
if a tool requires heavy human effort, this might limit its
applicability. On the contrary, automation could encourage
the adoption of a technique. This strategy has proven suc-
cessful in performance testing [8, 22], and specially useful
in scenarios of continuous testing in the Cloud [17], which
requires to test the SaaS applications whenever a change is
detected (e.g., bug fixes or feature enhancements).

This paper proposes a lightweight automation approach to
address the common usage limitations of an expert system
in SaaS performance testing. During our research devel-
opment work we have successfully applied our approach to
the IBM Whole-system Analysis of Idle Time tool (WAIT)2.
This publicly available tool is a lightweight expert system
that helps to identify the main performance inhibitors in
Java systems. Our work was validated through two exper-
iments using real-world applications. The results provided
evidence about the benefits of the approach: It drastically
reduced the effort required by a tester to use and analyze
the outputs of the selected expert tool (WAIT). This usage
simplification translated into a quicker identification of per-
formance issues. Also the introduced overhead was low (up
to 3% when using a common industry Sampling Interval of
480 seconds). The contributions of this paper are:

1. A novel lightweight approach to automate the usage of
expert systems in SaaS performance testing.

2. A practical validation of the approach consisting of a
prototype and two experiments. The first one proves
that the overhead of our approach is minimal, and the
second proves its productivity benefits.

2. BACKGROUND
Idle-time analysis is a methodology that is used to identify
the root causes of under-utilized resources. This approach,
proposed in [2], is based on the behavior that performance
problems in multi-tier applications usually manifest as idle
time of waiting threads. WAIT is an expert system that im-
plements this technique, and it has proven successful in sim-
plifying the detection of performance issues and their root
causes in Java systems [2]. WAIT is based on non-intrusive
sampling mechanisms available at Operating System level
(i.e. “ps” command in Unix) and the Java Virtual Machine
(JVM), in the form of Javacores 3 (snapshots of the JVM
state, offering information such as threads and memory).
The fact that WAIT uses standard data sources makes it
non-disruptive, as no special flags, restart or instrumenta-
tion are required to use it. WAIT also requires infrequent
samples to perform its diagnosis, so it has low overhead.
2http://wait.ibm.com
3http://www-01.ibm.com/support/docview.wss?uid=
swg27017906&aid=1

Given its strengths, WAIT is a promising candidate to re-
duce the dependence on a human expert and the time re-
quired for performance analysis in the cloud. However, as
with many expert systems that could be used for this pur-
pose, the volume of data generated can be difficult to man-
age and efficiently process this data can be an impediment
to their adoption. For example, the effort required to manu-
ally collect data to feed WAIT and the number of reports a
tester gets from the WAIT system are approximately linear
with respect to the number of nodes and the update fre-
quency of the results. These limitations make WAIT a good
candidate to apply our proposed approach.

3. PROPOSED APPROACH
The objective of this work was to automate the manual pro-
cesses involved in the usage of an expert system. This logic
will execute concurrently with the performance test, peri-
odically collecting the required samples, then incrementally
processing them with the expert system to get a consoli-
dated output. This scenario is depicted in Figure 1, where
our automation shields the tester from the complexities of
using the expert system, so that she only needs to interact
with the load testing tool.

Figure 1: Contextual view of the proposed approach

The detailed approach is depicted in Figure 2. To start,
some inputs are required: The list of application nodes to
monitor; a Sampling Interval to control how often the sam-
ples will be collected; a Time Threshold to define the maxi-
mum time between data uploads; a Hard Disk (HD) Thresh-
old to define the maximum storage quota for collected data
(to prevent its uncontrolled growth); and a Backup flag to
indicate if the collected data should be backed up before any
cleaning occurs.

The process starts by initialising the configured parameters.
Then it gets a new RunId, value which will uniquely identify
the test run and its collected data. This value is propagated
to all the nodes. On each node, the HD Threshold and the
next Time Threshold are initialized. These thresholds al-
low the approach to adapt to different usage scenarios. For
example, if a tester prefers to get updated results as soon
as new data is collected, she could set the HD Threshold to
zero. Next each application node starts the following loop in
parallel until the performance test finishes: A new set of data
samples is collected. After the collection finishes, the pro-
cess checks if any of the two thresholds have been reached.
If either of these conditions has occurred, the data is sent
to the expert system (labeling the data with the RunId so
that information from different nodes can be identified as



Figure 2: Process flow - automation approach

part of the same test run). If a Backup was enabled, the
data is copied to the backup destination before it is deleted
to keep the HD usage below the threshold. As certain data
collections can be costly (i.e. the generation of a memory
dump in Java can take minutes and hundreds of megabytes
of HD), the Backup could be useful to enable off-line anal-
ysis of the collected data. Then updated outputs from the
expert system are obtained and the Time Threshold is reset.
Finally, the logic awaits the Sampling Interval before a new
iteration starts. Once the performance test finishes, any re-
maining collected data is sent (and backed up if configured)
so that it is also processed. Lastly the data is cleared and
the final outputs of the expert system are obtained.

Architecture. The proposed approach is implemented with
the architecture presented in the component diagram4 of
Figure 3. It is composed of two main components: The
Control Agent is responsible of interacting with the load
testing tool to know when the test starts and ends. It is also
responsible of getting the runId and propagate it to all the
application nodes. The second component is the Node Agent
which is responsible for the collection, upload, backup and
cleanup in each application node. On each agent, its con-
trol logic and Helper functionality (i.e. the calculation of the
thresholds in the Node Agent), are independent of the target
expert system and load testing tool. On the contrary, the
logic that interfaces with the tools needs to be customized.
To minimize the code changes, this logic is encapsulated in
Wrapper packages which are only accessed through their in-
terfaces. This scenario is presented in Figure 4 which shows
the structure of the package Expert System Wrapper. It con-
tains a main interface IExpertSystem to expose all required
actions and an abstract class for all the common function-
ality. This hierarchy can then be extended to support a
specific expert system on different operating systems.

These two components communicate through commands,
following the Command5 Design Pattern: The Control Agent

4https://www.ibm.com/developerworks/rational/library/dec04/
bell/
5http://www.oodesign.com/command-pattern.html

Figure 3: Component diagram of architecture

Figure 4: Class diagram of ES Wrapper package

invokes the commands, while the Node Agent implements
the logic in charge of executing each concrete command.

Prototype. Based on the proposed approach, a prototype
has been developed. The Control Agent was implemented
as a plugin for the Rational Performance Tester (RPT) 6,
which is a common load testing tool in the industry; the
Node Agent was implemented as a Java Web Application,
and WAIT was the selected expert system due to its analysis
capabilities (discussed in Section 2).

6http://www-03.ibm.com/software/products/us/en/performance



4. EXPERIMENTAL EVALUATION
Two experiments were performed. The first one evaluated
the overhead introduced by our proposed approach. Mean-
while, the second one assessed the productivity benefits that
a tester can gain by using the proposed approach. Two envi-
ronment configurations were used: One was composed of an
RPT node, one application node and a WAIT Server node;
the other was composed of a RPT node, a load balancer
node, two application nodes and a WAIT Server node. All
VMs had 2 virtual CPUs, 3GB of RAM, and 50GB of HD;
running Linux Ubuntu 12.04L 64-bit, and Oracle Hotspot
JVM version 7 with a maximal heap of 2GB.

Experiment 1: Overhead Evaluation. The objective
here was to quantify the overhead of the proposed approach
and involved the assessment of four metrics: Throughput
(tps), response time (ms), CPU (%) and memory (MB) util-
isation. All metrics collected through RPT. Also, two real-
world applications were used: iBatis JPetStore 4.0 7 which is
an e-commerce shopping cart. It ran over an Apache Tomcat
6.0.35. The other application was IBM WebSphere Portal
8.0.1 8, a leading enterprise portal solution. It ran over an
IBM WebSphere Application Server 8.0.0.5.

Firstly, the overhead was measured in a single-node environ-
ment using three combinations of WAIT: The applications
alone to get a baseline (BL), the applications with manual
WAIT data collection, and the applications with the auto-
mated WAIT (AWAIT). For each combination using WAIT,
the Sampling Interval (SI) was configured to 480 seconds
(a commonly used value) and 30 seconds (minimum value
recommended for WAIT). The remaining test configurations
were set to reflect real-world conditions: A workload of 2,000
concurrent users; a duration of 1 hour; a HD Threshold of
100MB; and a Time Threshold of 10 minutes.

For JPetStore, each test run produced around 500k trans-
actions. The results presented in Table 1 showed that using
WAIT with a SI of 480 seconds had practically no impact
in terms of response time and throughput. Furthermore the
difference in resource consumption between the two modal-
ities of WAIT was around 1%. This difference was mostly
related to the presence of the Node Agent because the up-
loaded data was very small (around 200KB every 10 min-
utes). When a SI of 30 seconds was used, the impact on
response time and throughput appeared. Since the through-
put was similar between the WAIT modalities, the impact
was caused by the Javacore generation as it is the only step
shared between the modalities. On average, the generation
of a Javacore took around 1 second. Even though this cost
was insignificant in the higher SI, with 30 seconds the im-
pact was visible. On the contrary, the difference in response
time between the two modalities of WAIT was caused by the
upload and backup processes (around 4MB of data every 10
minutes) which are steps exclusive to AWAIT. In terms of
resource consumption, the differences between the WAIT
modalities remained within 1%.
For Portal, each test run produced around 400k transac-
tions and the results are presented in Table 2. They show
similar trends to the results in Table 1, but a few key dif-
ferences were identified: First, the impact on response time

7http://sourceforge.net/projects/ibatisjpetstore/
8http://www-03.ibm.com/software/products/us/en/portalserver

Table 1: JPetStore - Overhead results
WAIT

Modality & SI
RTAV G

(ms)
RTMAX

(ms)
TAV G

(tps)
CPUAV G

(%)
MEMAV G

(MB)
None (BL) 1889 44704 158 36 1429
WAIT, 480s 0.0% 0.0% 0.0% 1.1% 3.0%
AWAIT, 480s 0.0% 0.0% 0.0% 2.0% 3.7%
WAIT, 30s 1.6% 0.4% -3.1% 1.47% 4.1%
AWAIT, 30s 4.4% 0.5% -4.0% 2.53% 4.4%

and throughput were visible even with the SI of 480 seconds.
Also, the differences between the results for the two SIs were
bigger. As the experimental conditions were the same, it was
initially assumed that these differences were related to the
dissimilar functionality of the tested applications. This was
confirmed after analysing the Javacores generated by Por-
tal, which allowed to quantify the differences in behavior of
Portal: The average size of a Javacore was 5.5MB (450%
bigger than JPetStore’s), its average generation time was 2
sec (100% bigger than JPetStore’s), and a maximum gener-
ation time of 3 sec (100% bigger than JPetStore’s).

Table 2: Portal - Overhead results
WAIT

Modality & SI
RTAV G

(ms)
RTMAX

(ms)
TAV G

(tps)
CPUAV G

(%)
MEMAV G

(MB)
None (BL) 4704 40435 98 76 3171
WAIT, 480s 0.7% 0.6% -0.1% 0.63% 2.2%
AWAIT, 480s 3.4% 1.0% -2.8% 1.13% 4.1%
WAIT, 30s 14.9% 5.4% -5.6% 2.23% 5.3%
AWAIT, 30s 16.8% 9.1% -5.7% 2.97% 6.0%

To explore the small differences between the runs and the po-
tential environmental variations that were experienced dur-
ing the experiments, a Paired t-Test 9 was done (using a sig-
nificance level of p<0.1) to evaluate if the differences were
statistically significant. This analysis indicated that they
were only significant when using a SI of 30 seconds. This
reinforced the conclusion that the overhead was low and the
observation that the SI of 480 seconds was preferable.

A second test was done to validate that the overhead re-
mained low in a multi-node environment over a longer test
run. This test used JPetStore and the AWAIT with a SI
of 480 seconds. The rest of the set-up was identical to the
previous tests except the workload which was doubled to
compensate for the additional application node and the test
duration which was increased to 24 hours. Even though
the results were slightly different than the single-node run,
they proved that the proposed approach was reliable, as us-
ing AWAIT had minimal impact in terms of performance
(0.5% in RTAV G, 0.2% in RTMAX and 1.4% in TAV G). The
consumption of resources behaved similarly (an increment
of 0.85% in CPUAV G and 2.3% in MEMAV G). A paired
t-Test also indicated that these differences, compared with
the baseline, were not significant.

In conclusion, the results proved that the overhead caused
by the automated approach was low, therefore the results
of a performance test are not compromised. Due to the
impact that the SI and the application behavior might have
on the overhead, it is important to consider these factors in
the configuration. In our case, a SI of 480 seconds proved
efficient in terms of overhead for the two tested applications.

Experiment 2: Assessment of productivity benefits.
Here the objective was to assess the benefits our approach

9http://www.aspfree.com/c/a/braindump/comparing-
data-sets-using-statistical-analysis-in-excel/



Figure 5: Lock contention issue in the WAIT report and the actual source code

brings to a performance tester. First, three common perfor-
mance issues were injected in JPetStore: A lock contention
bug (composed of a heavy calculation within a synchronized
block of code), an I/O latency bug (composed of an ex-
pensive file reading method) and a deadlock bug (composed
of an implementation of the classic “friends bowing” exam-
ple10). Then AWAIT monitored the application to assess
how well it was able to identify the injected bugs and esti-
mate the corresponding time savings in performance analy-
sis. The set-up was identical to the multi-node test previ-
ously described except the duration which was one hour.

The 1st ranked issue was not an injected bug but an issue
related to the clustering set-up of Tomcat. The 2nd ranked
issue was the lock contention. It is worth noting that both
issues were detected since the early versions of the incremen-
tal report from the automated tool. Their high frequency
(above 96% of the samples) could have led a tester to pass
this information to the development team so that the diag-
nosis could start far ahead of the test completion. The final
report reinforced the presence of these issues.

After identifying an issue, a tester can see more details, in-
cluding the type of problem, involved class, method and
source code line. Figure 5 shows the information of our lock
contention bug, which was located in the class LockCon-
tentionBug, the method generateBug and the line 20. When
comparing this information with the actual code, one can see
it is precisely the line where the bug was injected (taking a
class lock before doing a very CPU intensive logic). The
3rd ranked issue in the report was a symptom of the lock
contention bug, suggesting it was a major problem (the is-
sues were correlated by comparing their information, which
pinpointed to the same class and method). Finally, the I/O
latency bug was identified in 4th place.

The deadlock bug did not appear in this test run, somehow
prevented by the lock contention bug which had a bigger
impact than planned. As in any regular test phase, the iden-
tified bugs were fixed and a new run was done to review if
any remaining performance issues existed. Not surprisingly,
the deadlock bug appeared in the second test run.

As all injected bugs were identified, this experiment was con-

10http://docs.oracle.com/javase/tutorial/essential/concurrency/
deadlock.html

sidered successful. In terms of time, two main savings were
documented. First, the automated approach practically re-
duced the effort of using WAIT to zero. After a one-time in-
stallation which took no more than 15 minutes for all nodes,
the only additional effort required to use the automated ap-
proach was a few seconds spent configuring it (i.e. to change
the SI). The second time saving occurred in the analysis of
the WAIT reports. Previously, a tester would have ended
with multiple reports. Now a tester only needs to monitor a
single report which is refreshed periodically. Overcoming the
usage constraints of our selected expert system (WAIT) also
allowed exploiting its expert knowledge capabilities. Even
though it might be hard to define an average time spent
identifying performance issues, a conservative estimate of
2 hours per bug could help to quantify these savings. In
our experiment, instead of spending an estimated 6 hours
analysing the issues, it was possible to identify them and
their root causes in a matter of minutes with the informa-
tion provided by the WAIT report. As seen in the experi-
ment, additional time can be saved if the relevant issues are
reported to developers in parallel to the test execution. This
is especially valuable in long-term runs, which are common
in performance testing and typically last several days.

To summarize the results, they were very promising as it
was possible to measure the benefits that a tester can gain
by using an expert system through our proposed automation
approach: After a quick installation, the time required to use
the automated WAIT was minimal. Moreover a tester now
only needs to monitor a single WAIT report, which offers a
consolidated view of the results.

5. RELATED WORK
Performance testing. Multiple research works have fo-
cused on improving its involved processes. For example,
the authors of [14] introduced a cloud-based testing har-
ness which uses an execution engine to parallelise the run
of test scripts on large shared-clusters of nodes. Meanwhile,
the work on [4] presents an approach to automate the de-
ployment of the major open-source IaaS cloud kits (such as
OpenNebula11) on Grid 5000 environments. Other efforts
have concentrated on evaluating the benefits of cloud test-
ing in practice. For example, the work on [15] presents an
industrial study case of the new methodologies and tools

11http://opennebula.org/



that have developed to streamline the testing of their cloud-
based applications. Finally, other works have focused on
automation. However, most of this research has focused on
automating the generation of load test suites [1, 13]. For
example, [16] proposes an approach to automate the gen-
eration of test cases based on specified levels of load and
combinations of resources.

Performance Analysis. Other works have focused on
addressing the challenges in performance analysis in the
Cloud [11, 24]. A high percentage of the proposed techniques
require instrumentation. For example, the authors in [26]
instrument the source code of the monitored applications to
mine the sequences of call graphs under normal operation,
information which is later used to infer any relevant error
patterns. A similar case occurs with the works presented
in [6, 21] which rely on instrumentation to dynamically infer
invariants within the applications and detect programming
errors. In all these cases, instrumentation would obscure
the performance of an application during performance test-
ing hence discouraging their usage. On the contrary, our
proposed approach does not require any instrumentation.

Finally, the authors of [5, 12] present frameworks to moni-
tor software services. Unlike these works, which have been
designed to assist on operational support activities, our ap-
proach has been designed to address the specific needs of
a tester in the performance testing of cloud environments,
isolating her from the complexities of an expert system.

6. CONCLUSIONS
The identification of performance problems in cloud environ-
ments is complex and time-consuming. Performance testing
is challenging because the complexity of the cloud-based ap-
plications has exposed new areas of potential failure points.
While the identification of performance issues and the di-
agnosis of their root causes usually require multiple tools
and heavily rely on expertise. To simplify these tasks, this
work proposed a novel approach to automate the usage of
an expert system in a cloud test environment. A prototype
was developed around the WAIT tool and then its benefits
and overhead were assessed. The results showed that the
introduced overhead was low (between 0% to 3% when us-
ing a common industry Sampling Interval). Also the results
showed the time savings gained by applying the approach.
In our case, the effort to utilize WAIT was reduced to sec-
onds. This optimization then simplified the identification of
performance issues. In our case, all defects injected in JPet-
Store were detected in a matter of minutes using WAIT’s
consolidated outputs. In contrast, a manual analysis might
have taken hours.

7. ACKNOWLEDGMENTS
This work was supported, in part, by Science Foundation
Ireland grant 10/CE/I1855 to Lero - the Irish Software En-
gineering Research Centre (www.lero.ie).

8. REFERENCES
[1] J. Albert, Elvira, Miguel Gomez-Zamalloa.

Resource-Driven CLP-Based test generation.
LOPSTR, 2012.

[2] E. Altman, M. Arnold, S. Fink, and N. Mitchell.
Performance analysis of idle programs. ACM
SIGPLAN Notices, Oct. 2010.

[3] V. Angelopoulos, T. Parsons, J. Murphy, and
P. O’Sullivan. GcLite: An Expert Tool for Analyzing
GC Behavior. CSACW, 2012.

[4] L. N. Badia, S., Carpen-Amarie, A. Enabling
Large-Scale Testing of IaaS Cloud Platforms on the
Grid 5000 Testbed. TTC, 2013.

[5] P. Barham, A. Donnelly, R. Isaacs, and R. Mortier.
Using magpie for request extraction and workload
modelling. OSDI, 2004.

[6] Y. C. Csallner. Dsd-crasher: a hybrid analysis tool for
bug finding. ISSTA, 2006.

[7] ClausM Oldt. Behind-the-Scenes at Salesforce. 2009.

[8] S. Dosinger, Stefan, Richard Mordinyi. Continuous
integration servers for increasing effectiveness of
automated testing. ASE, 2012.

[9] T. Gao, J., Bai, X. Cloud Testing- Issues, Challenges,
Needs and Practice. Software Engineering: An
International Journal, 2011.

[10] T. U. Gao, J., Bai, X. SaaS Testing on Clouds. Issues,
Challenges, and Needs. SOSE, 2013.

[11] Z. George Candea, Stefan Bucur. Automated Software
Testing as a Service (TaaS). CloudCom, 2010.

[12] V. Hoorn, M. Rohr, W. Hasselbring, J. Waller,
J. Ehlers, and D. Kieselhorst. Design and Application
of the Kieker Framework. 2009.

[13] M. L. C. Briand, Y. Labiche. Using genetic algorithms
for early schedulability analysis and ST in RT
systems. Genetic Prog. and Evolvable Machines, 2006.

[14] S. V. G. L. Ciortea, C. Zamfir. Cloud9: A software
testing service. LADIS, 2009.

[15] T. Lynch, M., Cerqueus, T. Testing a Cloud
Application: IBM SmartCloud iNotes. TTC, 2013.

[16] J. M. S. Bayan. Automatic stress and load testing for
embedded systems. ICSA, 2006.

[17] M. P. Jogalekar. Evaluating the scalability of
distributed systems. IEEE Trans. Parallel and
Distributed Systems, June 2000.

[18] T. Parsons and J. Murphy. Detecting Performance
Antipatterns in Component Based Enterprise
Systems. In Middleware Doctoral Symposium, 2008.

[19] R. Collard. Performance innovations, testing
implications. Software Test and Performance
Magazine, Aug. 2009.

[20] S. Riungu, L. M., Taipale, O. Research Issues for
Software Testing in the Cloud. CloudCom, 2010.

[21] M. S. Hangal. Tracking down software bugs using
automatic anomaly detection. ICSE, 2002.

[22] S. Shahamiri, W. Kadir, and S. Mohd-Hashim. A
Comparative Study on Automated Software Test
Oracle Methods. ICSEA, 2009.

[23] W. Spear, S. Shende, A. Malony, R. Portillo, P. J.
Teller, D. Cronk, S. Moore, and D. Terpstra. Making
Performance Analysis and Tuning Part of the Software
Development Cycle. DoD HPCM, 2009.

[24] S. Vijayanathan Naganathan. The Challenges
Associated with SaaS Testing. Infosys, 2011.

[25] Q. M. W. Tsai, Y. Huang. Testing the Scalability of
SaaS applications. RTSOAA, 2011.

[26] J. Yang, D. Evans, D. Bhardwaj, T. Bhat, and
M. Das. Perracotta: mining temporal api rules from
imperfect traces. ICSE, 2008.


